圆锥曲线基本题型总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线基本题型总结:提纲:
一、定义的应用:
1、定义法求标准方程:
2、涉及到曲线上的点到焦点距离的问题:
3、焦点三角形问题:
二、圆锥曲线的标准方程:
1、对方程的理解
2、求圆锥曲线方程(已经性质求方程)
3、各种圆锥曲线系的应用:
三、圆锥曲线的性质:
1、已知方程求性质:
2、求离心率的取值或取值围
3、涉及性质的问题:
四、直线与圆锥曲线的关系:
1、位置关系的判定:
2、弦长公式的应用:
3、 弦的中点问题:
4、 韦达定理的应用:
一、 定义的应用: 1. 定义法求标准方程:
(1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处理)
1.设F 1,F 2为定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则动点M 的轨迹是( )
A .椭圆
B .直线
C .圆
D .线段 【注:2a>|F 1 F 2|是椭圆,2a=|F 1 F 2|是线段】
2.设B -4,0),C 4,0),且△ABC 的周长等于18,则动点A 的轨迹方程为 )
A.x 225+y 2
9
=1 y ≠0)
B.y 225+x 2
9
=1 y ≠0) C.
x 216+y 2
16=1 y ≠0) D.y 216+x 2
9
=1 y ≠0) 【注:检验去点】
3.已知A 0,-5)、B 0,5),|PA |-|PB |=2a ,当a =3或5时,P 点的轨迹为 ) A.双曲线或一条直线 B.双曲线或两条直线 C.双曲线一支或一条直线
D.双曲线一支或一条射线 【注:2a<|F 1 F 2|是双曲线,2a=|F 1 F 2|是射线,注意一支与两支的判断】
4.已知两定点F 1-3,0),F 23,0),在满足下列条件的平面动点P 的轨迹中,是双曲线的是 ) A.||PF 1|-|PF 2||=5 B.||PF 1|-|PF 2||=6 C.||PF 1|-|PF 2||=7
D.||PF 1|-|PF 2||=0 【注:2a<|F 1 F 2|是双曲线】
5.平面有两个定点F 1-5,0)和F 25,0),动点P 满足|PF 1|-|PF 2|=6,则动点P 的轨迹方程是 )
A.x 216-y 2
9
=1x ≤-4)
B.x 29-y 2
16
=1x ≤-3)
C.
x 216-y 2
9
=1x ≥4)
D.x 29-y 2
16
=1x ≥3) 【注:双曲线的一支】
6.如图,P 为圆B :x +2)2+y 2=36上一动点,点A 坐标为2,0),线段AP 的垂直平分线交直线BP 于点Q ,求点Q 的轨迹方程.
7.已知点A(0,3)和圆O 1:x 2+(y +3)2=16,点M 在圆O 1上运动,点P 在半径O 1M 上,且|PM|=|PA|,求动点P 的轨迹方程.
(2)涉及圆的相切问题中的圆锥曲线:
8.已知圆A :x +3)2+y 2=100,圆A 一定点B 3,0),圆P 过B 且与圆A 切,求圆心P 的轨迹方程.
已知动圆M 过定点B -4,0),且和定圆x -4)2+y 2=16相切,则动圆圆心M 的轨迹方程为 )
A.x 24-y 2
12
=1 x >0)
B.x 24-y 2
12
=1 x <0) C.x 24-y 2
12
=1
D.y 24-x 2
12
=1 【注:由题目判断是双曲线的一支还是两支】 9.若动圆P 过点N -2,0),且与另一圆M :x -2)2+y 2=8相外切,求动圆P 的圆心的轨迹方程.
【注:双曲线的一支,注意与上题区分】
10.如图,已知定圆F 1:x 2+y 2+10x +24=0,定圆F 2:x 2+y 2-10x +9=0,动圆M 与定圆F 1、F 2都外切,求动圆圆心M 的轨迹方程.
11.若动圆与圆x -2)2+y 2=1相外切,又与直线x +1=0相切,则动圆圆心的轨迹是 ) A.椭圆 B.双曲线 C.双曲线的一支 D.抛物线
12.已知动圆M 经过点A 3,0),且与直线l :x =-3相切,求动圆圆心M 的轨迹方程. 【注:同上题做比较,说法不一样,本质相同】
13.已知点A 3,2),点M 到F ⎝ ⎛⎭⎪⎫
12,0的距离比它到y 轴的距离大12.(M 的横坐标非负)
1)求点M 的轨迹方程; 【注:体现抛物线定义的灵活应用】
2)是否存在M ,使|MA |+|MF |取得最小值?若存在,求此时点M 的坐标;若不存在,请说明理由. 【注:抛物线定义的应用,涉及抛物线上的点到焦点的距离转化成到准线的距离】
(3)其他问题中的圆锥曲线:
14.已知A ,B 两地相距2 000 m ,在A 地听到炮弹爆炸声比在B 地晚4 s ,且声速为340 m/s ,求炮弹爆炸点的轨迹方程. 【注:双曲线的一支】
2.
15.如图所示,在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是( )
A .直线
B .圆
C . 双曲线
D .抛物线
【注:体现抛物线定义的灵活应用】
2.涉及到曲线上的点到焦点距离的问题:
16.设椭圆x 2m 2+y 2
m 2-1
=1 (m >1)上一点P 到其左焦点的距离为3,到右焦点的距离为1,则椭圆的离心率为( )
A.
22 B.12 C.2-12 D.34
17.椭圆x 216+y 2
7
=1的左右焦点为F 1,F 2,一直线过F 1交椭圆于A 、B 两点,则△ABF 2的周长为( )
A .32
B .16
C .8
D .4
18.已知双曲线的方程为x 2a 2-y 2
b 2=1,点A ,B 在双曲线的右支上,线段AB 经过双曲线的右焦点F 2,|AB |=m ,
F 1为另一焦点,则△ABF 1的周长为( )
A .2a +2m
B .4a +2m
C .a +m
D .2a +4m