蔡氏电路混沌控制与同步实验研究_钟双英

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蔡氏电路混沌控制与同步实验研究

钟双英,刘 崧,戚小平,李 鸿

(南昌大学理学院,江西南昌 330031

)摘 要:利用Multisim仿真软件研究了电路元件参数对称和不对称情况下蔡氏电路的混沌控制与同步。仿真结果综合表明:耦合电阻的大小及电路元件参数匹配对混沌信号控制与同步效果产生严重的影响。给出了混沌信号同步的耦合电阻参数范围,对进一步开展电路混沌创新性物理实验教学具有理论的指导意义。关键词:蔡氏电路;混沌控制;混沌同步;Multisim

中图分类号:G642.0 文献标志码:A 文章编号:1002-

4956(2012)11-0032-03Experimental study 

on control and synchronization of chaos in Chua’s circuitZhong 

Shuangying,Liu Song,Qi Xiaoping,Li Hong(School of Science,Nanchang University,Nanchang 

330031,China)Abstract:This paper deals mainly with the experimental study on control and synchronization of chaos inChua’s circuit with the symmetry and dissymmetry circuit parameters by means of Multisim.The simulationresults indicate that the size of coupling resistance and the parameter matching of circuit have a great effect onsynchronization of chaos,and the parameter range of getting synchronization is given,which presents a theo-retical sig

nificance for the future work.Key 

words:Chua’s circuit;chaos control;chaes synchronization;Multisim收稿日期:2012-02-21 修改日期:

2012-04-26基金项目:江西省高等学校教学改革研究课题(JXJG-11-1-

29);南昌大学教学改革课题

作者简介:钟双英(1968—)

,女,江西广丰,博士,副教授,主要从事物理实验教学及非线性物理研究.

zhongshuangying

@ncu.edu.cn 混沌现象是自然界中普遍存在[1]

的非线性动力系

统的独特行为,

具有明显的不可预测性,对初始条件敏感,混沌同步现象广泛地应用于生物、医学、电子学和

保密通信等领域[2-

7]。在物理实验教学中,可以借助非

线性电路来模拟各种非线性动力系统,直观地观察到

非线性动力系统随时间演化的趋势[

8-

13]。本文基于Multisim仿真软件研究参数对称和不对称的蔡氏电

路的双涡旋混沌信号的控制与同步,观察耦合电阻及电路参数对混沌信号同步效果的影响。

1 蔡氏仿真电路建模

蔡氏电路结构简单,是研究混沌现象的一种典型的非线性电路,非线性电阻(RN)可由二极管和运算放大器构成,如图1所示,RN的伏安特性测试曲线如图2所示

图1 非线性电阻RN

构造示意图

图2 非线性电阻RN伏安特性测试曲线

ISSN 

1002-4956CN11-2034/T 实 验 技 术 与 管 理Experimental Technology 

and Management 第29卷 第11期 2012年11月Vol.29 No.11 Nov.2012

用来观察混沌信号同步现象的仿真电路由2个电路元件参数不对称的蔡氏电路构成,如图3所示。各元件参数:C1=98nF,C2=C4=5.6nF,C3=47nF,L1=15mH,L2=10mH,R1=2.1kΩ,R10=1.9kΩ,耦合电阻R3=(0~1)kΩ连续可调,R2和R11为图1中所示的非线性电阻RN

。图3 直接耦合混沌控制与同步仿真电路图

2 直接耦合混沌控制与同步仿真

2.1 不对称电路

图3中左右两边的部分元件参数不相等,采用电容C1与C3之间节点直接耦合,将C2和C4的电压分别送入虚拟示波器的A、B通道,除R3外其他元件参数值不变,观察耦合电阻R3值的改变对不对称电路混沌控制与同步的影响,仿真结果如图4所示。当耦合电阻R3=960Ω时,系统相空间图为一双涡旋混沌吸引子,如图4(a)所示,其对应的时域波形(见图4(b))也表明此时系统处于超混沌状态,两电路完全不同步;当耦合电阻R3减小到879Ω时,系统处于暂态混沌状态,如图4(c)所示的单涡旋吸引子;耦合电阻R3=876Ω时,混沌区域中开始出现周期窗口现象,如图4(d)所示,此时系统被控制到3P周期状态;R3=873Ω时,则两电路被同步在2P周期轨道上,如图4(e)所示;当R3=856Ω时,系统被控制到1P周期状态,如图4(f)所示。若继续减小R3,则两电路又会沿着1P→2P→……这样的倍周期分岔方向演化,当R3=542.156Ω时,两振荡电路被再次同步在稳定的3P周期轨道上,之后稍微偏离此临界值的话,两电路无法同步,系统便进入混沌状态,因为3P周期的存在即蕴含着其领域一定是混沌

。图4 不对称电路混沌同步仿真结果图

2.2 对称电路

令图3电路中左右两部分元件参数都相等,即L1=L2=10mH、C1=C3=47nF、R10=R1=2.1kΩ,观察参数对称结构电路的混沌信号同步随耦合电阻的

钟双英,等:蔡氏电路混沌控制与同步实验研究

相关文档
最新文档