复合材料力学讲解学习

复合材料力学讲解学习
复合材料力学讲解学习

复合材料力学

复合材料力学

论文题目:用氧化铝填充导热和电绝缘环氧

复合材料的无缺陷石墨烯纳米片

院系班级:工程力学1302

姓名:黄义良

学号: 201314060215

用氧化铝填充导热和电绝缘环氧复合材料的无缺

陷石墨烯纳米片

孙仁辉1,姚华1,张浩斌1,李越1,米耀荣2,于中振3

(1.北京化工大学材料科学与工程学院,有机无机复合材料国家重点实验室北京100029;2.高级材料技术中心(CAMT),航空航天,机械和机电工程学院J07,悉尼大学;3.北京化工大学软件物理科学与工程北京先进创新中心,北京100029)

摘要:虽然石墨烯由于其高纵横比和优异的导热性可以显着地改善聚合物的导热性,但是其导致电绝缘的严重降低,并且因此限制了其聚合物复合材料在电子和系统的热管理中的广泛应用。为了解决这个问题,电绝缘Al2O3用于装饰高质量(无缺陷)石墨烯纳米片(GNP)。借助超临界二氧化碳(scCO2),通过Al(NO3)3前体的快速成核和水解,然后在600℃下煅烧,在惰性GNP表面上形成许多Al2O3纳米颗粒。或者,通过用缓冲溶液控制Al2(SO4)3前体的成核和水解,

Al2(SO4)3缓慢成核并在GNP上水解以形成氢氧化铝,然后将其转化为Al2O3纳米层,而不通过煅烧进行相分离。与在scCO2的帮助下的Al2O3@GNP混合物相比,在缓冲溶液的帮助下制备的混合物高度有效地赋予具有优良导热性的环氧树脂,同时保持其电绝缘。具有12%质量百分比的Al2O3@GNP混合物的环氧复合材料表现出1.49W /(m·K)的高热导率,其比纯环氧树脂高677%,表明其作为导热和电绝缘填料用于基于聚合物的功能复合材料。

关键词:聚合物复合基材料(PMCs)功能复合材料电气特性热性能

Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites

Renhui Sun1,Hua Yao1, Hao-Bin Zhang1,Yue Li1,Yiu-Wing Mai2,Zhong-Zhen Yu3

(1.State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China;

2.Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering J07, The University of Sydney, Sydney, NSW 2006, Australia;

3.Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China)

Abstract:Although graphene can significantly improve the thermal conductivity of polymers due to its high aspect ratio and excellent thermal conductance, it causes serious reduction in electrical insulation and thus limits the wide applications of its polymer composites in the thermal management of electronics and systems. To solve this problem, electrically insulating Al2O3is used to decorate high quality (defect-free) graphene nanoplatelets (GNPs). Aided by supercritical carbon dioxide (scCO2), numerous Al2O3 nanoparticles are formed on the inert GNP surfaces by fast nucleation and hydrolysis of Al(NO3)3 precursor followed by calcination at 600 °C. Alternatively, by controlling nucleation and hydrolysis of Al2(SO4)3precursor with a buffer solution,

Al2(SO4)3 slowly nucleates and hydrolyzes on GNPs to form aluminum hydroxide, which is then converted to

Al2O3 nanolayers without phase separation by calcination. Compared to the Al2O3@GNP hybrid with the assistance of scCO2, the hybrid prepared with the help of a buffer solution is highly efficient in conferring epoxy with excellent thermal conductivity while retaining its electrical insulation. Epoxy composite with 12 wt% of

Al2O3@GNP hybrid exhibits a high thermal conductivity of 1.49 W/(mK), which is 677% higher than that of neat epoxy, indicating its high potential as thermally conductive and electrically insulating fillers for polymer-based functional composites.

Keywords:Polymer-matrix composites (PMCs); Functional composites; Electrical properties;Thermal properties

1.介绍

随着电子器件的高集成化和小型化,积累的热量的快速和高效的耗散对于各种高性能器件的正常功能变得越来越重要。导热聚合物复合材料

是热传输和散热的一类重要的热管理材料,由于其轻便和易于加工而广泛应用于包括发光二极管(LED)和电子封装的应用中。由于大多数聚合物的低热导率(?0.2W /(m·K)),使用各种导热填料来增强它们的导热性。在这些填料中,电绝缘陶瓷填料如 Al2O3,BN 和AlN可赋予聚合物高导热性,同时填充的复合材料保持电绝缘。通常需要高负载(质量百分比> 50%)以获得具有令人满意的导热性的聚合物复合材料,这严重损害聚合物的机械性能并导致复合材料的加工困难。

与陶瓷填料相比,二维石墨烯具有更高的热导率(?5300 W /(mK)),因此更有效地提高聚合物的热导率。然而,其高导电性使得不可能制备导热但电绝缘的聚合物/石墨烯复合材料,因为导电性对石墨烯的含量比热导率更敏感,并且在低填充填料下可容易地实现高电导率,然后发现聚合物复合材料的热导率明显增加。如果导电聚合物复合材料用于电子器件,必须进行电子元件的特殊结构设计,以避免器件内部发生电短路。

为了充分利用石墨烯对于电绝缘聚合物复合材料的优异的导热性,已经开发了各种技术以通过在石墨烯表面上构造绝缘纳米颗粒或纳米层来抑制其高电导率。 Hsiao以及其他人通过溶胶 - 凝胶法用二氧化硅涂覆热还原氧化石墨烯(TGO)。对于质量分数为1%的TGO-二氧化硅杂化物,其环氧复合物显示出0.32W /(m·K)的导热率和电绝缘性能(2.96×10 9Ω·m)。然而,二氧化硅涂层的差的固有热导率和杂化物的低负载导致热导率的有限增加。与TGO相比,TGO通常在1050℃的中等温度下热还原,并且仍然含有含氧基团和缺陷,因此具有适度的导热性,高质量(无缺陷)石墨烯纳米片(GNP)通过TGO板在2200℃的热退火,更具有导热性。例如,对于仅具有5.3%质量分数的无缺陷的GNP的聚乙二醇复合材料,获得1.35W /(m·K)的高热导率。

虽然无缺陷的GNP是高导热的,但它们的惰性表面使得难以通过电绝缘纳米材料涂覆或装饰。幸运的是,环保超临界二氧化碳(scCO2)流体由于其零表面张力和高扩散性而被证实在润湿惰性表面是有效的,无机纳米颗粒的前体可以吸附到GNP的表面上,并随后转化为纳米颗粒和纳米片通过煅烧。在scCO2的帮助下,AlOOH 和MnO2很好地装饰在石墨烯的惰性表面上。然而,分离的纳米颗粒通常导致松散和多孔结构,这将降低杂化物的热导率。最近,我们通过使用缓冲溶液封装具有集成的层的碳纳米管(CNT)。与CNT相同的石墨烯表面特征应该使得可以在GNP上构造紧密和固体的Al2O3层。然而,据我们所知,很少有文献报道了通过在scCO2流体或缓冲溶液的存在下在无缺陷的GNP 上涂覆电绝缘层来合成导热但电绝缘的混合物。

在这里,通过控制成核和水解过程,Al2O3纳米颗粒和纳米层分别在scCO2流体和缓冲溶液的帮助下在GNP上生长。合成的Al2O3@GNP混合物有效提高环氧树脂的导热性并保持环氧树脂的电绝缘性。 1%质量分数的GNP已经足以使环氧树脂具有导电性。对于在scCO2

(Al2O3@GNP-BS)的辅助下制备的杂化体,环氧复合材料的保持电绝缘的最大负荷增加至10%,导热率为0.96W /(m·K),12%的该混合物在导热率为1.49W /(m·K)的缓冲溶液(Al2O3@GNP-BS)中制备。这些热导率远高于那些公开报道的具有高得多的填料负载的导热和电绝缘复合材料,这表明作为聚合物复合材料的有效的导热填料的潜力。此外,还研究了锚固的Al2O3的微观结构对复合材料性能的影响。

2.实验

2.1. 材料

通过在1050℃下热氧化石墨氧化物,然后在2200℃下在氩气气氛中退火制备的无缺陷的GNP 由上海潮县新材料科技有限公司(中国)提供。Al(NO3)3·9H2O, Al2(SO4)3·18H2O,甲酸和甲酸铵购自J&K Sci。有限公司(中国)。二氧化碳气体(99.99%,阳极气体),环氧单体(NPEL-128,Nanya Plastics),4,4'-二氨基二苯基甲烷(DDM,Aladdin-试剂),商业α-Al2O3(Honghe Chemicals)),多壁CNT(TNGM2,Timesnano)和商业GNP(M15,XG Sciences)直接使用而无需进一步纯化。

2.2. Al2O3@GNP杂化物的制备

Al2O3@GNP杂化体使用两种不同的方法制备。对于scCO2辅助方法,通过超声处理将1.0gGNP 和6.0gAl(NO3)3·9H2O 分散在100ml乙醇中,将

所得混合物装入高压高压釜中。然后用6MPa的CO2 填充高压釜,并通过将温度升高至140℃来实现CO2 的超临界状态。在剧烈搅拌下反应持续12小时后,将高压釜冷却至室温并缓慢减压。将所得物离心并用乙醇反复洗涤,在80℃下干燥24小时,最后在惰性气氛中在600℃下煅烧3小时以除去吸收的水和残余前体。将所得的粉末称为

Al2O3@GNP-SC混合物,其中均匀分散的Al2O3纳米颗粒涂覆在GNP上。在缓冲溶液辅助方法中,使用由甲酸和甲酸铵水溶液(0.2M)组成的缓冲溶液(pH = 4.4)合成Al2O3@GNP杂化物。然后将0.2g用 HNO3 温和处理的GNP和1.2g

Al2(SO4)3·18H2O分散在500mL甲酸/甲酸铵缓冲溶液中。在悬浮液在85℃下反应2小时后,将所得物洗涤,干燥并在600℃下煅烧3小时,其具有与scCO2辅助方法相同的煅烧条件。该产物标记为Al2O3@GNP-BS杂化物,其中均匀的Al2O3纳米层没有相分离涂覆在GNP上。

2.3. 环氧/ Al2O3@GNP复合材料的制备

通过溶液混合制备导热环氧树脂/

Al2O3@GNP复合材料。首先,通过温和超声处理制备Al2O3@GNP/乙醇悬浮液,在75℃下与环氧单体混合1小时,然后升高温度以消除气泡并蒸发残余的乙醇。在连续搅拌下加入DDM固化剂(DDM /环氧= 1 / 2.6,w / w),接着进行另一个气泡去除过程,将混合物倒入聚四氟乙烯模具中,在80℃下固化2小时,在130℃下后固化3小时。为了比较,也使用类似的混合和固化程序制备填充有商业填料的环氧基复合材料。

2.4.表征

使用配备有能量色散X射线分光镜(EDX)和JEOL JEM-3010高分辨率透射电子的日立S-4700场发射扫描电子显微镜(SEM)观察

Al2O3@GNP混合物及其环氧化合物的微结构显微镜(TEM)。使用Bruker AXS D8高级X射线衍射(XRD),Thermo VG RSCAKAB 250×高分辨率X射线光电子能谱仪(XPS)和Renishaw inVia Raman显微镜对GNP及其杂化物的结构和化学变化进行表征(UK)。使用TA Q50热重量分析仪(TGA)在空气气氛下从30至1000℃测定杂化物中的Al2O3含量。交流(AC)电导率的测量在室温下在100Hz至100MHz的频率范围内在Agilent 4294A精密阻抗分析仪上进行。使用Keithley Instruments 4200-SCS半导体表征系统(> 10 -6 S / m)和Keithley Instruments 6517B电阻率计(<10 -6 S / m)测量环氧复合材料的直流(DC)体积电导率。根据公式计算环氧复合材料的贯通平面热导率(κ):

ρ

α?

?

=p

C

K (1)

其中α是热扩散系数,Cp比热容和ρ密度。使用Netzsch LFA467闪光装置在25℃下测量尺寸为10×10×1.5mm 3的环氧复合材料的热扩散率。使用Perkin-Elmer Pyris 1差示扫描量热计(DSC)和配备有密度测量试剂盒(瑞士)的Metter-Toledo天平测量复合材料的比热容和密度(1.15-1.25g / cm 3) ASTM792-00。

3.结果与讨论

3.1.由scCO2流体和在缓冲溶液中辅助

Al2O3@GNP杂化物的合成

确认TGO的高温退火可以通过去除TGO的缺陷和残余含氧基团来提高其热导电性和导电性,以及由此产生的无缺陷的GNPs表现出化学惰性表面,这使得GNP的装饰或涂层困难。图1a 示出了通过流体反溶剂方法和缓冲溶液辅助沉积方法的具有电绝缘Al2O3@GNP的装饰。在scCO2流体方法中, Al(NO3)3的乙醇溶液被scCO2溶胀,因此 Al(NO3)3的溶解度大大降低,导致

Al(NO3)3的严重过饱和和同时成核。GNP容易被scCO2润湿并且提供用于 Al(NO3)3成核的丰富表面。在scCO2的帮助下, Al(NO3)3在140℃水解,在GNP上形成氢氧化铝,然后通过在600℃下煅烧将其转化为Al2O3纳米颗粒。或者,在甲酸/甲酸铵缓冲溶液中,离子化的羟基离子的量是中等且稳定的,这使得Al2(SO4)3缓慢成核并在GNP表面上水解以形成氢氧化铝纳米层,其然后转化为Al2O3纳米层通过在600℃下煅烧。注意,通过控制溶液的初始pH值以确保形成均匀且薄的氢氧化铝纳米层而不是纳米颗粒,通过调节氢氧根离子的供应,应仔细平衡成核和水解。将合成的Al2O3@GNP混合物与环氧单体混合以制备导热但电绝缘的环氧基复合材料。预期装饰的Al2O3的存在可以通过防止GNP的直接接触而大大抑制环氧复合材料的导电性,而导热Al2O3和GNP组分都可以在环氧基质中提供有效的声子转移。

图1:

复合材料论文

摘要 与传统的CF增强材料相比,CNTs/CF混杂多尺度增强体在提高复合材料横向力学性能,充分发挥CNTs和cF的优异性能,开发具有综合优异性能的先进复合材料方面具有显著优势。目前该领域的研究尚处于起步阶段,几种常见的制备方法中化学气相沉积法尤其是等离子体化学气相沉积法获得的多尺度增强体的纳米结构在纤维表面均匀密布,具有广阔的发展前景和应Hj潜力。总之,CNTs/CF制备工艺的进一步完善和其与树脂复合后的新型复合材料的性能研究有待深入探索。 引言 碳纤维增强树脂基复合材料(CFRP)具有强度高、模量高、密度小、尺寸稳定等一系列优异性能,已器材等领域。众所周知,复合材料的性能主要取决于纤维和树脂基体本身的力学性能、纤维的表面能、纤维与基体之间的界面粘结以及界面应力传递能力。由于碳纤维(CF)表面为石墨乱层结构,纤维表面惰性大、表面能低,有化学活性的宫能}玎少,反应活性低,与基体的粘结性差,复合材料界面中存在较多的缺陷,界面粘结强度低,复合材料层间剪切强度(Interlaminar Sheafing Strength,ILSS)低。另外,纤维复合材料是各向异性十分突出的材料,其优异的物理、力学性能都集中在纤维的轴向,而在复合材料的横向无纤维加强作用.复合材料耐冲击性能较差。为改善纤维增强树脂基复合材料的性能,必须对纤维/树脂基体间的界面进行优化设计,同时改善树脂基体的性能指标。 纳米管(Carbon Nanotubes,CNTs)是由单层或多层石墨烯片围绕中心轴按一定的螺旋角卷绕而成的无缝、纳米级中空管体。组成CNTs的c—C共价键是自然界巾很稳定的化学键,理论计算和实验表明CNTs具有极高的强度和极大的韧性¨1,理论估计其杨氏模量高达5TPa,实验测得平均为1.8TPa,弯曲强度为14.2GPa,抗拉强度为钢的100倍,密度仅为钢的1/6~l/7。其直径在0.4—50nm之间,长度可达数微米至数毫米,因而具有很大的长径比,一般大于1000,是准一维的量子线,被看作复合材料增强体的终极形式,必将作为增强相而在复合材料中得到应用HJ。CNTs主要由碳元素组成,与聚合物有相似的结构,尺寸在同一数量级上,可将CNTs看作一种单元素的聚合物,且CNTs表面原子约占50%以上,与聚合物之间的相互作用强,研究表明,CNTs与聚合物之间的应力传递能力至少是传统纤维增强复合材料的10倍以上¨J,同时CNTs还具有很好的韧性,能够承受40%的张力应变,而不会呈现膪I生行为、塑性变形或键断裂.可以提高基体材料的韧性。6 J,因此可与聚合物复合制备高性能的复合材料。将准一维纳米材料CNTs与传统连续纤维混合作为复合材料增强相,有望同时改善复合材料的界面性能和树脂基体的抗冲强度。 CNTs/CF作为多尺度增强材料,其方式主要有掺杂法、化学气相沉积法、混纺法及化学接枝法。 碳纳米管/碳纤维混杂多尺度增强体 研究现状 掺杂法 掺杂法是将CNTs直接混合在树脂中,然后与连续CF复合,制备复合材料。究了多壁碳纳米管(MWCNTs)/T300连续cF环氧树脂复合材料的力学性能,当基体中CNTs的含量为3%时复合材料的力学性能最佳,断裂强度为1780MPa,模量为164GPa。国防科学技术大学采

编织复合材料的细观结构与力学性能

3D编织复合材料的细观结构与力学性能 摘要归纳、梳理三维编织复合材料细观结构表征方面较有代表性的单胞模型,分析、比较各结构模型的优缺点,从理论分析与试验测试两方面总结三维编织复合材料刚度和强度性能的研究成果与进展,探讨细观结构表征与力学性能预报中存在的主要问题,并展望今后的研究重点与发展方向。 关键词三维编织复合材料;细观结构;力学性能 Microstructure and Mechanical Properties of 3D Braided Composites ABSTRACT Typical unit cell models on microstructure of 3D braided composites were summarized. Advantages and disadvantages of various models were compared. Developments of research on mechanical properties of 3D braided composites were introduced from theoretical analysis and experimental test perspectives. Finally, problems in the present study were discussed and further development trend is prospected KEYWORDS 3D braided composites; Microstructure; Mechanical properties 1 引言 三维编织复合材料是20世纪80年代为满足航空航天部门对高性能材料的需求而研发出的先进结构材料,具有高度整体化的空间互锁网状结构,可有效避免传统层合复合材料的分层破坏,冲击韧性、损伤容限与抗疲劳特性优异,结构可设计性强,能够实现异形件的净尺寸整体成型,因此在结构材料领域倍受关注。 力学性能是三维编织复合材料结构设计的核心,直接关系应用安全性与可靠性,细观结构是影响力学性能的关键,正确描述细观结构是准确预测宏观力学性能的必要前提。细观结构表征与力学性能预报一直是三维编织复合材料的研究重点,具有重要的理论价值与实践意义。 2 三维编织复合材料的细观结构单胞模型 Ko[1]首次提出“纤维构造”术语,定义出图1所示的立方体单胞模型,单胞由四根不计细度的直纱线组成,纱线沿体对角线方向取向并相交于立方体中心,模型大致描述出了编织体内部的纱线分布情况。

复合材料力学

复合材料力学 论文题目:用氧化铝填充导热和电绝缘环氧 复合材料的无缺陷石墨烯纳米片 院系班级:工程力学1302 姓名:黄义良 学号: 201314060215

用氧化铝填充导热和电绝缘环氧复合材料的无缺陷石墨烯纳米片 孙仁辉1 ,姚华1 ,张浩斌1 ,李越1 ,米耀荣2 ,于中振3 (1.北京化工大学材料科学与工程学院,有机无机复合材料国家重点实验室北京 100029;2.高级材料技术中心(CAMT ),航空航天,机械和机电工程学院J07,悉尼大学;3.北京化工大学软件物理科学与工程北京先进创新中心,北京100029) 摘要:虽然石墨烯由于其高纵横比和优异的导热性可以显着地改善聚合物的导热性,但是其导致电绝缘的严重降低,并且因此限制了其聚合物复合材料在电子和系统的热管理中的广泛应用。为了解决这个问题,电绝缘Al 2O 3用于装饰高质量(无缺陷)石墨烯纳米片(GNP )。借助超临界二氧化碳(scCO 2),通过Al(NO 3)3 前体的快速成核和水解,然后在600℃下煅烧,在惰性GNP 表面上形成许多Al 2O 3纳米颗粒。或者,通过用缓冲溶液控制Al 2(SO 4)3 前体的成核和水解,Al 2(SO 4)3 缓慢成核并在GNP 上水解以形成氢氧化铝,然后将其转化为Al 2O 3纳米层,而不通过煅烧进行相分离。与在scCO2的帮助下的Al 2O 3@GNP 混合物相比,在缓冲溶液的帮助下制备的混合物高度有效地赋予具有优良导热性的环氧树脂,同时保持其电绝缘。具有12%质量百分比的Al 2O 3@GNP 混合物的环氧复合材料表现出1.49W /(m ·K )的高热导率,其比纯环氧树脂高677%,表明其作为导热和电绝缘填料用于基于聚合物的功能复合材料。 关键词:聚合物复合基材料(PMCs ) 功能复合材料 电气特性 热性能 Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites Renhui Sun 1,Hua Yao 1, Hao-Bin Zhang 1,Yue Li 1,Yiu-Wing Mai 2,Zhong-Zhen Yu 3 (1.State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; 2.Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering J07, The University of Sydney, Sydney, NSW 2006, Australia; 3.Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China) Abstract:Although graphene can significantly improve the thermal conductivity of polymers due to its high aspect ratio and excellent thermal conductance, it causes serious reduction in electrical insulation and thus limits the wide applications of its polymer composites in the thermal management of electronics and systems. To solve this problem, electrically insulating Al 2O 3is used to decorate high quality (defect-free) graphene nanoplatelets (GNPs). Aided by supercritical carbon dioxide (scCO 2), numerous Al 2O 3 nanoparticles are formed

复合材料论文

复合材料论文 陶瓷基复合材料的发展状况 12级无机非(1)班1203031002 秦宇 摘要:材料是科学技术发展的基础,材料的发展可以推动科学技术的发展,材料主要有金属材料、聚合物材料、无机非金属材料和复合材料四大类。其中复合材料是是最新发展地来的一大类,发展非常迅速。最早出现的是宏观复合材料,它复合的组元是肉眼可以看见的,比如混凝土。随后发展起来的是微观复合材料,它的组元肉眼看不见。由于复合材料各方面优异的性能,因此得到了广泛的应用。复合材料对航空、航天事业的影响尤为显著,可以说如果没有复合材料的诞生,就没有今天的飞机、火箭和宇宙飞船等高科技产品。 本文从纤维增强陶瓷基复合材料Cf/SiC入手,综述了陶瓷基复合材料(ceramic matrix composite,CMC)的特殊使用性能、界面增韧机理、制备工艺作了较全面的介绍,并对CMC 的的研究现状、未来发展进行了展望。 关键词:陶瓷基复合材料、增强纤维、基体 正文 陶瓷基复合材料的定义与特性 陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。 陶瓷基复合材料(CMC)由于具有高强度、高硬度、高弹性模量、热化学稳定性等优异性能,是制造推重比10 以上航空发动机的理想耐高温结构材料。一方面,它克服了单一陶瓷材料脆性断裂的缺点,提高了材料的断裂韧性;另一方面,它保持了陶瓷基体耐高温、低膨胀、低密度、热稳定性好的优点。陶瓷基复合材料的最高使用温度可达1650℃,而密度只有高温合金的70%。因此,近几十年来,陶瓷基复合材料的研究有了较快发展。目前CMC 正在航空发动机的高温段的少数零件上作评定性试用。 陶瓷基复合材料的分类 按增强材料形态分类,陶瓷基复合材料可分为颗粒增强陶瓷复合材料、纤维增强陶瓷复合材料、片材增强陶瓷复合材料。 按基体材料分类,陶瓷基复合材料可分为氧化物基陶瓷复合材料、非氧化物基陶瓷复合材料、碳/碳复合材料、微晶玻璃基复合材料。 三、陶瓷基复合材料的界面对材料整体性能的影响 界面直接影响复合材料的整体力学性能。纤维与基体间界面的主要作用有: (1)传递作用:由于纤维是主要的载荷承担者,因此界面必须有足够的结合强度来传递载荷,使纤维承受大部分载荷,在基体与纤维之间起到桥梁作用; (2)阻断作用:当基体裂纹扩展到纤维与基体间界面时,结合适当的界面能够阻止裂纹扩展或使裂纹发生偏转,从而达到调整界面应力,阻止裂纹向纤维内部扩展的效果。 当一垂直于纤维方向的裂纹穿入包埋单根纤维的基体时,随后的破坏机制界面对陶瓷基复合材料力学性能的影响分析可能为:基体断裂、纤维—基体界面脱粘、脱粘后摩擦、纤维断裂、应力重新分布、纤维拔出等。 对陶瓷基复合材料来说,纤维与基体的界面是控制材料性能的关键因素。因此,研究界面对陶瓷基复合材料的力学性能的影响具有重要意义。在纤维与基体之间的界面反应将改变材料

复合材料结构力学认识

暨南大学研究生课程论文 题目:复合材料结构力学认识 学院:理工学院 学系:土木工程 专业:建筑与土木工程 课程名称:复合材料结构力学 学生姓名:陈广强 学号:1339297001 电子邮箱:chengq09@https://www.360docs.net/doc/ba13814873.html, 指导教师:王璠

复合材料结构力学认识 主题词:复合材料力学;复合材料结构力学;力学特性;力学基础复合材料结构力学研究复合材料的杆、板、壳及基组合结构的应力分析、变形、稳定和振动等各种力学问题,,在广议上属于复合材料力学的一个分支。由于其内容丰富,问题重要和研究对象不同,已成为和研究复合材料力学问题的狭义复合材料力学并列的学科分支。 一、复合材料结构力学研究内容和办法 目前复合材料结构力学以纤维增强复合材料层压结构为研究对象,主要研究内容包括:层合板和层合壳结构的弯曲,屈曲与振动问题,以及耐久性、损伤容限、气功弹性剪裁、安全系数与许用值、验证试验和计算方法等专题。研究中采用宏观力学模型,可以分辩出层和层组的应力。这些应力的平均值为层合板应力。研究方法以各向异性弹性力学方法为主,同时采用有限元素法、有限差分法、能量变分法等方法。对耐久性、损伤容限等较新的课题则采用以试验为主的研究方法。 二、复合材料结构的力学特性 1、复合材料的比强度和比刚度较高 材料的强度除以密度称为比强度;材料的刚度除以密度称为比刚度。这两个参量是衡量材料承载能力的重要指标。比强度和比刚度较高说明材料重量轻,而强度和刚度大。这是结构设计,特别是航空、航天结构设计对材料的重要要求。现代飞机、导弹和卫星、复合电缆支架、复合电缆夹具等机体结构正逐渐扩大使用纤维增强复合材料的

复合材料结构与力学设计复结习题(本科生)

《复合材料结构设计》习题 §1 绪论 1.1 什么是复合材料? 1.2 复合材料如何分类? 1.3 复合材料中主要的增强材料有哪些? 1.4 复合材料中主要的基体材料有哪些? 1.5 纤维复合材料力学性能的特点哪些? 1.6 复合材料结构设计有何特点? 1.7 根据复合材料力学性能的特点在复合材料结构设计时应特别注意到哪些问题? §2 纤维、树脂的基本力学性能 2.1 玻璃纤维的主要种类及其它们的主要成分的特点是什么? 2.2 玻璃纤维的主要制品有哪些?玻璃纤维纱和织物规格的表示单位是什么?2.3 有一玻璃纤维纱的规格为2400tex,求该纱的横截面积(取玻璃纤维的密度 为2.54g/cm3)? 2.4 有一玻璃纤维短切毡其规格为450 g/m2,求该毡的厚度(取玻璃纤维的密 度为2.54g/cm3)? 2.5 无碱玻璃纤维(E-glass)的拉伸弹性模量、拉伸强度及断裂伸长率的大致 值是多少? 2.6 碳纤维T-300的拉伸弹性模量、拉伸强度及断裂伸长率的大致值是多少?密 度为多少? 2.7 芳纶纤维(kevlar纤维)的拉伸弹性模量、拉伸强度及断裂伸长率的大致值 是多少?密度为多少? 2.8 常用热固性树脂有哪几种?它们的拉伸弹性模量、拉伸强度的大致值是多 少?密度为多少?热变形温度值大致值多少? 2.9 简述单向纤维复合材料抗拉弹性模量、抗拉强度的估算方法。 2.10 试比较玻璃纤维、碳纤维单向复合材料顺纤维方向拉压弹性模量和强度值,指出其特点。 2.11 简述温度、湿度、大气、腐蚀质对复合材料性能的影响。 2.12 如何确定复合材料的线膨胀系数? 2.13已知玻璃纤维密度为ρf=2.54g/cm3,树脂密度为ρR=1.20g/cm3,采用规格 为450 g/m2的玻璃纤维短切毡制作内衬时,其树脂含量为70%,这样制作一层其GFRP的厚度为多少? 2.14 采用2400Tex的玻璃纤维(ρf=2.54g/cm3)制造管道,其树脂含量为35% (ρR=1.20g/cm3),缠绕密度为3股/10 mm,试求缠绕层单层厚度? 2.15 试估算上题中单层板顺纤维方向和垂直纤维方向的抗拉弹性模量和抗拉强度。 2.16已知碳纤维密度为ρf=1.80g/cm3,树脂密度为ρR=1.25g/cm3,采用规格为300 g/m2的碳纤维布制作复合材料时,其树脂含量为32%,这样制作一层其CFRP的厚度为多少?其纤维体积含量为多少? 2.17 某拉挤构件的腹板,厚度为5mm,采用±45°的玻璃纤维多轴向织物(面密

先进复合材料论文

摘要:纤维增强复合材料具有较强的结构特性,是一种多相体材料。其力学性能及损伤破坏规律不仅取决于各组分材料性能,同时也取决于细观结构特征。采用细观力学分析研究复合材料宏现力学性能与细观结构参数之间的内在联系具有重要的科学意义和工程价值。论述了细观力学实验技术的理论基础和常用实验技术及进展,介绍了复合材料的细观力学模型的发展,综述了复合材料力学行为有限元分析的研究现状,并对这一学科的研究发展进行了简要评述与展望。 1 前言 纤维增强复合材料是目前最先进的复合材料之一。它以其轻质高强、耐高温、抗腐蚀、热力学性能优良等特点广泛用作结构材料及耐高温抗烧蚀材料,是其它复合材料所无法比拟的。纤维复合材料因其较高的比强度、比模量在国外先进战略、战术固体火箭发动机方面应用较多,如美国的战略导弹“侏儒”三级发动机壳体,“三叉戟”一、二、三级发动机壳体的复合材料裙,民兵系列发动机的喷管扩张段,部分固体发动机及高速战术导弹美国的11IAAD、ERINT等。除军用外,开发纤维复合材料的其它应用也大有作为,如飞机及高速列车刹车系统、民用飞机及汽车复合材料结构件、高性能碳纤维轴承、风力发电机大型叶片、体育运动器材(如滑雪板、球拍、渔杆)等。随着碳纤维生产规模的扩大和生产成本的逐步下降,在增强混凝土、新型取暖装置、新型电极材料乃至日常生活用品中的应用也必将迅速扩大。我国拟大力开发新型纤维增强复合材料建材及与环保、日用消费品档关的高科技纤维增强复合材料的新市场,因此,对于纤维增强复合材料的力学性能研究是十分必要的。 复合材料既表现出宏观特征,又具有明显的细观结构特征。复合材料力学是一种两层次的力学理论。在宏观尺度上,可以将复合材料当作各向异性的宏观均匀连续体,用连续介质力学理论研究复合材料的力学行为旧,但是无法研究对宏观行为有重要影响的细观尺度上各组份相的变形及损伤失效行为。在细观尺度上,复合材料具有包含多种组份相的非均质结构,复合材料细观力学在宏观有效性能预测以及细观应力、应变场分析方面取得了一定进展。如果将复合材料宏观结构分析与细观结构分析结合起来,在进行宏观结构分析时就能够获得细观尺度上的力学参量值,将是一种更好的分析方法。本文在分析复合材料宏观、细观特

复合材料力学讲义

复合材料力学讲义-CAL-FENGHAI.-(YICAI)-Company One1

复合材料力学讲义 第一部分简单层板宏观力学性能 1.1各向异性材料的应力—应变关系 应力—应变的广义虎克定律可以用简写符号写成为: (1—1) 其中σi为应力分量,C ij为刚度矩阵εj为应变分量.对于应力和应变张量对称的情形(即不存在体积力的情况),上述简写符号和常用的三维应力—应变张量符号的对照列于表1—1。 按表1—l,用简写符号表示的应变定义为: 表1—1 应力——应变的张量符号与简写符号的对照 注:γij(i≠j)代表工程剪应变,而εij(i≠j)代表张量剪应变 (1—2) 其中u,v,w是在x,y,z方向的位移。 在方程(1—2)中,刚度矩阵C ij有30个常数.但是当考虑应变能时可以证明弹性材料的实际独立常数是少于36个的.存在有弹性位能或应变能密度函数的弹性材料当应力σi作用于应变dεj时,单位体积的功的增量为: (1—3) 由应力—应变关系式(1—1),功的增量为:

(1—4) 沿整个应变积分,单位体积的功为: (1—5) 虎克定律关系式(1—1)可由方程(1—5)导出: (1—6) 于是 (1—7) 同样 (1—8) 因W的微分与次序无,所以: (1—9) 这样刚度矩阵是对称的且只有21个常数是独立的。 用同样的方法我们可以证明: (1—10) 其中S ij是柔度矩阵,可由反演应力—变关系式来确定应变应力关系式为 (1—11) 同理 (1—12) 即柔度矩阵是对称的,也只有21个独立常数.刚度和柔度分量可认为是弹性常数。 在线性弹性范围内,应力—应变关系的一般表达式为: (1—13)

复合材料力学笔记

《复合材料力学》沈观林编著清华大学出版社 第一章复合材料概论 1.1复合材料及其种类 1、复合材料是由两种或多种不同性质的材料用物理和化学方法在宏观尺度上组成的具有新性能的材料。 2、复合材料从应用的性质分为功能复合材料和结构复合材料两大类。功能复合材料主要具有特殊的功能。 3、结构复合材料由基体材料和增强材料两种组分组成。其中增强材料在复合材料中起主要作用,提供刚度和强度,基本控制其性能。基体材料起配合作用,支持和固定纤维材料,传递纤维间的载荷,保护纤维。 根据复合材料中增强材料的几何形状,复合材料可分为三大类:颗粒复合材料、纤维增强复合材料(fiber-reinforced composite)、层和复合材料。 (1)颗粒:非金属颗粒在非金属基体中的复合材料如混凝土;金属颗粒在非金属基体如固体火箭推进剂;非金属在金属集体中如金属陶瓷。 (2)层合(至少两层材料复合而成):双金属片;涂覆金属;夹层玻璃。 (3)纤维增强:按纤维种类分为玻璃纤维(玻璃钢)、硼纤维、碳纤维、碳化硅纤维、氧化铝纤维和芳纶纤维等。 按基体材料分为各种树脂基体、金属基体、陶瓷基体、和碳基体。 按纤维形状、尺寸可分为连续纤维、短纤维、纤维布增强复合材料。 还有两种或更多纤维增强一种基体的复合材料。如玻璃纤维和碳纤维增强树脂称为混杂纤维复合材料。 5、常用纤维(性能表见P7表1-1) 玻璃纤维(高强度、高延伸率、低弹性模量、耐高温) 硼纤维(早期用于飞行器,价高) 碳纤维(主要以聚丙烯腈PAN纤维或沥青为原料,经加热氧化,碳化、石墨化处理而成;可分为高强度、高模量、极高模量,后两种成为石墨纤维(经石墨化2500~3000°C);密度比玻璃纤维小、弹性模

树脂基复合材料的力学性能

树脂基复合材料的力学性能 力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。 1、树脂基复合材料的刚度 树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。 由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。 对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。 2、树脂基复合材料的强度 材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。 树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,还不够成熟。 单向树脂基复合材料的轴向拉、压强度不等,轴向压缩问题比拉伸问题复杂。其破坏机理也与拉伸不同,它伴随有纤维在基体中的局部屈曲。实验得知:单向树脂基复合材料在轴向压缩下,碳纤维是剪切破坏的;凯芙拉(Kevlar)纤维的破坏模式是扭结;玻璃纤维一般是弯曲破坏。 单向树脂基复合材料的横向拉伸强度和压缩强度也不同。实验表

复合材料力学

目录 复合材料细观力学 (1) 简支层合板的自由振动 (9) 不同条件下对称层合板的弯曲分析 (14)

复合材料细观力学 ——混凝土细观力学 一、研究背景 复合材料细观力学 复合材料细观力学是20世纪力学领域重要的科学研究成果之一,是连续介质力学和材料科学相互衍生形成的新兴学科。 近20年来,我国科技工作者应用材料细观力学的理论和方法,成功研究了许多复合材料的增强,断裂和破坏问题,给出了一些特色和有价值的研究成果。 混凝土细观力学 混凝土作为一种重要的建筑材料已有百余年的历史,它广泛应用于房屋、桥梁、道路、矿井、及军工等诸多方面。在水工建筑方面,混凝土也被大量使用,特别是大体积混凝土,它是重力坝和拱坝的主要组成部分,对混凝土各项力学性能的准确把握及应用,在一定程度上决定了水工建筑物的质量和安全性能。 二、研究目的 长期以来,在混凝土应用的各个领域里,人们对混凝土的力学特性进行了大量的研究。如何充分的利用混凝土的力学性能,建造出更经济、更安全和更合理的建筑物或工程结构,一直都是结构工程设计领域研究的重要课题。 三、研究现状 混凝土是由粗骨料和水泥砂浆组成的非均质材料,它的力学性能

受到材料的品质、组分、施工工艺和使用条件等因素的影响。过去,人们对混凝土力学性能的研究很大程度上是依靠实验来确定的。随着实验技术的发展,混凝土各种力学性能被揭示出来。但由于实验需要花费大量的人力、物力和财力,而且所得到的实验成果往往由于实验条件的限制也是很有限的。 现代科学的一个重要的思维方式与研究方法就是层次方法,在对客观世界的研究中,当停留在某一层次,许多问题无法解决时,深入到下一个层次,问题就会迎刃而解。 对混凝土断裂问题的研究归纳为如下四个研究层次: 1)宏观层次:混凝土这种非均质材料存在着一个特征体积,经验的 特征体积相应于3~4倍的最大骨料体积。当混凝土体积大于这种特征体积时,材料被假定为均质的,当小于这种特征体积时,材料的非均质性将会十分明显。有限元计算结果反映了一定体积内的平均效应,这个特征体积的平均应力和平均应变称之谓宏观应力和宏观应变。 2)细观层次:在这个层次中,混凝土被认为是一种由骨料、砂浆和 它们之间的粘结带组成的三相非均质复合材料,细观内部裂隙的发展将直接影响混凝土的宏观力学性。细观层次的模型一般是毫米或厘米量级。 3)微观层次:在这个层次上,认为砂浆的非均质性是由浆体中的孔 隙所产生的。由于砂浆中孔隙很小而且量多,随机分布,水泥砂

复合材料力学讲解学习

复合材料力学

复合材料力学 论文题目:用氧化铝填充导热和电绝缘环氧 复合材料的无缺陷石墨烯纳米片 院系班级:工程力学1302 姓名:黄义良 学号: 201314060215 用氧化铝填充导热和电绝缘环氧复合材料的无缺 陷石墨烯纳米片

孙仁辉1,姚华1,张浩斌1,李越1,米耀荣2,于中振3 (1.北京化工大学材料科学与工程学院,有机无机复合材料国家重点实验室北京100029;2.高级材料技术中心(CAMT),航空航天,机械和机电工程学院J07,悉尼大学;3.北京化工大学软件物理科学与工程北京先进创新中心,北京100029) 摘要:虽然石墨烯由于其高纵横比和优异的导热性可以显着地改善聚合物的导热性,但是其导致电绝缘的严重降低,并且因此限制了其聚合物复合材料在电子和系统的热管理中的广泛应用。为了解决这个问题,电绝缘Al2O3用于装饰高质量(无缺陷)石墨烯纳米片(GNP)。借助超临界二氧化碳(scCO2),通过Al(NO3)3前体的快速成核和水解,然后在600℃下煅烧,在惰性GNP表面上形成许多Al2O3纳米颗粒。或者,通过用缓冲溶液控制Al2(SO4)3前体的成核和水解, Al2(SO4)3缓慢成核并在GNP上水解以形成氢氧化铝,然后将其转化为Al2O3纳米层,而不通过煅烧进行相分离。与在scCO2的帮助下的Al2O3@GNP混合物相比,在缓冲溶液的帮助下制备的混合物高度有效地赋予具有优良导热性的环氧树脂,同时保持其电绝缘。具有12%质量百分比的Al2O3@GNP混合物的环氧复合材料表现出1.49W /(m·K)的高热导率,其比纯环氧树脂高677%,表明其作为导热和电绝缘填料用于基于聚合物的功能复合材料。 关键词:聚合物复合基材料(PMCs)功能复合材料电气特性热性能 Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites Renhui Sun1,Hua Yao1, Hao-Bin Zhang1,Yue Li1,Yiu-Wing Mai2,Zhong-Zhen Yu3 (1.State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; 2.Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering J07, The University of Sydney, Sydney, NSW 2006, Australia; 3.Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China) Abstract:Although graphene can significantly improve the thermal conductivity of polymers due to its high aspect ratio and excellent thermal conductance, it causes serious reduction in electrical insulation and thus limits the wide applications of its polymer composites in the thermal management of electronics and systems. To solve this problem, electrically insulating Al2O3is used to decorate high quality (defect-free) graphene nanoplatelets (GNPs). Aided by supercritical carbon dioxide (scCO2), numerous Al2O3 nanoparticles are formed on the inert GNP surfaces by fast nucleation and hydrolysis of Al(NO3)3 precursor followed by calcination at 600 °C. Alternatively, by controlling nucleation and hydrolysis of Al2(SO4)3precursor with a buffer solution, Al2(SO4)3 slowly nucleates and hydrolyzes on GNPs to form aluminum hydroxide, which is then converted to Al2O3 nanolayers without phase separation by calcination. Compared to the Al2O3@GNP hybrid with the assistance of scCO2, the hybrid prepared with the help of a buffer solution is highly efficient in conferring epoxy with excellent thermal conductivity while retaining its electrical insulation. Epoxy composite with 12 wt% of Al2O3@GNP hybrid exhibits a high thermal conductivity of 1.49 W/(mK), which is 677% higher than that of neat epoxy, indicating its high potential as thermally conductive and electrically insulating fillers for polymer-based functional composites. Keywords:Polymer-matrix composites (PMCs); Functional composites; Electrical properties;Thermal properties 1.介绍 随着电子器件的高集成化和小型化,积累的热量的快速和高效的耗散对于各种高性能器件的正常功能变得越来越重要。导热聚合物复合材料

复合材料力学整理

基本概念: 1、单层复合材料的宏观均匀性、宏观正交各向异性的意义;简述复合材料的工艺特点、生产流程。 宏观均匀性:材料内任意一点处的宏观物理特性都完全相同 宏观正交各向异性:材料具有两个正交弹性对称面,且材料中同一点处沿不同方向的力学性能不同 工艺特点: a.材料制造和构件成型同时完成,一般情况下,复合材料的生产过程也就是构件的成型过程,材料的性能必须根据构件的使用要求进行设计,因此在选择材料、设计配比、确定纤维铺层和成型方法时,都必须满足构件的物化性能、结构形状和外观质量要求等; b.成型工艺灵活简单,可用模具一次成型法来制造各种构件。 常用的成型方法主要有:手糊成型、喷射成型、缠绕成型、层压成型、拉挤、RTM等方法。生产流程:复合材料的生产流程主要有四个步骤:润湿/浸渍、铺层、叠层、固化 a、润湿/浸渍:纤维和树脂混合形成薄层; b、铺层:按设计角度和位置铺设纤维布或预浸料; c、叠层:使每层预浸料或薄层之间紧密结合,排出气泡 d、固化:可在真空或压力辅助下进行,固化时间越短,工艺的生产效率越高。 2、复合材料的基本概念,种类,优缺点; 基本概念:是由两种或者多种不同性质的材料用物理和化学方法在宏观尺度上组成的具有新性能的材料,一般复合材料的性能优于组分材料,并且有些性能是原来组分材料所没有的,复合材料改善了组分材料的刚度、强度、热学等性能。 种类:根据复合材料中增强材料的几何形状,复合材料分为: a、颗粒复合材料,由颗粒增强材料和基体组成; b、纤维增强复合材料,由纤维和基体组成; c、层合复合材料,由多种片状材料层合而成 优缺点:p16、p17 3、简述复合材料飞机雷达罩的性能要求以及基本组成结构和制造方法。 a、性能要求:透波、维持飞机整体空气动力学外形、减小阻力、保护雷达天线; b、组成结构:胶结泡沫板、充气式结构、螺接翼缘的实体薄板、金属空间骨架、薄蒙皮、

复合材料力学小论文

2011年秋季学期复合材料力学 课程小论文 《微纳米尺度复合材料界面强度的研究》 班级: 姓名: 评分:

微纳米尺度复合材料界面强度的研究 课题背景: 复合材料是一大类新型材料,其强度高、刚度大、质量轻,并具有抗疲劳、减振、耐高温、可设计等一系列优点,近40年来,在航空航天、能源、交通、建筑、机械、信患,生物、医学和体育等工程和部门日益得到广泛的应用。 随着微纳米结构加工技术的发展,人类已经能够在微电子器件、微纳米机电系统中实现多种功能。这些期间与系统通常包含沉积于衬底上的部件,比如薄膜、细线或管状结构、岛状结构或点状结构等。它们的三维尺度非常小,其特征尺寸往往处于微米甚至纳米量级。这些器件的构成材料多样,比如陶瓷、金属间化合物、金属、聚合物等。在这些微纳米尺寸的结构中存在的双相材料界面,由于界面两侧材料物性不同导致的变形不匹配,往往会造成界面处应力集中。因此,界面是微纳米结构极易发生失效的位置之一。界面脱黏、剥离、分层破坏是这类材料的制作及其制成品的使用中的主要失效行为。这些界面失效经常会导致器件报废,直接影响其成品率和使用寿命。因此,为了保证所研制的或正在使用中的微纳米器件或系统的可靠性与耐久性,非常有必要对这些材料及其结构中的界面的强度特性进行研究与分析评价。 论文内容: 本文主要有两大内容:其一,从实验的角度展现在微纳米尺度下复合材料界面端裂纹启裂的现象,并对实验结果作简要分析;其二,

基于分子动力学理论,利用分子动力学模拟软件LAMMPS和Abaqus 模拟微纳米尺度下复合材料界面端裂纹启裂的强度准则。 1 实验 对于微纳米材料与结构而言,比较突出的问题是界面裂纹启裂问题。因为在微纳米系统中,结构或器件的一点失效往往就意味着整个系统的失效。特别是在表面与界面的交汇处,即界面端,由于变形失配引起的应力奇异性使得界面分层裂纹常于此萌生。需要指出的是,随着部件尺寸逐渐缩小,奇异应力主导区的尺寸也在相应减小。对于微纳米部件,根据线弹性应力分析,应力奇异区域一般仅有数十到数百纳米大小。此时,经典断裂力学的概念能否使用值得商榷。 在物理意义上,界面指的是结合材料的结合部,一般不是一个理想的面,存在所谓的界面层、界面相或界面中间层。界面材料的特性不仅复杂,而且具有一定的随机性。但是,界面层厚度非常小,因此,在研究界面的宏观力学性能时,一般将界面结合部理想化为一个面,即,界面。从力学分析与评价的角度来看,这种处理可以避免被界面相得复杂性所困扰,以获取界面、结合材料整体的强度特性参数等。因此,这里将界面定义为材料内的物性间断或不连续处,界面本身不具有厚度,在界面两侧,材料的物性截然不同。 实验装置如图所示,图中的长度量纲为mm,由于采用了夹层结构和较为刚性的悬臂梁,实验中可以有效地抑制薄膜塑性变形与断裂的产生。在远离薄膜材料界面端的悬臂梁左端面处,机械载荷可以被方便地施加并传递到界面端处。

复合材料力学大作业

二零一六年——二零一七年第一学期复合材料力学实验报告 实验名称:层合板的强度分析 班级:工程力学13-2班 姓名:刘志强 学号: 02130857 指导教师:董纪伟

层合板的强度分析 问题: 有三层对称正交铺设层合板,总厚度为t ,外层厚12t ,内层厚t 6 5,材料为硼/环氧,受轴向拉力x N 作用,MPa E 51100.2?=,MPa E 42100.2?=, 30.021=v ,MPa G 312106?=,MPa X t 3100.1?=,MPa X c 3100.2?=,MPa Y t 2100.6?=,MPa Y c 200=,MPa S 60=,试求层合板极限载荷)/(t N x 。 解: 1,开始破坏时的“屈服”强度值: (1)计算ij ij Q A 和: 由:)(t)(1051.71,3341'得MPa A A A ?==- (2)求000,,xy y x γεε (3)求各层应力 (4)用Hill-蔡强度理论求第一个屈服载荷强度理论表达式: 将上述数据代入解得: 显然第一、三层先破坏,即N x /t=为第一屈服载荷,此时: 各层应力为: 2、进行第二次计算: (1)求削弱后的复合板刚度: 其中第一、三层板材料第一主方向破坏后,不能抗剪,故Q 66=0,继续计算复合板刚度A : []MPa Q 43,11000002.01810000 ????? ??????=

(2)、求应变和应力: (3)、由Hill-蔡强度理论得: /t=代入第二层求得应力: 将N x 方向全部破坏,层合板不能继续承即第二层第二主方向破坏,因此层合板在N x 受载荷。 三层对称正交铺设层合板轴向拉伸ANSYS模拟 1,定义单元类型: 进入前处理,选择添加shell linear layer 99单元,如图: 图1:定义shell99单元 2,设置单元属性: 关闭Labrary of Element Types窗口,打开options设置单元属性:在k8的下拉窗口选择All layers,如图: 图2:设置单元属性 3,添加单元实常数: 关闭添加单元窗口,打开添加实常数窗口,给shell99添加厚度、层合信息。 4,定义层合信息: 打开Setions下Shell-Lay-up,添加层合信息,如图: 图3:定义层合信息 点击ok关闭Create and Modify Section 窗口,然后打开Plot Section

复合材料力学论文

纤维增强复合材料力学性能研究现状文献综述 崔鹏 中北大学理学院工程力学学科部 030051太原中国 摘要:纤维增强复合材料(Fiber Reinforced Plastic,简称FRP)是由增强纤维材料,如玻璃纤维,碳纤维,芳纶纤维等,与基体材料经过缠绕,模压或拉挤等成型工艺而形成的复合材料。根据增强材料的不同,常见的纤维增强复合材料分为玻璃纤维增强复合材料(GFRP),碳纤维 增强复合材料(CFRP)以及芳纶纤维增强复合材料(AFRP)。由于纤维增强复合材料的材料特性,因此它越来越广泛地应用于各种民用建筑、桥梁、公路、海洋、水工结构以及地下结构等领域中。本文将综述近年来国内外的学者对它的力学性能的研究现状。 关键词:纤维增强;复合材料;力学性能;材料特性;应用 Composite Research Status literature review of fiber reinforced mechanical properties of materials CUI Peng College of Engineering Department of Mechanical Discipline North University of China Taiyuan, China 030051 Abstract:Fiber-reinforced composite material (Fiber Reinforced Plastic, referred FRP) is a reinforcing fiber material, such as glass fiber, carbon fiber, aramid fiber, and composite matrix material after winding, pultrusion molded or formed by molding process. Depending on the reinforcing material, a common fiber-reinforced composite material into glass fiber reinforced Plastic (GFRP), carbon fiber reinforced Plastic (CFRP) and aramid fiber reinforced Plastic (AFRP). Since the material properties of the fiber-reinforced composite materials, so it is increasingly widely used in various areas of civil construction, bridges, highways, marine, hydraulic structures and underground structures like. This paper will present research scholars at home and abroad in recent years, its mechanical properties. Keywords:Fiber reinforced; Composites; Mechanical Properties;Material properties; application 1.引言

相关文档
最新文档