【解析】北京市北京理工大学附中2018-2019学年高一上学期10月月考数学试题

合集下载

北京大学附属中学新疆分校2019届高三10月月考数学(理)试题 Word版含答案

北京大学附属中学新疆分校2019届高三10月月考数学(理)试题 Word版含答案

北大附中新疆分校2018—2019学年第一学期10月月考高三年级理科数学试题时间:120分钟 满分:150分一. 选择题(本大题共12个小题,每小题5分,共60分) 1设集合{}1,2,3A =,{}34x B x =>,则A B =( ) A .{1,2} B .{2,3} C .{1,3} D .{1,2,3}2. 函数()()()1ln 23x x f x x --=-的零点有A.0个B.1个C.2个D.3个3. 下列判断正确的是( )A. 若命题p 为真命题,命题q 为假命题,则命题“p q ∧”为真命题B. 命题“,20x x ∀∈>R ”的否定是“ 00,20x x ∃∈≤R ”C. “1sin 2α=”是“ 6πα=”的充分不必要条件 D. 命题“若0xy =,则0x =”的否命题为“若0xy =,则0x ≠”4.)A C .1 5.设0.1392,1,log 210a b g c ===,则a,b,c 的大小关系是A. b c a >>B. a c b >>C. b a c >>D. a b c >>6.已知函数()f x 的导函数为()f x ',且满足()()21ln f x xf x '=+,则()1f '= A. e -B. 1-C.1D.e7.已知函数()f x 是定义在R 上的奇函数,且(2)()f x f x +=-,若(1)1f =, 则(3)(4)f f -=A .1-B .1C .2-D .28.已知a b >,则下列不等式一定成立的是A.11a b <B.1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C.ln ln a b >D.33a b > 9. 由曲线y =x ,直线y =x -2及y 轴所围成的图形的面积为( )A.103 B .4 C.163D .6 10. 不等式(ax -2)(x -1)≥0(a <0)的解集为( )A.⎣⎢⎡⎦⎥⎤2a ,1B.⎣⎢⎡⎭⎪⎫1,2aC.⎝ ⎛⎦⎥⎤-∞,2a ∪[1,+∞) D .(-∞,1]∪⎣⎢⎡⎭⎪⎫2a ,+∞11.函数1()=-x f x a a的图象可能是A B C D 12. 设函数3()f x x x =+,x R ∈.若当02πθ<<时,不等式0)1()s i n (>-+m f m f θ恒成立,则实数m 的取值范围是A .(,1]-∞B .[1,)+∞C .1(,1)2D .1(,1]2二.填空题(本大题共4小题,每小题5分,共20分) 13. 已知()732log log log 0x =⎡⎤⎣⎦,那么12x =__________.14.已知函数2lg ,0,(),0.x x f x x x ->⎧=⎨<⎩ 若0()1f x =,则0x 的值是 .15.已知4sin cos (0)34πθθθ+=<<,则sin cos θθ-= .16. 已知函数()f x 与()g x 的定义域为R ,有下列5个命题: ①若(2)(2)f x f x -=-,则()f x 的图象自身关于直线y 轴对称; ②(2)y f x =-与(2)y f x =-的图象关于直线2x =对称; ③函数(2)y f x =+与(2)y f x =-的图象关于y 轴对称;④()f x 为奇函数,且()f x 图象关于直线12x =对称,则()f x 周期为2;⑤()f x 为偶函数,()g x 为奇函数,且()()1g x f x =-,则()f x 周期为2。

北京大学附属中学2024届高三上学期十月月考数学试题+答案解析

北京大学附属中学2024届高三上学期十月月考数学试题+答案解析

北大附中2024届高三阶段性检测数学2022.10一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{2,1,2}A =-,{|(2)(1)0}B x x x =+-≤,则A B ⋂=()A.(2,1)-B.[2,1]- C.{2,1}- D.{2,1,2}-【答案】C 【解析】【分析】先解一元二次不等式化简B ,再根据交集的概念可求出结果.【详解】由(2)(1)0x x +-≤,得21x -≤≤,所以[2,1]B =-,因为{2,1,2}A =-,所以A B ⋂={2,1}-.故选:C2.命题“0x ∀≤,sin 1x ≤”的否定是()A.0,sin 1x x ∃≤>B.1x x ∃>≤ C.0,sin 1x x ∀≤> D.0,sin 1x x ∀>≤【答案】A 【解析】【分析】根据全称命题的否定判断即可.【详解】“0x ∀≤,sin 1x ≤”的否定是“0x ∃≤,sin 1x >”.故选A.3.下列函数中既是增函数又是奇函数的是()A.1()f x x=- B.3()f x x = C.()2xf x = D.()ln f x x=【答案】B 【解析】【分析】由幂函数、指数函数、对数函数的奇偶性与单调性即可求解.【详解】解:对A :1()f x x=-是奇函数,在(),0-∞和()0,+∞上单调递增,但在定义域为没有单调性,故错误;对B :3()f x x =是奇偶性,在R 上单调递增,故正确;对C :()2x f x =不具有奇偶性,是增函数,不符合题意;对D :()ln f x x =不具有奇偶性,是增函数,不符合题意;故选:B4.已知角α的终边为射线(0)y x x =≤,则下列正确的是()A.54πα=B.cos 2α=C.tan 12πα⎛⎫+=- ⎪⎝⎭D.sin 14πα⎛⎫+= ⎪⎝⎭【答案】C 【解析】【分析】由题知角α的集合为5=+2,Z 4k k πααπ∈⎧⎫⎨⎬⎩⎭,再结合诱导公式依次讨论各选项即可得答案.【详解】解:因为角α的终边为射线(0)y x x =≤,所以,角[]0,2απ∈时,54πα=,所以,角α的集合为5=+2,Z 4k k πααπ∈⎧⎫⎨⎬⎩⎭,故A 选项错误;所以,5cos cos 242k παπ⎛⎫=+=-⎪⎝⎭,故B 选项错误;53tan tan 2tan 12424k ππππαπ⎛⎫⎛⎫+=++==- ⎪ ⎪⎝⎭⎝⎭,故C 选项正确;53sin sin 2sin 14442k ππππαπ⎛⎫⎛⎫+=++==- ⎪ ⎪⎝⎭⎝⎭,故D 选项错误.故选:C5.已知函数()=e e x x f x --,则下列说法错误的是()A.()f x 有最大值B.()f x 有最小值C.00x ∃≠,使得()()00f x f x -=D.x ∀∈R ,都有()()f x f x -=-【答案】ABC 【解析】【分析】根据函数的单调性得到()f x 的最值情况,即可判断AB 选项;根据()()f x f x -=-、()0=0f 和函数的单调性判断CD 即可.【详解】根据()e e x x f x -=-得()f x 在定义域内单调递增,所以()f x 没有最大值也没有最小值,故AB 错;()()()x x x x f x f x ---=-=--=-e e e e ,故D 正确;()0=0f ,()f x 在定义域内单调递增,所以当00x ≠时,()00f x ≠,又()()f x f x -=-,所以不存在00x ≠,使()()00f x f x -=,故C 错.故选:ABC.6.设ln 2a =,122b =,133c =,则a ,b ,c 的大小关系为()A.a b c <<B.b a c<< C.a c b<< D.c a b<<【答案】A 【解析】【分析】通过0ln 21<<,所以判断出01a <<;又对122b =,133c =进行化简,得到121628b ==,131639c ==,从而判断出a ,b ,c 的大小关系.【详解】 ln 2a =,而0ln 21<<,所以01a <<;又121628b ==,131639c ==∴令16()f x x =,而函数()f x 在(0,)+∞上递增∴1b c <<∴a b c<<故选:A7.要得到函数ln(2)y x =的图像,只需将函数ln y x =的图像()A.每一点的横坐标变为原米的2倍B.每一点的纵坐标变为原来的2倍C.向左平移ln2个单位D.向上平移ln2个单位【答案】D 【解析】【分析】根据图象平移结合对数运算逐个分析判断.【详解】对A :所得函数为=ln2xy ,A 错误;对B :所得函数为=2ln y x ,B 错误;对C :所得函数为()ln 2y x =-,C 错误;对D :所得函数为()ln ln 2ln 2y x x =+=,D 正确;故选:D.8.ABC 中,角A ,B ,C 的对边分别为a ,b ,c .则“A B >”是“sin sin a A b B +>+”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C 【解析】【分析】根据正弦定理和大边对大角,小边对小角的性质判断即可.【详解】当A B >时,根据三角形中大边对大角,小边对小角,得a b >,再根据正弦定理得sin sin A B >,所以sin sin a A b B +>+;当sin sin a A b B +>+时,根据正弦定理2sin sin a bR A B==,得()()2sin sin 2sin sin 21sin 21sin R A A R B B R A R B +>+⇒+>+,又210R +>,所以sin sin A B >,根据正弦定理得a b >,所以A B >;所以“A B >”是“sin sin a A b B +>+”的充分必要条件.故选:C.9.已知函数1π()sin 223f x x ⎛⎫=+ ⎪⎝⎭的图像在()()11,x f x 处的切线与在()()22,x f x 处的切线相互垂直,那么12x x -的最小值是()A.π4 B.π2C.πD.2π【答案】B 【解析】【分析】求出()f x ',根据导数的几何意义得到12ππcos(2)cos(2)133x x +⋅+=-,根据余弦函数的最值可得1πcos(2)13x +=且2πcos(2)13x +=-,或1πcos(2)13x +=-且2πcos(213x +=,分两种情况求出12x x -,然后求出其最小值即可.【详解】因为1π()sin 223f x x ⎛⎫=+ ⎪⎝⎭,所以1ππ()cos(2)2cos(2233f x x x '=+⨯=+,依题意可得12()()1f x f x ''⋅=-,所以12ππcos(2)cos(2)133x x +⋅+=-,所以1πcos(2)13x +=且2πcos(2)13x +=-,或1πcos(2)13x +=-且2πcos(213x +=,当1πcos(2)13x +=且2πcos(2)13x +=-时,11π22π3x k +=,1k Z ∈,22π22π+π3x k +=,2k Z ∈,所以1212π()π2x x k k -=--,1k Z ∈,2k Z ∈,所以1212π|||()π|2x x k k -=--,1k Z ∈,2k Z ∈,所以当120k k -=或121k k -=时,12||x x -取得最小值π2.当1πcos(213x +=-且2πcos(2)13x +=时,11π22π+π3x k +=,1k Z ∈,22π22π3x k +=,2k Z ∈,所以1212π()π2x x k k -=-+,1k Z ∈,2k Z ∈,所以1212π|||()π|2x x k k -=-+,1k Z ∈,2k Z ∈,所以当120k k -=或121k k -=-时,12||x x -取得最小值π2.综上所述:12x x -的最小值是π2.故选:B10.对于201个黑球和100个白球的任意排列(从左到右排成一行),下列说法一定正确的是()A.存在一个白球,它右侧的白球和黑球一样多B.存在一个白球,它右侧的黑球个数等于白球个数的三倍C.存在一个黑球,它右侧的黑球个数等于白球个数的二倍D.存在一个黑球,它右侧的黑球个数大于白球个数的二倍【答案】C【解析】【分析】ABD 选项都可以利用反例推出不成立,对于C 选项,从最右端出发,分类讨论进行证明.【详解】A 选项,从左到右先排100个白球,再排201个黑球,可知每一个白球右侧都是201个黑球,不可能个数一样,A 错误;B 选项,从左到右依次排200个黑球,100个白球,1个黑球,那么每个白球右侧都是1个黑球,黑球无法成为白球的三倍,B 错误;D 选项,从左到右,先排201个黑球,然后100个白球,第一个黑球右侧有200黑球,100个白球,恰好二倍,但从第2个黑球起,其右侧黑球数量减少,白球始终是100个,比例会小于二倍,不会超过二倍,D 错误;C 选项,若从左至右,最后一个是黑球,那么这个球右侧0黑0白,满足黑球是白球的二倍,若最后一个是白球,从右至左进行“计数”操作,当白球比黑球为1:2的形式时,视作一个组合,每计数完这样一个组合,继续向左操作,若刚结束的组合左侧为黑球,那么这个黑球就为C 选项所找,若为白球,重复上述操作,直至刚找完的组合左侧为黑球为止,由于黑球总量是白球总量的二倍多一个,所以最极端的情况是找完所有组合,黑球在最左侧第一个,总之这样的黑球可以找到.故选:C二、填空题:本大题共5小题,每小题5分,共25分.11.函数()ln 2y x =-的定义域为___________【答案】(),2-∞【解析】【分析】根据对数的真数大于零,可求出函数定义域.【详解】要使函数()ln 2y x =-有意义,必有20x ->,即2x <.故答案为:(),2-∞12.复数z 满足()1i 1i z +=-,=z ___________.【答案】1【解析】【分析】根据复数的四则运算可得z ,再利用模长公式直接得解.【详解】由()1i 1i z +=-,则()()()()221i 1i 1i 12i i 2ii 1i 1i 1i 1i 2z ----+-=====-++--,所以1z ==,故答案为:1.13.能够说明“若()g x 在R 上是增函数,则()xg x 在R 上也是增函数”是假命题的一个()g x 的解析式()g x =___________.【答案】x (答案不唯一,符合题意即可)【解析】【分析】根据单调性的概念分析理解.【详解】例如:()g x x =在R 上是增函数,则2()xg x x =在(),0-∞上单调递减,在()0,+∞上单调递增,所以()xg x 在R 上不是增函数故答案为:x (答案不唯一,符合题意即可).14.已知函数2e ,0,()=2,>0x x x f x ax x x ⎧≤⎨-⎩,①当=1a -时,函数()f x 的最大值为___________.②如果()f x 存在最小值且最小值小于1e-,则实数a 的取值范围是___________.【答案】①.0;②.0<a <e.【解析】【分析】①分别求0x ≤和0x >时的最大值,然后比较大小即可;②分别求0x ≤和0x >时的最小值,让最小值小于1e-,解不等式即可.【详解】①当1a =-时,()2e ,0=2,>0x x x f x x x x ≤--⎧⎨⎩,当0x <时,0x x <e ,=0x 时,0x x =e ,所以此时()max 0f x =;当0x >时,没有最大值,且()0f x <,所以()f x 的最大值为0;②当0x ≤时,()()1e xf x x '=+,所以1x <-时,()0f x '<,()f x 递减;10x -<<时,()0f x '>,()f x 递增,所以0x ≤时,()()min 11f x f =-=-e;当0x >时,因为()f x 存在最小值且最小值小于1e -,所以>011<e a f a -⎧⎪⎨⎛⎫ ⎪⎪⎝⎭⎩,解得0e a <<;故答案为:①0;②0e a <<.15.生态学研究发现:当种群数量较少时,种群近似呈指数增长,而当种群增加到定数量后,增长率就会随种群数量的增加而逐渐减小,为了刻画这种现象,生态学上提出了著名的逻辑斯谛模型:()000()e rtKN N t N K N -=+-,其中0N ,r ,K 是常数,0N 表示初始时刻种群数量,r 叫做种群的内秉增长率,K 是环境容纳量.()N t 可以近似刻画t 时刻的种群数量.下面给出四条关于函数()N t 的判断:①如果03KN =,那么存在00,()2t N t N >=;②如果00N K <<,那么对任意0,()t N t K ≥<;③如果00N K <<,那么存在0,()t N t >在t 点处的导数()0N t '<;④如果002KN <<,那么()N t 的导函数()N t '在(0,)+∞上存在最大值.全部正确判断组成的序号是___________.【答案】①②④【解析】【分析】①解方程,求出2ln 2t r=,故①正确;②作差法比较大小,证明出结论;③求导,结合00N K <<,0t >,得到导函数大于0恒成立,③错误;.【详解】当03K N =时,()12e rt N t K -=+,令02212e 3rt K KN -==+,解得:2ln 2t r=,因为r 为种群的内秉增长率,0r >,所以2ln 20t r=>,①正确;()()()000000e ()e e rt rtrtK N KN N t K K N K N N K K N -----=-=+-+--,因为00N K <<,0t ≥,所以()()000e 0ert rtK N N K N K ---<+--,故对任意的0,()t N t K ≥<,②正确;()()00200e ()e rtrt N K N N t N K rK N ---'=⎡⎤+-⎣⎦,因为00N K <<,那么任意的0,()t N t >在t 点处的导数()0N t '>恒成立,故③错误;令()()()00200e ()e rtrtN K r N f N K t N t N K ---'==⎡⎤+-⎣⎦,则()()()()00003002e e e rt rtrtN K N K N N f t N K r K N ---⎡⎤--⎣⎦'=⎡-⎤+-⎣⎦因为002K N <<,令()0f t '>得:()00e0rtK N N -->-,解得:010ln K N t r N -<<,令()0f t '<得:()00e 0rtK N N --<-,解得:001ln K N t r N ->,所以()f t 在0010,lnK N rN -⎛⎫⎪⎝⎭上单调递增,在001ln ,+K N r N -∞⎛⎫ ⎪⎝⎭上单调递减,那么()N t 的导函数()N t '在(0,)+∞上存在极大值,也是最大值,④正确.故答案为:①②④【点睛】导函数研究函数的单调性,极值和最值情况,常常用来解决实际问题,本题中,函数本身较为复杂,二次求导时要保证正确率,才能把问题解决.三、解答题:本大题共6小题,共85分,解答应写出文字说明,演算步骤或证明过程.16.已知函数2()2sin(f x x x x π=--+.(1)求6f π⎛⎫- ⎪⎝⎭;(2)求()f x 的最小正周期,并求()f x 在区间5,12ππ⎡⎤⎢⎥⎣⎦上的最大值.【答案】(1)0(2)T π=,()max f x 【解析】【分析】(1)根据三角函数诱导公式,降幂公式,倍角公式,结合辅助角公式,可得答案;(2)根据(1)可得函数的解析式,根据周期计算公式,利用整体代入的方法,结合正弦函数的性质,可得答案.【小问1详解】2()2sin()cos f x x x x π=--1cos 22sin cos2xx x -=-sin 22x x =12sin 2cos 222x x ⎛⎫=+ ⎪ ⎪⎝⎭2sin 23x π⎛⎫=+ ⎪⎝⎭,2sin 20663f πππ⎛⎫⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎝⎭⎝⎭⎝⎭.【小问2详解】由(1)可知()2sin 23f x x π⎛⎫=+⎪⎝⎭,则22T ππ==,由5,12x ππ⎡⎤∈⎢⎥⎣⎦,则772,363x πππ⎡⎤+∈⎢⎥⎣⎦,令23t x π=+,则()2sin g t t =,则()g t 在73,62ππ⎛⎫ ⎪⎝⎭上单调递减,在37,23ππ⎛⎫⎪⎝⎭上单调递增,当73t π=,即x π=时,()()max f x f π==17.已知ABC 中,222a c b ac +=+.(1)求角B ;(2)若3sin b C A ==,求ABC 的面积.【答案】(1)3π(2)332【解析】【分析】(1)利用余弦定理计算可得;(2)利用正弦定理将角化边,再由余弦定理求出a 、c ,最后由面积公式计算可得.【小问1详解】解:因为222a c b ac +=+,所以2221cos 22a c b B ac +-==,又()0,B π∈,所以3B π=;【小问2详解】解:因为sin 3sin C A =,由正弦定理可得3c a =,又b =222a c b ac +=+,所以222293a a a +=+,解得a =c =,所以11sin 2222ABC S ac B === .18.已知函数32()f x x ax bx c =-+++.(1)从以下三个条件中选择两个作为已知,使()f x 存在且唯一确定,并求()f x 的极值点;条件:①(1)=2f ;条件②:()f x 的图像关于点(0,0)对称;条件③:()f x '是偶函数.(2)若2b a =,且()f x 在[]1,2上单调递增,求a 的取值范围.【答案】(1)选择①和②,3()3f x x x =-+,且()f x 的极小值点为1x =-,极大值点为=1x .(2)6a ≤-或2a ≥【解析】【分析】(1)化简条件①、②和③,分别选择①和②、①和③、②和③求出,,a b c ,可知只能选择①和②.再根据极值点的概念可求出结果;(2)转化为22()32(3)()f x x ax a x a x a '=-++=-+-0≥在[]1,2上恒成立,再利用二次函数图象列式,可求出结果.【小问1详解】则由条件:①(1)=2f ,可得3a b c ++=,由条件②:()f x 的图像关于点(0,0)对称,可得()f x 为奇函数,则有()()f x f x -=-,即3232x ax bx c x ax bx c +-+=---,即2+=0ax c 对R x ∈恒成立,所以0a c ==,由条件③:()f x '是偶函数,可得2()32f x x ax b '=-++为偶函数,则()()f x f x ''-=,即223232x ax b x ax b --+=-++,即40ax =对R x ∈恒成立,所以=0a ,若选①和②,由++=3==0a b c a c ⎧⎨⎩,得0a c ==,=3b ,此时3()3f x x x =-+,所以2()33f x x '=-+,由()0f x '>,得11x -<<,由()0f x '<,得1x <-或1x >,所以()f x 的极小值点为1x =-,极大值点为=1x .若选①和③,由++=3=0a b c a ⎧⎨⎩,得=0a ,3b c +=,此时()f x 不唯一确定,不符合题意;若选择②和③,由==0=0a c a ⎧⎨⎩,可知b 不确定,此时()f x 不唯一确定,不符合题意;综上所述:只能选条件:①(1)=2f ;条件②:()f x 的图像关于点(0,0)对称,此时3()3f x x x =-+,且()f x 的极小值点为1x =-,极大值点为=1x .【小问2详解】若2b a =,则322()f x x ax a x c =-+++,则22()32f x x ax a '=-++,因为()f x 在[]1,2上单调递增,所以22()32(3)()f x x ax a x a x a '=-++=-+-0≥在[]1,2上恒成立,当=0a 时,2()30f x x '=-≤,不合题意;当0a >时,由二次函数的图象可知,132a a -≤≥⎧⎪⎨⎪⎩,解得2a ≥;当0a <时,由二次函数的图象可知,123a a ≤-≥⎧⎪⎨⎪⎩,解得6a ≤-.综上所述:a 的取值范围为6a ≤-或2a ≥.19.已知函数()()sin 0,22f x x ππωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的部分图像如下图所示.(1)直接写出()f x 的解析式;(2)若对任意0,3s π⎡⎤∈⎢⎣⎦,存在[]0,t m ∈,满足()()f s f t =-,求实数m 的取值范围.【答案】(1)()sin 33f x x π⎛⎫=-⎪⎝⎭(2)1118m π≥【解析】【分析】(1)根据函数图象直接可得函数周期及ω,再代入点5,118π⎛⎫⎪⎝⎭,可得ϕ;(2)由(1)函数解析式可得()f s 的取值范围,设()f s -的取值范围为A ,()f t 的取值范围为B ,可知A B ⊆,根据函数单调性及最值情况可得参数取值范围.【小问1详解】由图象可知5231894T ππ⎛⎫--= ⎪⎝⎭,解得23T π=,则23Tπω==,所以()()sin 3f x x ϕ=+,又函数图象经过点5,118π⎛⎫⎪⎝⎭,则5sin 3118f πϕ⎛⎫=⋅+= ⎪⎝⎭,解得23k πϕπ=-+,Z k ∈,又22ππϕ-<<,所以3πϕ=-,所以()sin 33f x x π⎛⎫=-⎪⎝⎭;【小问2详解】由0,3s π⎡⎤∈⎢⎥⎣⎦,得23,333s πππ⎡⎤-∈-⎢⎥⎣⎦,当332s ππ-=时,()f s 取最大值为1,当333s ππ-=-时,()f s 取最小值为32-,所以()3,12f s ⎡⎤∈⎢⎥⎣⎦,()31,2f s A ⎡-∈-=⎢⎣⎦,由对任意0,3s π⎡⎤∈⎢⎥⎣⎦,存在[]0,t m ∈,满足()()f s f t =-,设()f t 的取值范围为B ,则A B ⊆,即32B ⎡-⊆⎢⎣⎦,又函数()sin 33f x x π⎛⎫=- ⎪⎝⎭,令32,2322x k k πππππ⎡⎤-∈-++⎢⎥⎣⎦,Z k ∈,解得252,183183x k k ππππ⎡⎤∈-++⎢⎥⎣⎦,Z k ∈,令332,2322x k k πππππ⎡⎤-∈++⎢⎥⎣⎦Z k ∈,解得52112,183183x k k ππππ⎡⎤∈++⎢⎥⎣⎦,Z k ∈,所以函数()f x 在252,183183k k ππππ⎡⎤-++⎢⎥⎣⎦,Z k ∈上单调递增,在52112,183183k k ππππ⎡⎤++⎢⎥⎣⎦,Z k ∈上单调递减,所以函数()f x 在50,18π⎡⎤⎢⎥⎣⎦上单调递增,在511,1818ππ⎡⎤⎢⎥⎣⎦上单调递减;又()02f =,518f π⎛⎫= ⎪⎝⎭,11118π⎫=- ⎪⎝⎭,所以1118m π≥.20.已知函数()2()1e x f x ax x -=++,其中a ∈R .(1)当=0a 时,求曲线=()y f x 在(1,(1))f --处的切线方程;(2)当0a >时,若函数()f x 在区间[1,1]-上有最小值1,求a 的取值范围;(3)当0a ≤时,直接写出函数()()e g x f x x =-零点的个数(不用说明理由).【答案】(1)e(1)y x =+(2)[e 2,)-+∞(3)2个【解析】【分析】(1)根据导数的几何意义求得=1x -处的切线斜率,进而求得切线方程;(2)根据(0)1f =以及题意可知,=0x 为极小值点,结合二次函数的性质可知,另一极值点12x a =-必在=0x 右边,抓住12x a=-与=1x 的位置关系分类讨论即可求解;(3)将求()g x 的零点个数转化为探究11y ax x =++与1e x y +=的图象交点个数即可.【小问1详解】当=0a 时,()(1)e x f x x -=+,则()e (1)e e x x x f x x x ---'=-+=-,(1)e,(1)0f f '∴-=-=.所以,曲线=()y f x 在(1,(1))f --处的切线方程为e(1)y x =+.【小问2详解】当0a >时,[]()(21)e x f x x ax a -'=-+-,设()()21x x ax a ϕ=-+-,即()()e x f x x ϕ-'=,令()=0f x ',解得1210,2x x a==-,注意到(0)1f =,而函数()f x 在区间[1,1]-上有最小值1,所以,=0x 是函数()f x 的极小值点,即在=0x 附近的左侧,()0f x '<,函数()f x 单调递减,在=0x 附近的右侧,()0f x ¢>,函数()f x 单调递增,因为()()21x x ax a ϕ=-+-(0a >)为二次函数,结合二次函数图象(如下图)知,所以120a ->,即12a >.①若121a-≥,即1a ≥,则函数()f x 在[)1,0-上递减,在(]0,1上单调递增,所以()f x 在区间[1,1]-上的最小值为(0)1f =,符合题意;②若1021a <-<,即112a <<,则函数()f x 在[)1,0-上递减,在10,2a ⎛⎫- ⎪⎝⎭上递增,在12,1a ⎛⎤- ⎥⎝⎦上递减,因为函数()f x 在区间[1,1]-上有最小值1,而(0)1f =,所以只要2(1)1e a f +=≥,即e 2a ≥-时满足题意,又112a <<,所以,e 21a -≤<.综上,a 的取值范围为[e 2,)-+∞.【小问3详解】当0a ≤时,由()0g x =得2(1)e e x ax x x -++=,易知0x =不是函数()g x 的零点,所以,111e x ax x +++=,令11()e 1x h x ax x+=---,121()e 0x h x a x +'=-+>,()h x ∴在()(),0,0,-∞+∞上递增.当0x >时,2(1)e 20h a =-->,且0x →时,()h x →-∞,0(0,1)x ∴∃∈使得0()0h x =,即当0x >时,()0g x =有唯一零点;当0x <,易知0x →,()h x →+∞,且x →-∞时,()h x →-∞,1(,0)x ∴∃∈-∞使得1()0h x =,即0x <时,()0g x =有唯一零点,综上:函数()()e g x f x x =-零点的个数为2个.2)中,抓住函数(0)1f =,即函数过定点这条性质先缩小a 的范围,从而减少分类讨论;在小问(3)中,探究函数的零点个数一般转化为左右两个函数图象的交点个数,因此,通过图象的直观性判断出零点个数,再用数学语言表达之.21.已知集合(){}{}()12|,,0,1,1,22n n i S X X x x x x i n n ==∈=≥ ,对于()()1212,,,,,,,n n n n A a a a S B b b b S =⋯∈=⋯∈,定义A 与B 之间的距离:1122(,)n n d A B a b a b a b =-+-+⋯+-.若(,)1d A B =,则称A ,B 相关,记为A B ↔.若n S 中不同的元素12,,,(2)m A A A m ⋯≥,满足1211,,,m m m A A A A A A -↔⋯↔↔,则称12,,,m A A A ⋯为n S 中的一个闭环.(1)请直接写出2S 中的一个闭环1234,,,A A A A ;(2)若12,,,m A A A ⋯为n S 中的一个闭环,证明:m 为偶数;(3)若12,,,m A A A ⋯为2023S 中的一个闭环,求m 的最大值.【答案】(1)答案见解析;(2)证明见解析;(3)4046【解析】【分析】(1)写出集合2S ,按照(),1d A B =即可写出.(2)因为(),1d A B =,且各元素为0或1,所以若1i i A A +↔,则1i i A A +,只能有一个元素由0变为1或由1变为0,所以集合中元素有k 个1时,由0变为1的集合有+1k 个,由1变为0的集合有1k -个,即集合个数为2k ,即可得证.(3)由(2)可知,2m k =,k 的最大值为2023,可求出m 的最大值.【小问1详解】解:()()()(){}20,0,0,1,1,1,1,0S =,()()()()12340,0,0,1,1,1,1,0A A A A ====.【小问2详解】解:(){}{}()12|,,0,1,1,22n n i S X X x x x x i n n ==∈=≥ ,所以不妨设()10,0,0A = ,因为(,)1d A B =,所以2A 中只有一个元素为1,其余为0,可设()21,0,0A = ,同理,()31,1,00A = ,,直至 11,11,0,,0k k A +⎛⎫= ⎪ ⎪⎝⎭,若21,k k A A ++↔则2k A +中有1k -个1,1n k -+个0,且2k k A A +≠,可设210,1,10k k A +-⎛⎫= ⎪ ⎪⎝⎭ ,,0,直至210,0,1,0,0k k A -⎛⎫= ⎪ ⎪⎝⎭,21,k A A ↔所以2m k =,即m 为偶数;【小问3详解】由(2)可知,若12,,,m A A A ⋯为2023S 中的一个闭环,则2m k =,k 最大值为2023,所以m 最大值为4046.【点睛】思路点睛:解决本题的关键在于充分理解(),1d A B =,即前后相关的两个集合只能有一个元素由0变为1或由1变为0,所以若集合中出现k 个1,则由0变为1的集合有+1k 个,由1变为0的集合有1k -个,即可证明结论。

北京市北京理工大学附属中学2018-2019学年上学期高一年级数学十月月考试题(无答案)

北京市北京理工大学附属中学2018-2019学年上学期高一年级数学十月月考试题(无答案)

2018-~2019学年10月北京海淀区北京理工大学附属在学高一上学期月考数学试卷一、选择题1.已知集合(){}10A x x x =-=,那么( )A .1A -∈B .0A ∈C .1A ∉D .0A ∉ 2.设全集U =R ,集合{}220A x x x =-<,{}1B x x =>,则()C U AB =( ) A .{}12x x << B .{}12x x ≤<C .{}01x x <<D .{}011x <≤3.已知:2p x >,:1q x >,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知函数()223f x x x =-+在闭区间[]0,m 上最大值为3,最小值为2,则实数m 的取值范围是( )A .[)1,+∞B .(],2-∞C .[]1,2D .[]0,25.已知函数()f x 定义域为R ,“()()12f f <是“()f x 在区间[]1,2上单调递增的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 6.关于函数()2145f x x x =++的说法,正确的是( ) A .()f x 最小值为1 B .()f x 的图象不具备对称性C .()f x 在[]2,-+∞上单调递增D .对x ∀∈R ,()1f x ≤ 7.已知()222,02,0x x x f x x x x ⎧-≥⎪=⎨--<⎪⎩,则满足不等式()()f a f a <-的实数a 的取值范围是( ) A .2a <- B .02a << C .20a -<<或2a > D .2a <-或02a <<8.已知函数()2,2,x x a f x x x a ⎧≥=⎨<⎩,若存在实数k ,使得关于x 的方程()f x k =有两个不同的实根,则实数a 的取值范围是( )A .0a <B .02a <<C .0a <或02a <<D .2a <二、填空题 9.已知命题::0p x ∃>,220x x -<,则命题的否定p ⌝为_______.10.已知函数(),00x x f x x ⎧≤⎪=⎨>,则()()2f f -=_______;若()2f a =,则实数a =_____. 11.已知函数()f x 在区间[]1,2-上递增,在区间[]2,5上递减. ①()()02f f <;②()()03f f =;③()f x 在区间[]1,5-的最大值是()2f ;④()f x 在区间[]1,5-的最小值是()5f ;上述命题中,所有正确的序号有__________.12.已知偶函数()f x 在区间[)0,+∞单调递增,则满足()()211f x f -<的x 的取值范围是__________.13.已知函数()22,0,0x x x f x x x ⎧-≥=⎨<⎩,若方程()f x m =有三个不同实根1x 、2x 、3x ,则123x x x ++的取值范围是__________.14.若函数()f x =[)0,+∞,则实数k 的取值范围是__________.三、解答题15.已知函数()22f x x x =-.⑴判断()f x 的奇偶性.⑵写出()f x 的单调区间(只需写出结果).⑶若方程()f x a =有解,求实数a 的取值范围.16.解下列关于x 的不等式.⑴2230x x --+>.⑵()()21x a x a a a -++<∈R .17.函数()f x 满足如下四个条件:①定义域为()0,+∞;②()21f =;③当1x >时,()0f x >;④对任意0x >满足()()()f xy f x f y =+.根据上述条件,求解下列问题:⑴求()1f 及12f ⎛⎫ ⎪⎝⎭的值. ⑵应用函数单调性的定义判断并证明()f x 的单调性.⑶求不等式()132f x f x ⎛⎫+-> ⎪⎝⎭的解集.18.已知函数()2f x x bx c =++,且函数()1f x -是定义在R 上的偶函数. ⑴求实数b 的值.⑵若函数()()[]()2,1g x f x x =∈-的最小值为1,求函数()g x 的最大值.。

北京师大附中2018年10月2018~2019学年度高一第一学期期中考试数学试卷及参考答案教师专用

北京师大附中2018年10月2018~2019学年度高一第一学期期中考试数学试卷及参考答案教师专用

2018年10月2018~2019学年度北京师大附中高一上学期期中考试数学试题数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、单选题1.已知集合 = = ,则 A. B. = C. = D. =2.若函数()()()222331f x a a x a x =--+-+的定义域和值域都为R,则关于实数a 的下列说法中正确的是A.1a =-或3B.1a =-C.3a >或1a <-D.13a -<<3.下列函数中,在区间 + 上是增函数的是 A. = B. = C. = + D. =4.给定四个函数:① = +;② =;③ = + ;④ =+,其中是奇函数的有A.1个B.2个C.3个D.4个5.函数 = 在R 上为增函数,且 + ,则实数m 的取值范围是 A. B. +C. +D. +6.函数2y ax bx =+与()0y ax b ab =+≠的图象可能是A.B.C.D.7.A. B. C. D.8. 是区间 + 上的偶函数并且在区间 + 上是减函数,则下列关系中正确的是 A. B. C. = D.二者无法比较 9.设,则A. B. C. D.二、解答题10.已知函数 = +的定义域为A, = + 的值域为B 。

(1)求A,B ;(2)设全集 = ,求11.已知集合 = = + (1)若 = ,求a 的取值范围; (2)若 = ,求a 的取值范围。

12.已知函数 = + + (1)当a =1时,求函数 的值域。

(2)若函数 在区间 上是单调函数,求实数a 的取值集合。

北京市北京理工大学附中2022-2022学年高一数学上学期10月月考试题(含解析)

北京市北京理工大学附中2022-2022学年高一数学上学期10月月考试题(含解析)
16.解以下关于 的不等式.
⑴ .
⑵ .
【答案】(1) ;(2)当 时,原不等式的解集为 ;
当 时,原不等式的解集为空集;
当 时,原不等式的解集为 .
【解析】
【分析】
(1)将 化成标准形式 后,令 得到 ,或 ,再根据口诀:大于取两边,小于取中间可得;
(2)将 化为 ,然后对 分三种情况:① ;② ;③ 进行讨论可得.
【点睛】让学生学会利用数形结合的方法,分析参数的取值范围
5.函数 定义域为 ,“ 是“ 在区间 上单调递增的()
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
【答案】B
【解析】
【分析】
由两个特殊自变量的大小关系及其函数值的大小关系是不能推出函数的单调性的,
因为它不满足增函数的定义中的两个自变量在定义域中要具有任意性,因此“ 〞不能推出“ 在区间 上单调递增,根据增函数的性质可得:假设 在区间 上单调递增,那么 是正确的,
【详解】联立 ,解得 ,
当 时,函数 在 上递增,在 上递减,在 上递增,
如图:
由图可知,存在实数 ,使得关于 的方程 有两个不同的实根.
当 时,函数 在R上递增,
如图:
由图可知,不存在实数 ,使得关于 的方程 有两个不同的实根.
当 时,函数 在 上递增,在 上也递增,并且 ,
如图:
由图可知,存在实数 ,使得关于 的方程 有两个不同的实根;
【详解】因为 ,
所以函数 ,
所以函数 最大值为1因此选项A不正确;
因为 ,所以函数 的图象关于直线 对称,所以选项B.不正确;
因为函数 在 上是单调递增,且 恒成立,所以函数 在 上单调递减,所以C不正确.

北京理工大学附属中学2018-2019学年高三上学期第三次月考试卷数学含答案

北京理工大学附属中学2018-2019学年高三上学期第三次月考试卷数学含答案

北京理工大学附属中学2018-2019学年高三上学期第三次月考试卷数学含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 设集合3|01x A x x -⎧⎫=<⎨⎬+⎩⎭,集合(){}2|220B x x a x a =+++>,若 A B ⊆,则的取值范围 ( )A .1a ≥B .12a ≤≤ C.a 2≥ D .12a ≤<2. 实数x ,y 满足不等式组,则下列点中不能使u=2x+y 取得最大值的是( )A .(1,1)B .(0,3)C .(,2)D .(,0)3. 已知数列{}n a 是各项为正数的等比数列,点22(2,log )M a 、25(5,log )N a 都在直线1y x =-上,则数列{}n a 的前n 项和为( )A .22n -B .122n +-C .21n -D .121n +-4. 设集合{|12}A x x =<<,{|}B x x a =<,若A B ⊆,则的取值范围是( )A .{|2}a a ≤B .{|1}a a ≤C .{|1}a a ≥D .{|2}a a ≥5. 执行如图的程序框图,则输出的s=( )A .B .﹣C .D .﹣6. 如图甲所示, 三棱锥P ABC - 的高8,3,30PO AC BC ACB ===∠= ,,M N 分别在BC 和PO 上,且(),203CM x PN x x ==∈(,,图乙的四个图象大致描绘了三棱锥N AMC -的体积y 与 的变化关系,其中正确的是( )A .B . C. D .1111] 7. 若等边三角形ABC 的边长为2,N 为AB 的中点,且AB 上一点M 满足CM xCA yCB =+, 则当14x y+取最小值时,CM CN ⋅=( ) A .6 B .5 C .4 D .38. 已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于( )A .123B .163C .203D .3239. 奇函数()f x 满足()10f =,且()f x 在()0+∞,上是单调递减,则()()210x f x f x -<--的解集为( ) A .()11-,B .()()11-∞-+∞,,C .()1-∞-,D .()1+∞,10.已知数列{n a }满足n n n a 2728-+=(*∈N n ).若数列{n a }的最大项和最小项分别为M 和m ,则=+m M ( )A .211B .227C . 32259D .32435 11.若集合A ={-1,1},B ={0,2},则集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为( ) A5B4C3D212.函数()log 1xa f x a x =-有两个不同的零点,则实数的取值范围是( ) A .()1,10 B .()1,+∞ C .()0,1 D .()10,+∞二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.图中的三个直角三角形是一个体积为20的几何体的三视图,则h =__________.14.在平面直角坐标系中,(1,1)=-a ,(1,2)=b ,记{}(,)|M O M λμλμΩ==+a b ,其中O 为坐标原点,给出结论如下:①若(1,4)(,)λμ-∈Ω,则1λμ==;②对平面任意一点M ,都存在,λμ使得(,)M λμ∈Ω;③若1λ=,则(,)λμΩ表示一条直线;④{}(1,)(,2)(1,5)μλΩΩ=;⑤若0λ≥,0μ≥,且2λμ+=,则(,)λμΩ表示的一条线段且长度为其中所有正确结论的序号是 .15.若非零向量,满足|+|=|﹣|,则与所成角的大小为 .16.(本小题满分12分)点M (2pt ,2pt 2)(t 为常数,且t ≠0)是拋物线C :x 2=2py (p >0)上一点,过M 作倾斜角互补的两直线l 1与l 2与C 的另外交点分别为P 、Q .(1)求证:直线PQ 的斜率为-2t ;(2)记拋物线的准线与y 轴的交点为T ,若拋物线在M 处的切线过点T ,求t 的值.三、解答题(本大共6小题,共70分。

学附属中学18—19学年高一10月月考数学试题(附答案)

学附属中学18—19学年高一10月月考数学试题(附答案)

中央民族大学附中2018-2019学年第一学期高一年级月考练习数学本试卷共5页,共150分。

考试时长120分钟。

注意事项:1.答第I卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试卷上.第I卷(共40分)一、选择题(共10小题,每题4分,共40分)1. 集合的子集有A. 个B. 个C. 个D. 个2. 命题“对任意,都有”的否定为A. 对任意,都有B. 不存在,使得C. 存在,使得D. 存在,使得3. 图中的图象所对应的函数解析式为A. B.C. D.4. 下列各组中的两个集合和,表示同一集合的是A. ,B. ,C. ,D. ,5.集合,,则下列关系中成立的是A. B. PQ∈ C. D.6. x()A. xB. xC. xD. x7. 已知集合,,则满足条件的集合的个数为A. B. C. D.8. 有以下命题:①“若,则,互为倒数”的逆命题;②”面积相等的两个三角形全等“的否命题;③”若,则有实数解”的逆否命题;④“若,则”的逆否命题.其中真命题为A. ①②B. ②③C. ④D. ①②③9. 下列语句:①x+1是一次函数吗?②民大附中孩子好优秀呀!③0122=+-xx④北京的天空好蓝.其中是命题的个数为A. 0B. 1C. 2D. 310. 设命题 :;命题 :,若 是 的必要不充分条件,则实数 的取值范围是A.B.C.D.第II 卷(共110分)二、填空题(共6小题,每题5分,共30分)11.函数x x x f +-=1)(的定义域为 .12.已知集合 ,.若 ,则实数的值为 .13. 若函数 ,则的解析式为 .14. 已知函数若,则 x= .15. 已知命题 :,且,命题 :,恒成立,若为假命题,则的取值范围是 .16.某班共有学生名,在乒乓球、篮球、排球三项运动中每人至少会其中的一项,有些人会其中的两项,没有人三项均会.若该班人不会打乒乓球, 人不会打篮球,人不会打排球,则该班会其中两项运动的学生人数是 .三、解答题(共6小题;共80分)17.(本题13分)已知全集U =R ,A ={x |-4≤x <2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥52},求A ∩B ,(∁U B )∪P ,(A ∩B )∩(∁U P ). 18.(本题14分) 根据解析式求函数值.(1)已知函数,求,;(2)已知 ,求;(3)已知的定义域为,且,若,求.19. 已知集合A ={x|-2≤x ≤5},B ={x| m -6≤x ≤2m -1},若B ⊆A ,求实数m 的取值范围.20.(本题13分)已知f(x)为二次函数 错误!未找到引用源。

北京市北师大附中高一数学上学期10月月考试题(含解析)

北京市北师大附中高一数学上学期10月月考试题(含解析)
9。已知函数 为奇函数,且当 时, ,则 ( )
A. -2B.0C。 1D。 2
【答案】A
【解析】
因为 是奇函数,所以 ,故选A。
10.如果 是定义在 上的奇函数,那么下列函数中,一定是偶函数的是
A. B.
C。 D。
【答案】B
【解析】
试题分析:由题意得,因为函数 是定义在 上的奇函数,所以 ,设 ,则 ,所以函数 为偶函数,故选B.
A。 B。 C. D。
【答案】A
【解析】
【分析】
由题得 ,即得a≥5。
【详解】因为 ,
所以 ,
所以a≥5.
故选A
【点睛】本题主要考查根据集合的关系求参数的范围,意在考查学生对这些知识的理解掌握水平。
5。设x∈R,则“|x-2|〈1"是“x2+x-2〉0"的( )
A. 充分不必要条件B。 必要不充分条件
【此处有视频,请去附件查看】
6.如果不等式ax2+bx+c<0 (a≠0)的解集是空集,那么 ( )
A. a<0,且b2—4ac>0B。 a<0且b2—4ac≤0
C。 a〉0且b2-4ac≤0D。 a>0且b2—4ac>0
【答案】C
【解析】
【详解】设 要使不等式 的解集是 ,
需使抛物线开口向上,图象在x轴上方(或相切),
故答案为9.
【点睛】本题考查了函数的定义域和值域、函数的概念,属基础题.
17.已知函数 ,若 ,则x=___________
【答案】
【解析】
【分析】
当 时, ,当 时,由 可得结果.
【详解】因为函数 ,
当 时, ,
当 时, ,

北京首都师范大学附属中学2023-2024学年高一上学期10月月考数学试题及答案

北京首都师范大学附属中学2023-2024学年高一上学期10月月考数学试题及答案

北京首都师范大学附属中学2023-2024学年高一上学期10月月考数学试题一、单选题1.下列各式:①{}10,1,2∈;②{}0,1,2∅⊆;③{}{}10,1,2∈;④{}{}0,1,22,0,1=,其中错误的个数是()A .1个B .2个C .3个D .4个2.命题“2x ∃<,220x x -<”的否定是()A .2x ∃≤,220x x -≥B .2x ∀≥,02x <<C .2x ∃<,220x x -≥D .2x ∀<,0x ≤或2x ≥3.将下列多项式因式分解,结果中不含因式()2x +的是()A .224x x +B .2312x -C .26x x +-D .()()228216x x -+-+4.若集合{}{3},21,Z A xx B x x n n =<==+∈∣∣,则A B = ()A .()1,1-B .()3,3-C .{}1,1-D .{}3,1,1,3--5.如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是()A .()M P SB .()M P SC .()M P SD .()M P S6.已知p :111x <+,q :()10x x +<,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.下列结论成立的是()A .若ac bc <,则a b >B .若a b >,则22a b >C .若a b >,则11a b<D .若110a b<<,则0b a <<8.设集合11,Z ,,Z 3663k k M x x k N x x k ⎧⎫⎧⎫==+∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭||,则()A .M N=B .MN C .N MD .M N ⋂=∅9.若,,A B C 为三个集合,A B B C ⋃=⋂,则一定有()A .A C⊆B .C A⊆C .A C¹D .A ≠∅10.设()C M 表示非空集合M 中元素的个数,已知非空集合,A B .定义()(),()()()(),()()C A C B C A C B A B C B C A C A C B -≥⎧⊗=⎨-<⎩,若{}1,2A =,()(){}2220B x x ax x ax =+++=且1A B ⊗=,则实数a 的所有取值为()A .0B .0,-C .0,D .-,0,二、填空题11.方程组322327x y x y +=⎧⎨-=⎩的解集用列举法表示为.12.若“25x m >-”是“|x |<1”的必要不充分条件,则实数m 的取值范围是13.设a ,b ∈R ,集合{}2,0,1{,,0}a a b -=,则a b +的值是.14.已知集合{}|3A x a x =≤≤,{}|0B x x =<,若A B =∅ ,则实数a 的取值范围是.15.当两个集合中有一个集合为另一个集合的子集时,称两个集合之间构成“全食”;当两个集合有公共元素,但互不为对方子集时,称两个集合之间构成“偏食”,对于集合11,,12A ⎧⎫=-⎨⎬⎩⎭,{}2B x x a ==|.若A 与B 构成“全食”,则a 的取值范围是;若A 与B 构成“偏食”,则a的取值范围是.三、解答题16.已知全集R U =,集合{R |211}A x x =∈-≤,集合{R |12}B x x =∈-<≤.(1)求集合A B ⋂及()U A B ⋃ð;(2)若集合{|2,0}=∈≤<>C x R a x a a ,且C B ⊆,求实数a 的取值范围.17.已知关于x 的一元二次方程()22230x m x m +-+=有两个实数根1x ,2x .(1)求实数m 的取值范围;(2)若12126x x x x +=-,求m 的值.18.已知全集R U =,812x A xx ⎧⎫+=>⎨⎬-⎩⎭,{}22240B x x mx m =-+-<,{}14C x x =-<<,在①U x A ∈ð;②x A C ∈ ;③x A C ∈⋃;这三个条件中任选一个补充到下列问题中并作答.问题:设p :______,q :x B ∈,是否存在实数m ,使得p 是q 的必要不充分条件?若实数m 存在,求m 的取值范围;若实数m 不存在,说明理由.19.已知集合{}1,2,,A n =⋅⋅⋅(3n ≥),A 表示集合A 中的元素个数,当集合A 的子集i A 满足2i A =时,称i A 为集合A 的二元子集,若对集合A 的任意m 个不同的二元子集1A ,2A ,…,m A ,均存在对应的集合B 满足:①B A ⊆;②B m =;③1i B A ≤ (1i m ≤≤),则称集合A 具有性质J .(1)当3n =时,若集合A 具有性质J ,请直接写出集合A 的所有二元子集以及m 的一个取值;(2)当6n =,4m =时,判断集合A 是否具有性质J ?并说明理由.参考答案:题号12345678910答案ADCCCDDBAD1.A【分析】根据集合与集合的关系,元素与集合的关系即可求解.【详解】由元素与集合的关系可知{}10,1,2∈正确,{}{}10,1,2∈不正确,由集合之间的关系知{}0,1,2∅⊆正确,由集合中元素的无序性知{}{}0,1,22,0,1=正确,故错误的个数为1,故选:A【点睛】本题主要考查了元素与集合的关系,集合的子集,集合的相等,属于容易题.2.D【分析】根据存在量词命题的否定是全称量词命题即可得到结果.【详解】命题“2x ∃<,220x x -<”是存在量词命题,又22002x x x -<⇒<<,所以其否定为全称量词命题,即为“2x ∀<,0x ≤或2x ≥”.故选:D.3.C【分析】利用提取公因式法判断A ,利用公式法判断B ,利用十字相乘法判断C 、D.【详解】对于A.原式()22x x =+,不符合题意;对于B.原式()()()234322x x x =-=+-,不符合题意;对于C.原式()()23x x =-+,符合题意;对于D.原式()()22242x x =-+=+,不符合题意.故选:C.4.C【分析】解绝对值不等式得A ,根据交集的定义计算即可.【详解】解3x <得33x -<<,即()3,3A =-,B 为奇数集,故{}1,1A B =- .故选:C 5.C【分析】根据Venn 图表示的集合运算作答.【详解】阴影部分在集合,M P 的公共部分,但不在集合S 内,表示为()⋂⋂M P S ,故选:C .6.D【分析】分别求出,p q ,再分析出,p q 的推导关系.【详解】()11110010111x x x x x x -<⇒-<⇒<⇒+>+++,所以:0p x >或1x <-,而:10q x -<<,所以p 是q 的既不充分也不必要条件,故选:D 7.D【分析】根据不等式的性质或举出反例对各选项逐一判断即可.【详解】选项A :当0c >时,若ac bc <,则a b <,当0c <时,若ac bc <,则a b >,故A 说法错误;选项B :若1a =,2b =-满足a b >,此时22a b <,故B 说法错误;选项C :当0a b >>或0a b >>时,11a b<,当0a b >>时,11a b >,故C 说法错误;选项D :当110a b<<时,0ab >,所以不等式同乘ab 可得0b a <<,故D 说法正确;故选:D 8.B【分析】根据集合,M N 的表达式,可求出集合M 是16的奇数倍,N 是16的整数倍,即可得出,M N 的关系.【详解】由()11,Z 21,Z 366k M x x k x x k k ⎧⎫⎧⎫==+∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭||可知,集合M 表示的是16的奇数倍;由()11,Z 2,Z 636k N x x k x x k k ⎧⎫⎧⎫==+∈==+∈⎨⎬⎨⎬⎩⎭⎩⎭||可知,集合N 表示的是16的整数倍;即可知M 是N 的真子集,即M N .故选:B 9.A【分析】由已知等式可推导得到A B C ⊆⊆,由此可依次判断各个选项得到结果.【详解】A B B C ⋃=⋂ ,A B B ∴⊆ ,B B C ⊆ ,A B ∴⊆,B C ⊆,即A B C ⊆⊆;对于A ,A B C ⊆⊆ ,A C ∴⊆,A 正确;对于B ,当且仅当A B C ==时,C A ⊆,B 错误;对于C ,当A B C ==时,满足A B C ⊆⊆,C 错误;对于D ,当A =∅时,满足A B C ⊆⊆,D 错误.故选:A.10.D【分析】由题意可得集合B 中的元素个数为1个或3个,分集合B 中的元素个数为1和集合B 中的元素个数为3两种情况,再结合一元次方程根的个数求解即可.【详解】解:由()()2220x ax x ax +++=可得20x ax +=或220x ax ++=,又因为{}1,2A =,1A B ⊗=,所以集合B 中的元素个数为1个或3个,当集合B 中的元素个数为1时,则20x ax +=有两相等的实数根,且220x ax ++=无解,所以22080a a ⎧=⎨-<⎩,解得0a =;当集合B 中的元素个数为3时,则20x ax +=有两不相等的实数根,且220x ax ++=有两个相等且异于方程20x ax +=的根的解,所以20Δ80a a ≠⎧⎨=-=⎩,解得a =a =-综上所述,0a =或a =a =-故选:D.【点睛】关键点睛:本题的关键是根据题意得出集合B 中的元素个数为1个或3个.11.(){}3,7-【分析】首先根据方程组求出其解,然后运用列举法表示出对应的解集即可(以有序数对(),a b 的形式表示元素).【详解】因为322327x y x y +=⎧⎨-=⎩,所以37x y =⎧⎨=-⎩,所以列举法表示解集为:(){}3,7-.故答案为(){}3,7-.【点睛】本题考查二元一次方程组解集的列举法表示,难度较易.二元一次方程组的解用列举法表示时,可将元素表示成有序数的形式:(),x y .12.(],2-∞【分析】根据题意得到(1,1)-(25,+)m -∞,再利用数轴得到不等式,解出不等式即可.【详解】||<1,1<<1x x ∴- >25x m - 是||1x <的必要不充分条件,(1,1)∴-(25,+)m -∞,251,2m m ∴-≤-∴≤,∴实数m 的取值范围是(,2]-∞,故答案为:(,2]-∞.13.0【分析】由集合相等的含义,分类讨论元素对应关系即可.【详解】由集合元素互异性:0a ≠,又{}2,0,1{,,0}a a b -=,则21a a b ⎧=⎨=-⎩或21a ba ⎧=⎨=-⎩,解得11a b =⎧⎨=-⎩或11a b =-⎧⎨=⎩,故0a b +=故答案为:014.0a ≥【分析】分别讨论A =∅和A ≠∅两种情况求解.【详解】因为A B =∅ ,若3a >,则A =∅,满足题意;若3a ≤,则应满足0a ≥,所以03a ≤≤,综上,0a ≥.故答案为:0a ≥.15.{|0a a <或}1a =14⎧⎫⎨⎬⎩⎭【分析】分情况解集合B ,再根据“全食”与“偏食”的概念分析集合中元素满足的关系列式求解即可.【详解】由{}2B x x a ==|可知,当0a <时,B =∅,此时B A ⊆;当0a =时,{}0B =,此时A B =∅ ,当0a >时,{B =;又11,,12A ⎧⎫=-⎨⎬⎩⎭,若A 与B 构成“全食”,则B A ⊆,当0a <时,满足题意;当0a =时,不合题意;当0a >时,要使B A ⊆,则{}1,1B =-1=,解得1a =;综上,A 与B 构成“全食”时,a 的取值范围是{|0a a <或}1a =;若A 与B 构成“偏食”时,显然0a ≤时,不满足题意,当0a >时,由A B ≠∅ ,所以11,22B ⎧⎫=-⎨⎬⎩⎭12=,解得14a =,此时a 的取值范围是14⎧⎫⎨⎬⎩⎭.故答案为:{|0a a <或}1a =;14⎧⎫⎨⎬⎩⎭16.(1)(1,1]A B ⋂=-,(1,)U A B ⋃=-+∞ð;(2)(0,1]【分析】(1)解一元一次不等式求集合A ,再应用集合的交并补运算求A B ⋂及()U A B ⋃ð.(2)由集合的包含关系可得2a ≤2,结合已知即可得a 的取值范围.【详解】(1)由211x -≤得:1x ≤,所以(,1]A ∞=-,则(1,)U A =+∞ð,由(1,2]B =-,所以(1,1]A B ⋂=-,(1,)U A B ⋃=-+∞ð.(2)因为C B ⊆且0a >,所以2a ≤2,解得1a ≤.所以a 的取值范围是(0,1].17.(1)34m ≤(2)1m =-【分析】(1)根据根的判别式列不等式,然后解不等式即可;(2)根据韦达定理得到1223x x m +=-+,212x x m =,然后代入求解即可.【详解】(1)因为有两个实根,所以()222341290m m m ∆=--=-+≥,解得34m ≤.(2)由题意得()122323x x m m +=--=-+,212x x m =,所以2236m m -+=-,整理得()()310m m -+=,解得3m =或-1,因为34m ≤,所以1m =-.18.答案见解析【分析】分别求解集合,A B ,并求解三个条件的集合,再根据必要不充分条件,转化为集合的包含关系,即可列式求解.【详解】不等式8831100222x x x x x x +++>⇔->⇔<---,即()()320x x +-<,解得:32x -<<,即=−3<<2,()()22240220x mx m x m x m -+-<⇔---+<⎡⎤⎡⎤⎣⎦⎣⎦,解得:22m x m -<<+,即{}22B x m x m =-<<+,若选①,{3U A x x =≤-ð或2}x ≥,:p {3U x A x x ∈=≤-ð或2}x ≥,{}:22q x B x m x m ∈=-<<+,若p 是q 的必要不充分条件,则BU A ð,即23m +≤-或22m -≥,解得:5m ≤-或4≥m ;所以存在实数m ,使得p 是q 的必要不充分条件,m 的范围为5m ≤-或4≥m ;若选②,{}12A C x x ⋂=-<<,:p {}12x A C x x ∈⋂=-<<,{}:22q x B x m x m ∈=-<<+,若p 是q 的必要不充分条件,则B()A C ,则2122m m -≥-⎧⎨+≤⎩,解集为∅;所以不存在实数m ,使得p 是q 的必要不充分条件;若选③,{}34A C x x ⋃=-<<,:p {}34x A C x x ∈⋃=-<<,{}:22q x B x m x m ∈=-<<+,若p 是q 的必要不充分条件,则B()A C ,则2324m m -≥-⎧⎨+≤⎩,解得:12m -≤≤;所以存在实数m ,使得p 是q 的必要不充分条件,m 的取值范围为12m -≤≤;19.(1)答案见解析(2)不具有,理由见解析【分析】(1)根据集合A 具有性质J 的定义即可得出答案;(2)当6n =,4m =时,利用反证法即可得出结论.【详解】(1)当3n =时,{}1,2,3A =,集合A 的所有二元子集为{}{}{}1,2,1,3,2,3,则满足题意得集合B 可以是{}1或{}2或{}3,此时1m =,或者也可以是{}1,2或{}1,3或{}2,3,此时2m =;(2)当6n =,4m =时,{}1,2,3,4,5,6A =,假设存在集合B ,即对任意的()1234,,,,4,114i A A A A B B A i =⋂≤≤≤,则取{}{}{}{}12341,2,3,4,5,6,2,3A A A A ====,(4A 任意构造,符合题意即可),此时由于4B =,若121,1A B A B ≤≤ ,则B 中必有元素5,6,此时32A B = ,与题设矛盾,假设不成立,所以集合A 是不具有性质J .【点睛】关键点点睛:此题对学生的抽象思维能力要求较高,特别是对数的分析,在解题时注意对新概念的理解与把握是解题的关键.。

北京附中高一年级2018~2019学年度第一学期期中数学考核试卷

北京附中高一年级2018~2019学年度第一学期期中数学考核试卷

北京附中高一年级2018~2019学年度第一学期期中数学考核试卷2018年11月7 日说明:本试卷分Ⅰ卷和Ⅱ卷,Ⅰ卷17道题,共100分,作为模块成绩;Ⅱ卷7道题,共50分;Ⅰ卷、Ⅱ卷共24题,合计150分,作为期中成绩;考试时间120分钟;请在答题卡上填写个人信息,并将条形码贴在答题卡的相应位置上.Ⅰ卷 (共17题,满分100分)一、单项选择题(本大题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)1. 设集合A ={a ,2a ,0},B ={2,4},若A ∩B ={2},则实数a 的值为(D )A .2B .±2 CD2.计算2log A ) A. 43 B. 34 C. -43 D. -343. 下列函数中,是偶函数的是(D )A .f (x )=1xB .f (x )=lg xC .f (x )=x x e e --D .f (x )=|x |4. 函数()4x f x e x =+-的零点所在的区间是(B )A .(0,1)B .(1,2)C .(2,3)D .(3,4)5.已知(1)f x +()f x 的大致图象是(A )A. B. C. D.6. 设a =2log 5,b =3log 5,c =3log 2,则a ,b ,c 的大小关系为(B )A .a >c >bB .a >b >cC .b >a >cD .c >a >b7. 已知[1,2]x ∈,20x ax ->恒成立,则实数a 的取值范围是(D )A. [1,)+∞B. (1,)+∞C. (,1]-∞D. (,1)-∞8. 设函数()1[]f x x x =+-,其中[]x 表示不超过x 的最大整数,若函数log a y x =的图象与函数()f x 的图象恰有3个交点,则实数a 的取值范围是(D )A. [2,3)B. (2,3]C. (3,4]D. [3,4)二、填空题(本大题共6小题,每小题5分,共30分.请把结果填在答题纸上的相应位置.)9. 计算:ln1e =________. 110. 已知集合{1}A x x =>,{}B x x a =>,若⊆A B ,则实数a 的取值范围是 .(,1]-∞11.函数()log ()x a f x a a =-(01)a <<的定义域为__________.(1,)+∞ 12. 已知()f x =21,11,1x x x x ⎧-⎨-+>⎩≤,则[(1)]f f -=_________;若()1f x =-,则x =________.-1;0或213. 已知函数2()22f x ax x =--在区间[1,)+∞上不.单调,则实数a 的取值范围是________. (0,1)14. 如图放置的边长为2的正三角形ABC 沿x 轴滚动,记滚动过程中顶点A 的横、纵坐标分别为x 和y ,且y 是x 在映射f作用下的象,则下列说法中: ① 映射f 的值域是;② 映射f 不是一个函数;③ 映射f 是函数,且是偶函数;④ 映射f 是函数,且单增区间为[6,63]()k k k +∈Z ,其中正确说法的序号是___________.③说明:“正三角形ABC 沿x 轴滚动”包括沿x 轴正方向和沿x 轴负方向滚动.沿x 轴正方向滚动指的是先以顶点B 为中心顺时针旋转,当顶点C 落在x 轴上时,再以顶点C 为中心顺时针旋转,如此继续.类似地,正三角形ABC 可以沿x 轴负方向滚动.三、解答题(本大题共3小题,共30分,解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)15.(本小题满分10分) 已知集合2{0}A x x x =-<,2{20}B x x x m =--<.(Ⅰ)求A R ð;(Ⅱ)若A B =∅,求实数m 的取值范围.解:(Ⅰ)由20x x -<得,01x <<,故(0,1)A =, .. 2分所以A R ð=(,0][1,)-∞+∞. .................... 5分(Ⅱ)法1:若B =∅,则2(2)40m -+≤,故1m ≤-; 7分若B ≠∅,则不满足A B =∅. ............... 9分综上所述,实数m 的取值范围是(,1]-∞-. ..... 10分法2:由题知,当x A ∈时,220x x m --≥恒成立,即:当(0,1)x ∈时,22m x x ≤-恒成立. ......... 7分22x x -在区间(0,1)上的值域为(1,0)-, .......... 9分所以1m ≤-,即实数m 的取值范围是(,1]-∞-. ... 10分16. (本小题满分10分)R 上的奇函数. (Ⅰ)求()f x 的解析式及值域;(Ⅱ)判断()f x 在R 上的单调性,并用单调性定义.....予以证明. 解:(Ⅰ)由题知,(0)0f =,即:00212a -=+,故1a = .................... 3分 因为2(0,)x ∈+∞,所以12(1,)x +∈+∞,212x+(0,2)∈, ()(1,1)f x ∈-.............................. 5分 (Ⅱ)()f x 在R 上是增函数. ............... 6分证明:设12,x x ∀∈R ,12x x <,则210x x x ∆=->,21()(y f x f x ∆=- 所以函数()f x 在R 上是增函数. ............. 10分17.(本小题满分10分)某公司共有60位员工,为提高员工的业务技术水平,公司拟聘请专业培训机构进行培训.培训的总费用由两部分组成:一部分是给每位参加员工支付400元的培训材料费;另一部分是给培训机构缴纳的培训费.若参加培训的员工人数不超过30人,则每人收取培训费1000元;若参加培训的员工人数超过30人,则每超过1人,人均培训费减少20元.设公司参加培训的员工人数为x 人,此次培训的总费用为y 元.(Ⅰ)求出y 与x 之间的函数关系式;(Ⅱ)请你预算:公司此次培训的总费用最多需要多少元?解:(Ⅰ)当030,x x ≤≤∈N 时,40010001400y x x x =+=; 2分当3060,x x <≤∈N 时,400[100020(30)]y x x x =+--⋅2202000x x =-+, ............................ 4分故21400,030,202000,3060,x x x y x x x x ≤≤∈⎧=⎨-+<≤∈⎩N N............ 5分 (Ⅱ)当030,x x ≤≤∈N 时,14003042000y ≤⨯=元,此时x =30; ........... 7分当3060,x x <≤∈N 时,2205020005050000y ≤-⨯+⨯=元,此时x =50. .... 9分综上所述,公司此次培训的总费用最多需要50000元.10分 Ⅱ卷 (共7道题,满分50分)一、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,可能有一项或几项是符合题目要求的,请将所有正确答案填涂在答题纸上的相应位置.)18. 已知函数121()log f x x x =-,若0<a <b <c ,且满足()()()0f a f b f c <,则下列说法一定正确的是(AB )A .()f x 有且只一个零点B .()f x 的零点在(0,1)内C .()f x 的零点在(,)a b 内D .()f x 的零点在(,)c +∞内 19.关于函数()f x =的性质描述,正确的是(ABD )A .()f x 的定义域为[1,0)(0,1]- B .()f x 的值域为(1,1)- C .()f x 在定义域上是增函数 D .()f x 的图象关于原点对称20. 在同一直角坐标系下,函数x y a =与log a y x =(0a >,1a ≠)的大致图象 如图所示,则实数a 的可能值为(A. 32B. 43C. 75D. 107 二、填空题(本大题共3小题,每小题6分,共18分.请把结果填在答题纸上的相应位置.)21. 已知函数3, 0()1, 0x a x f x x x ⎧+>=⎨+≤⎩在R 上是增函数,则实数a 的取值范围是________.[1,)+∞ 22. 非空有限数集S 满足:若,a b S ∈,则必有ab S ∈.请写出一个..满足条件的二元数集S =________.{0,1}或{-1,1},23. 已知直线y ax =上恰好存在一个点关于直线y =x 的对称点在函数ln y x =的图象上.请写出一个..符合条件的实数a 的值:________.只需满足0a <或a e =即可. 三、解答题(本大题共1小题,满分14分.解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)24.(本题满分14分)若函数()f x 的图象恒过(0,0)和(1,1)两点,则称函数()f x 为“0-1函数”. (Ⅰ)判断下面两个函数是否是“0-1函数”,并简要说明理由:①1y x -=; ②22y x x =-+.(Ⅱ)若函数()x f x a b =+是“0-1函数”,求()f x ;(Ⅲ)设()log a g x x =(0,1)a a >≠,定义在R 上的函数()h x 满足:① 对∀1x ,2x ∈R ,均有121221(1)()()()2h x x h x h x h x x +=⋅--+;② [()]g h x 是“0-1函数”,求函数()h x 的解析式及实数a 的值.7分解:(Ⅰ)①不是,因为图象不过(0,0)点;②是,因为图象恒过(0,0)和(1,1)两点. ..... 4分(Ⅱ)由(0)0f =得,00a b +=,故1b =-;由(1)1f =得,11a b +=,故2a =.所以,()21x f x =-. ........................ 7分(Ⅲ)令120,x x x ==得,(1)(0)()()2h h h x h x =-+,令12,0x x x ==得,(1)()(0)(0)2h h x h h x =⋅--+,所以,()(0)h x h x =+. ....................... 10分由②知,[(0)]0g h =,又函数()g x 是单调函数,故(0)1h =,从而()1h x x =+,(1)2h =, ........... 13分由②又知,[(1)]1g h =,于是log 21a =,故2a =. .. 14分。

北京师范大学附属实验中学2018-2019学年高一10月月考数学试题(解析版)

北京师范大学附属实验中学2018-2019学年高一10月月考数学试题(解析版)

北京师范大学附属实验中学2018-2019学年高一10月月考数学试题(解析版)注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.做图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(本大题共12小题,共48.0分)1.已知集合2,,,则A. B. C. D.【答案】D【解析】解:2,,;.故选:D.根据集合2,,,即可得出,,,从而判断A,B,C都错误,只能选D.考查列举法表示集合的定义,集合相等和子集的定义,交集、并集的运算.2.已知集合,,则A. B.C. D.【答案】B【解析】解:或,即有,则.故选:B.运用二次不等式的解法,求得集合Q,求得Q的补集,再由两集合的并集运算,即可得到所求.本题考查集合的运算,主要是并集和补集的运算,考查不等式的解法,属于基础题.3.已知集合,,则中元素的个数为A. 3B. 2C. 1D. 0【答案】B【解析】解:,.中元素的个数为2.故选:B.根据交集定义求即可.此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.4.已知集合,,若,则实数a的取值范围A. B. C. D.【答案】A【解析】解:,,.故选:A.由,得,得.本题考查了交集及其运算,是基础题.5.设,则“”是“”的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】解:由“”得,由得或,即“”是“”的充分不必要条件,故选:A.根据不等式的性质,结合充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,比较基础.6.若不等式的解集是空集,则下列结论成立的是A. 且B. 且C. 且D. 且【答案】A【解析】解:当时,为开口向下的抛物线,不等式的解集为空集,显然不成立;当时,为开口向上的抛物线,不等式的解集为空集,得到,综上,不等式的解集是空集的条件是:且.故选:A.分两种情况考虑,当a小于0时,根据二次函数的图象与性质得到不等式的解集是空集不可能;当a大于0时,根据二次函数的图象与性质得到不等式的解集是空集即为二次函数与x轴有一个交点或没有交点,即根的判别式小于等于0,综上,得到原不等式为空集的条件.此题考查了分类讨论及函数的思想解决问题的能力,考查学生掌握空集的意义及二次函数的图象与性质,是一道基础题.7.已知函数的定义域为,则函数的定义域为A. B. C. D.【答案】B【解析】解:原函数的定义域为,,解得.则函数的定义域为.故选:B.原函数的定义域,即为的范围,解不等式组即可得解.考查复合函数的定义域的求法,注意变量范围的转化,属简单题.8.下列函数中,值域为的是A. B. C. D.【答案】D【解析】解:由得,,故选:D.根据,可求得本题考查了函数的值域,属基础题.9.已知函数是奇函数,且当时,,则A. B. 0 C. 1 D. 2【答案】A【解析】解:是定义在R上的奇函数,,,又当时,,,,故选:A.由奇函数定义得,,根据的解析式,求出,从而得到.本题考查函数的奇偶性及运用,主要是奇函数的定义及运用,解题时要注意自变量的范围,正确应用解析式求函数值,本题属于基础题.10.如果是定义在R上的奇函数,那么下列函数中,一定为偶函数的是A. B. C. D.【答案】B【解析】解:是奇函数,.对于A,,是奇函数.对于B,,是偶函数.对于C,,为非奇非偶函数,对于D,,是奇函数.故选:B.逐个计算,观察与的关系得出答案.本题考查了函数奇偶性的性质和奇偶性的判断,属于基础题.11.已知命题“,是假命题,则实数a的取值范围是A. B. C. D.【答案】B【解析】解:“,”的否定为“,““,”为假命题““为真命题即恒成立解得故选:B.写出原命题的否命题,据命题p与¬真假相反,得到恒成立,令判别式小于0,求出a的范围.本题考查含量词的命题的否定形式:将量词””与“”互换,同时结论否定、考查命题与其否定真假相反、考查二次不等式恒成立从开口方向及判别式两方面考虑.12.已知偶函数在区间单调递增,则满足的x取值范围是A. B. C. D.【答案】A【解析】解:是偶函数,,不等式等价为,在区间单调递增,,解得.故选:A.根据函数奇偶性和单调性的性质,将不等式进行转化求解即可.本题主要考查不等式的求解,根据函数奇偶性和单调性的关系将不等式进行转化是解决本题的关键.二、填空题(本大题共4小题,共12.0分)13.满足关系式2,3,的集合A的个数是______.【答案】4【解析】解:由题意知,满足关系式2,3,的集合A有:,3,,3,,3,1,,故共有4个,故答案为:4.由题意一一列举出集合A的情况即可.本题考查了集合的化简运算及应用.14.若函数在区间上是减函数,则实数a的取值范围是______.【答案】【解析】解:根据题意,函数为二次函数,其对称轴为,且开口向上,若在区间上是减函数,必有,即,即a的取值范围为;故答案为:根据题意,由二次函数的性质求出的对称轴,进而分析可得若在区间上是减函数,必有,解可得a的取值范围,即可得答案.本题考查二次函数的性质,注意分析二次函数的对称轴,属于基础题.15.定义在R上的偶函数满足:对任意的,,有则,,的大小顺序是______.【答案】【解析】解:是偶函数又任意的,,有在上是减函数又故答案为:先由奇偶性将问题转化到,再由函数在区间上的单调性比较.本题主要考查用奇偶性转化区间和单调性比较大小,在比较大小中,用单调性的较多,还有的通过中间桥梁来实现的,如通过正负和1来解决.16.已知集合2,3,,函数的定义域、值域都是A,且对于任意,,则满足条件的函数有______个【答案】9【解析】解:根据题意分析可知:问题等价于4个元素的全错位排列有多少个的问题,当时,若,则,;若,则,,若,则,,共3种;同理可得:当,时,都有3种.综上所述:满足条件的函数共有9种.故答案为:9.将问题等价转换为:4个元素的全错位有多少个排列然后分类计数后相加可得.本题考查了函数的值域、分类计数原理、函数的概念,属中档题.三、解答题(本大题共6小题,共40.0分)17.已知函数,若,则______.【答案】【解析】解:函数,,当时,,解得或舍;当时,,解得,不合题意.综上,.故答案为:.当时,;当时,,由此能求出结果.本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.函数的定义城为A,若,,且时总有,则称为单函数、例如,函数是单函数,下列命题:函数是单函数;若为单函数,,且,则;若f:为单函数,则对于任意,它有且只有一个原象;函数在某区间上具有单调性,则一定是单函数.其中的真命题是______,写出所有真命题的编号【答案】【解析】解:对于函数,由得,,所以不是单函数,错误;对于为单函数,则时,有,逆否命题是时,有,所以是正确的;若f:为单函数,则对于任意,它至多有一个原象,正确,否则不是单函数若函数是单调函数,则满足时,有,所以是单函数,正确;故答案为:利用单函数的定义当时总有,分别对四个命题进行判断,可以得出正确结论.本题考查了函数性质的推导与判断,考查学生分析问题解决问题的能力,有一定的综合性.19.已知集合,.若,求;若,求实数a的取值范围.【答案】解:或,若,则,;,,,实数a的取值范围为.【解析】首先确定A、B,然后根据交集定义求出即可;由,得,得.本题考查了交集及其运算,考查了并集运算的应用,是基础题.20.设函数满足.求的解析式;若的定义域是区间,求的值域.【答案】解:设,则,带入得:;;;;时,取最小值,且;的值域为.【解析】可设,从而求得,代入并整理可得出,从而得出;配方得出,根据的定义域为即可得出最小,并求出,从而可得出的值域.考查换元求函数解析式的方法,配方求二次函数最值的方法,函数值域的定义及求法.21.已知函数是定义在R上的偶函数,且当时有判断函数在上的单调性,并用定义证明;求函数的解析式写成分段函数的形式.【答案】解:函数在上单调递增.证明:设,则,,又,所以,,,所以.则,即,故函数在上单调递增;由于当时有,而当时,,则,即.则.【解析】运用函数的单调性的定义证明,注意作差、变形和定符号、下结论几个步骤;运用偶函数的定义,求出的表达式,即可得到的解析式.本题考查函数的单调性的判断和证明,函数的解析式的求法,考查运算能力,属于基础题.22.已知的定义域为,且对任意,都有,若,且,解不等式.【答案】解:设,则,,都有,,,在上为增函数,,任意正数x,y都有成立,令,得,令,,得;化为,,,解得,故不等式的解集是【解析】先判断函数的单调性,利用条件、恒等式和赋值法即可求的值;将不等式等价转化,结合函数的定义域、单调性列出不等式组,求解即可.本题考查抽象函数的函数值和单调性问题,以及不等式的解集,一般采用赋值法、等价转化的思想,根据恒等式、函数单调性将不等式进行转化是解决本题的关键。

北京理工大学附属中学2018-2019学年高三数学文联考试卷含解析

北京理工大学附属中学2018-2019学年高三数学文联考试卷含解析

北京理工大学附属中学2018-2019学年高三数学文联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知tan(α+)=2,则cos(2α+)=()A.B.﹣C.D.参考答案:C【考点】二倍角的余弦.【分析】由已知利用两角和的正切函数公式,特殊角的三角函数值可求tanα的值,利用诱导公式,二倍角的正弦函数公式,同角三角函数基本关系式化简所求后即可计算得解.【解答】解:∵tan(α+)==2,∴tanα=,∴cos(2α+)=sin2α====.故选:C.2. 已知函数f(x)=|sinx|(x∈[﹣π,π]),g(x)为[﹣4,4]上的奇函数,且,设方程f(f(x))=0,f(g(x))=0,g(g(x))=0的实根的个数分别为m、n、t,则m+n+t=()A.9 B.13 C.17 D.21参考答案:D【考点】正弦函数的图象.【分析】根据x∈[﹣π,π]时函数f(x)=|sinx|的值域为[0,1],由函数g(x)的图象与性质得出其值域为[﹣4,4],由方程f(x)=0的根得出方程f(f(x))=0根的个数m;求出方程f(g(x))=0的实根个数n;由方程g(x)=0的实根情况得出方程g(g(x))=0的实根个数t;从而求出m+n+t的值.【解答】解:因x∈[﹣π,π],所以函数f(x)=|sinx|的值域为[0,1],函数g(x)=的图象如图示,由图象知,其值域为[﹣4,4],注意到方程f(x)=0的根为0,﹣π,π,所以方程f(f(x))=0的根为方程f(x)=0或f(x)=﹣π,f(x)=π的根,显然方程f(x)=0有3个实根,因﹣π,π?[0,1],所以f(x)=﹣π,与f(x)=π均无实根;所以方程f(f(x))=0的实根的个数为3,即m=3;方程f(g(x))=0的实根为方程g(x)=0或g(x)=﹣π,g(x)=π的根,方程g(x)=﹣π,g(x)=π各有3个根,同时方程g(x)=0也有3个根,从而方程f(g(x))=0根的个数为9,即n=9;方程g(x)=0有三个实根﹣3、0、3,方程g(g(x))=0的实根为方程g(x)=﹣3或g(x)=0或g(x)=3的根,方程g(x)=﹣3或g(x)=3各有3个根,同时方程g(x)=0也有3个根,从而方程g(g(x))=0根的个数为9,即t=9;综上,m+n+t=3+9+9=21.故选:D.3. 已知集合,,则()A.(-∞,3) B.(-1,+∞) C.(-1,1) D.(1,3)参考答案:B4. 已知函数f(x)=,则f(﹣5)的值为()A.0 B.C.1 D.参考答案:B【考点】分段函数的应用.【分析】利用分段函数的解析式,转化求解即可.【解答】解:函数f(x)=,则f(﹣5)=f(﹣5+2)=f(﹣3)=f(﹣3+2)=f(﹣1)=f(﹣1+2)=f(1)=sin=.故选:B.【点评】本题考查分段函数的应用,抽象函数求值,三角函数求值,考查计算能力.5. 若曲线在点处的切线方程是,则( )A B C D参考答案:A略6. 已知角的终边过点,则的值是()A.B.C.或D.随着的取值不同其值不同参考答案:C略7. 已知,满足约束条件,若的最小值为,则()A.B.C.D.参考答案:B8. 已知A、B为椭圆E: +=1(a>b>0)的左、右顶点,点P在E上,在△APB 中,tanA=,tanB=,则E的离心率为()A.﹣1 B.C.D.参考答案:C【考点】椭圆的简单性质.【分析】利用直线的斜率公式与角的正切值的关系,求得P坐标代入椭圆方程,即可求得a与b的关系,求得椭圆的离心率.【解答】解:设A(﹣a,0),B(a,0),P(x,y),(m>0,n>0),由△APB中,tanA=,tanB=,可得直线PA的斜率为=,直线PB的斜率为=﹣,解得:x=a,y=a,将P(a, a)代入椭圆方程,可得: +=1,化简可得=4,即=,椭圆的离心率e===,故选C.【点评】本题考查椭圆的离心率的求法,注意运用直线的斜率公式和点满足椭圆方程,考查化简整理的运算能力,属于中档题.9. 函数y=2x+的最小值为()A.1 B.2 C.2D.4参考答案:C【考点】基本不等式.【分析】直接利用基本不等式化简求解即可.【解答】解:函数y=2x+≥2=2,当且仅当x=时,等号成立.故选:C.10. 执行如图所示的程序框图,输出的值为A. B. C. D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 运行如图语句,则输出的结果T= .参考答案:625考点:伪代码.专题:计算题;图表型.分析:本题所给的是一个循环结构的算法语句,由图可以看出,此是一个求等差数列和的算法语句,由公式计算出T的值,即可得到答案.解答:解:T=1,I=3,第1次循环,T=1+3,I=5<50,符合循环条件,第2次循环,T=1+3+5,I=7<50,符合循环条件,…,第23次循环,T=1+3+…+47,I=49<50,符合循环条件,第24次循环,T=1+3+…+49,I=51>50,不符合循环条件,输出T,∴T=1+3+…+49==625,∴输出的结果T=625.故答案为:625.点评:本题考查了伪代码,即循环结构的算法语句,解题的关键是理解题设中语句的意义,从中得出算法,由算法求出输出的结果.属于基础题.12. 已知点A(1,y1),B(9,y2)是抛物线y2=2px(p>0)上的两点,y2>y1>0,点F是它的焦点,若|BF|=5|AF|,则y12+y2的值为.参考答案:10【考点】抛物线的简单性质.【分析】由抛物线的定义:|BF|=9+,|AF|=1+,根据题意可知求得p,代入椭圆方程,分别求得y1,y2的值,即可求得y12+y2的值.【解答】解:抛物线y2=2px(p>0)焦点在x轴上,焦点(,0),由抛物线的定义可知:|BF|=9+,|AF|=1+,由|BF|=5|AF|,即9+=1+,解得:p=2,∴抛物线y2=4x,将A,B代入,解得:y1=2,y2=6,∴y12+y2=10,故答案为:10.【点评】本题考查抛物线的性质,考查抛物线方程的应用,属于中档题.13. 已知正方形的四个顶点分别在曲线和上,如图所示,若将一个质点随机投入正方形ABCD中,则质点落在图中阴影区域的概率是______.参考答案:与相交的阴影部分面积为化简得则与相交的阴影面积为半圆即故质点落在图中阴影区域的概率是14. (坐标系与参数方程选做题)在极坐标系中,圆的圆心的极坐标是。

学附属中学新疆分校2019届高三10月月考数学(文)试题(附答案)

学附属中学新疆分校2019届高三10月月考数学(文)试题(附答案)

北大附中新疆分校2018—2019学年第一学期10月月考高三年级文科数学试题时间:120分钟 满分:150分一. 选择题(本大题共12个小题,每小题5分,共60分)1.设集合{}{}|1|22A x x B x x =>-=-<<,,则A B =(A ){}|2x x >- (B ){}1x x >-| (C ) {}|21x x -<<-(D ){}|12x x -<<2.已知命题 :p 对任意x R ∈,总有012≥+-x x ;:q 若22b a <,则b a <. 则下列命题为真命题的是(A )q p ∧⌝ (B )q p ⌝∧ (C )q p ⌝∧⌝ (D )q p ∧ 3.设集合A={x|x 2﹣4x+3≥0},B={x|2x ﹣3≤0},则A ∪B=A. (﹣∞,1]∪[3,+∞)B. [1,3]C.D. 4.已知函数,则A.在(0,2)单调递增B. 在(0,2)单调递减C.的图像关于直线x=1对称D. 的图像关于点(1,0)对称 5.函数⎩⎨⎧>-≤=1,1,3)(x x x x f x ,则()()=2f f(A )9 (B )6 (C )91 (D )-2 6.设R x ∈,则“30<<x ”是“0342<+-x x ”的(A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件7.设7.06=a ,67.0=b ,6log 7.0=c ,则a ,b ,c 的大小关系为 (A )a c b >> (B )c a b >> (C )b a c >> (D )c b a >>8.若()()121log 21f x x =+,则()f x 的定义域为 (A )1,02⎛⎫- ⎪⎝⎭ (B )1,2⎛⎫-+∞ ⎪⎝⎭ (C )()1,00,2⎛⎫-⋃+∞ ⎪⎝⎭(D )1,22⎛⎫- ⎪⎝⎭xx (A ) (B ) (C )(D ) 9.函数ππln cos 22y x x ⎛⎫=-<< ⎪⎝⎭的图象是10.已知函数()f x 在R 上是奇函数,且满足()()4+=x f x f ,当()2,0∈x 时,()22x x f =,则()=7f(A )-2 (B )2 (C )-98 (D )9811.设定义在R 上的奇函数()x f 满足,对任意()+∞∈,0,21x x ,且12x x ≠都有()()01221>--x x x f x f ,且()02=f ,则不等式()()0423≤--x x f x f 的解集为 (A )(](]2,02, -∞- (B )[][)+∞-,20,2(C)(][)+∞-∞-,22,(D )[)(]2,00,2 - 12.已知定义在上的函数,若是奇函数, 是偶函数,当时,,则A.B.C. 0D.二.填空题(本大题共4小题,每小题5分,共20分) 13.命题“2lg ,1><∀x x ”的否定是___________________.14.函数的定义域为__________. 15.已知满足,则. 16.已知|lg |1)(x x f -=,则函数[]1)(3)(22+-=x f x f y 的零点个数为_______.三.解答题(17题10分,18-22题每题12分,共70分)17.计算下列各式的值:(Ⅰ)())121023170.0272179--⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭;(Ⅱ)3log 522ln 1001lg25log +++e .18.已知,或. (1)若,求; (2)若,求的取值范围.19.已知函数f (x )=b ·a x (其中a ,b 为常量且a >0,a ≠1)的图象经过点A (1,6),B (3,24),(1)试确定f (x );(2)若不等式(1a )x +(1b)x -m ≥0在x ∈(-∞,1]时恒成立,求实数m 的取值范围. 20.已知函数f (x )=log 4(ax 2+2x +3).(1)若f (1)=1,求f (x )的单调区间;(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由.21.已知二次函数f (x )=x 2+2bx +c (b 、c ∈R).(1)若f (x )≤0的解集为{x |-1≤x ≤1},求实数b 、c 的值;(2)若f (x )满足f (1)=0,且关于x 的方程f (x )+x +b =0的两个实数根分别在区间(-3,-2),(0,1)内,求实数b 的取值范围.22.已知函数)10)(3(log )1(log )(<<++-=a x x x f a a(1)求函数)(x f 的定义域;(2)求函数)(x f 的零点;(3)若函数)(x f 的最小值为-4,求a 的值.高三文科数学答案一、选择题(每小题5分,共60分)12 3 4 5 6 7 8 9 10 11 12 AB DC C BD C A A D A二、填空题(每小题5分,共20分.)13、01x ∃<,00lg 2x x ≤ 14、15、2015 16、3三、解答题(本大题共6小题,满分70分)17、(1)-45; (2)27. 18、【答案】(1);(2)或. 【解析】试题分析:(1)由,则,即可求解;(2)分和两种情况分类讨论,即可求解的取值范围.试题解析:(1),则. ∵或,∴. (2)若,即时,, 满足. 若即时,只须或. 解得或. 综上所述的取值范围为或. 19、解:(1)∵f (x )=b ·a x 的图象过点A (1,6),B (3,24),∴⎩⎪⎨⎪⎧b ·a =6 ①b ·a 3=24 ② ②÷①得a 2=4,又a >0,且a ≠1,∴a =2,b =3,∴f (x )=3·2x .(2)(1a )x +(1b )x -m ≥0在(-∞,1]上恒成立化为m ≤(12)x +(13)x 在(-∞,1]上恒成立. 令g (x )=(12)x +(13)x ,g (x )在(-∞,1]上单调递减,∴m ≤g (x )min =g (1)=12+13=56, 故所求实数m 的取值范围是(-∞,56]. 20、解:(1)∵f (1)=1,∴log 4(a +5)=1,因此a +5=4,a =-1,这时f (x )=log 4(-x 2+2x +3).由-x 2+2x +3>0得-1<x <3,函数定义域为(-1,3).令g (x )=-x 2+2x +3.则g (x )在(-∞,1)上递增,在(1,+∞)上递减,又y =log 4x 在(0,+∞)上递增,所以f (x )的单调递增区间是(-1,1),递减区间是(1,3).(2)假设存在实数a 使f (x )的最小值为0,则h (x )=ax 2+2x +3应有最小值1,因此应有 ⎩⎪⎨⎪⎧ a >0,12a -44a=1, 解得a =12. 故存在实数a =12使f (x )的最小值等于0.21、解:(1)依题意,x 1=-1,x 2=1是方程x 2+2bx +c =0的两个根.由韦达定理,得⎩⎪⎨⎪⎧ x 1+x 2=-2b ,x 1x 2=c .即⎩⎪⎨⎪⎧-2b =0,c =-1. 所以b =0,c =-1.(2)由题知,f (1)=1+2b +c =0,所以c =-1-2b .记g (x )=f (x )+x +b =x 2+(2b +1)x +b +c =x 2+(2b +1)x -b -1,则⎩⎪⎨⎪⎧ g -=5-7b >0,g -=1-5b <0,g =-1-b <0,g =b +1>0,解得15<b <57,所以实数b 的取值范围为15<b <57.22、分析:(1)根据对数的真数大于零,列出不等式组并求出解集,函数的定义域用集合或区间表示出来;(2)利用对数的运算性质对解析式进行化简,再由f(x)=0,即-x2-2x+3=1,求此方程的根并验证是否在函数的定义域内;(3)把函数解析式化简后,利用配方求真数在定义域内的范围,再根据对数函数在定义域内递减,求出函数的最小值log a4,得log a4=-4利用对数的定义求出a的值.解答:解:(1)要使函数有意义:则有,解之得:-3<x<1,则函数的定义域为:(-3,1)(2)函数可化为f(x)=log a(1-x)(x+3)=log a(-x2-2x+3)由f(x)=0,得-x2-2x+3=1,即x2+2x-2=0,∵,∴函数f(x)的零点是(3)函数可化为:f(x)=log a(1-x)(x+3)=log a(-x2-2x+3)=log a[-(x+1)2+4]∵-3<x<1,∴0<-(x+1)2+4≤4,∵0<a<1,∴log a[-(x+1)2+4]≥log a4,即f(x)min=log a4,由log a4=-4,得a-4=4,∴点评:本题是关于对数函数的综合题,考查了对数的真数大于零、函数零点的定义和对数型的复合函数求最值,注意应在函数的定义域内求解.。

矿产

矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

矿产

矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

矿产

矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档