几类特殊矩阵

合集下载

常用的特殊矩阵

常用的特殊矩阵

常用的特殊矩阵矩阵在数学和工程领域中具有重要的应用价值。

除了常规的矩阵外,还存在一些特殊的矩阵形式,它们具有独特的性质和应用。

本文将介绍一些常用的特殊矩阵,包括对角矩阵、上三角矩阵、下三角矩阵、对称矩阵、反对称矩阵、单位矩阵、零矩阵和方阵。

1. 对角矩阵对角矩阵是指除了主对角线上的元素外,其余元素都为零的矩阵。

主对角线上的元素可以是任意值。

对角矩阵在线性代数中有广泛的应用,例如求解线性方程组、矩阵的特征值等。

对角矩阵具有良好的性质,例如可以进行快速的矩阵乘法运算。

2. 上三角矩阵上三角矩阵是指除了主对角线及其以上的元素外,其余元素都为零的矩阵。

上三角矩阵的主对角线上的元素可以是任意值。

上三角矩阵在计算机科学和数学中都有重要的应用,例如求解线性方程组、矩阵的LU分解等。

上三角矩阵具有良好的性质,例如可以进行快速的矩阵乘法运算。

3. 下三角矩阵下三角矩阵是指除了主对角线及其以下的元素外,其余元素都为零的矩阵。

下三角矩阵的主对角线上的元素可以是任意值。

下三角矩阵在计算机科学和数学中也有重要的应用,例如求解线性方程组、矩阵的LU分解等。

下三角矩阵具有良好的性质,例如可以进行快速的矩阵乘法运算。

4. 对称矩阵对称矩阵是指矩阵的转置等于自身的矩阵。

换句话说,对称矩阵的元素关于主对角线对称。

对称矩阵在数学和物理学中有广泛的应用,例如求解线性方程组、特征值问题、二次型等。

对称矩阵具有很多重要的性质,例如所有的特征值都是实数,特征向量可以正交等。

5. 反对称矩阵反对称矩阵是指矩阵的转置的相反数等于自身的矩阵。

换句话说,反对称矩阵的元素关于主对角线对称且元素为相反数。

反对称矩阵在数学和物理学中也有广泛的应用,例如旋转、刚体运动等。

反对称矩阵的特征值具有特殊的性质,例如如果矩阵的维度是奇数,则至少存在一个特征值为零。

6. 单位矩阵单位矩阵是指主对角线上的元素都为1,其余元素都为零的矩阵。

单位矩阵在线性代数中有重要的作用,它在矩阵乘法中起到类似于数字1的作用。

线性代数中的矩阵的特殊类型与性质

线性代数中的矩阵的特殊类型与性质

线性代数中的矩阵的特殊类型与性质矩阵是线性代数中的重要概念,它在各个领域都有广泛的应用。

在线性代数中,矩阵可以分为多种特殊类型,每种类型都有其独特的性质和特点。

本文将介绍几种常见的矩阵特殊类型以及它们的性质。

一、对角矩阵对角矩阵是一种具有特殊形式的矩阵,其除了主对角线上的元素外,其余元素均为零。

对角矩阵的主对角线上的元素可以是任意值,也可以是相同的值。

对角矩阵的性质如下:1. 对角矩阵的乘法:两个对角矩阵相乘仍然得到一个对角矩阵,且新矩阵的主对角线上的元素等于原矩阵对应位置元素的乘积。

2. 对角矩阵的逆矩阵:对角矩阵的逆矩阵存在当且仅当主对角线上的元素均不为零。

逆矩阵的主对角线上的元素等于原矩阵对应位置元素的倒数。

3. 对角矩阵的转置:对角矩阵的转置等于其本身。

二、上三角矩阵和下三角矩阵上三角矩阵是一种特殊的矩阵,其主对角线及其以上的元素均不为零,而主对角线以下的元素均为零。

下三角矩阵与上三角矩阵相反,其主对角线及其以下的元素均不为零,而主对角线以上的元素均为零。

上三角矩阵和下三角矩阵的性质如下:1. 上三角矩阵和下三角矩阵的乘法:两个上三角矩阵或两个下三角矩阵相乘仍然得到一个上三角矩阵或下三角矩阵。

2. 上三角矩阵和下三角矩阵的逆矩阵:上三角矩阵和下三角矩阵的逆矩阵存在当且仅当其主对角线上的元素均不为零。

3. 上三角矩阵和下三角矩阵的转置:一个上三角矩阵的转置是一个下三角矩阵,一个下三角矩阵的转置是一个上三角矩阵。

三、对称矩阵对称矩阵是一种特殊的矩阵,其转置等于其本身。

也就是说,如果矩阵A是一个对称矩阵,那么A的转置矩阵等于A本身。

对称矩阵的性质如下:1. 对称矩阵的特征值:对称矩阵的特征值均为实数。

2. 对称矩阵的特征向量:对称矩阵的特征向量相互正交。

3. 对称矩阵的对角化:对称矩阵可以通过正交相似变换对角化,即可以找到一个正交矩阵P,使得P的逆矩阵乘以对称矩阵A再乘以P等于一个对角矩阵。

四、单位矩阵单位矩阵是一种特殊的矩阵,其主对角线上的元素均为1,其余元素均为零。

1-3 常见特殊矩阵讲解学习

1-3 常见特殊矩阵讲解学习
把正定矩阵定义中的xTAx>0改成xTAx<0,则称A 是负定 (negative definite)矩阵。记做A<0。 负定矩阵的特征值都是负数。
设A∈SRn×n,如果对任意x∈Rn有xTAx≥(≤)0,则 称A为半正(负)定 (semi positive/negative definite) 矩阵,记做A≥(≤)0。
分块(block)对角矩阵:A=diag(A11,A22,…,Akk); 分块(block)上(下)三角矩阵; 分块上(下)三角矩阵的特征值是各对角块矩阵特征 值的并集,其逆矩阵仍然是分块上(下)三角矩阵。
2. 初等变换矩阵
第一类:A1=diag(1,…,1,a,1,…,1); 第二类:A2=I+beiejT; 第三类:A3=[e1,…,ei-1,ej,ei+1,…,ej-1,ei,ej+1,…,en]; 左行右列
对称半正定矩阵的特征值都大于等于0。
下列条件都等价:
1. A是半正定矩阵; 2. A的所有顺序主子式都大于等于0; 3. 存在矩阵C,使得A=CCT; 4. A对称,且所有特征值都非负。
设A是复Hermite矩阵,如果对任意x∈Cn都有 x*Ax>(<,≥,≤)0,则称A为正定(负定,半正定,半 负定)矩阵。
6. V=Rn,A>0, <x,y>=xTAy;a
在欧式空间中,称非负实数 x, x 为x的长度 (模、范数),记为||x||。
1. ||kx||=|k| ||x||; 2. ||x+y||=||x||+||y||; 3. ||<x,y>||≤||x|| ||y||。
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢

线性代数中的特殊矩阵分类

线性代数中的特殊矩阵分类

线性代数中的特殊矩阵分类线性代数是数学中一门重要的学科,其中矩阵是其中的一个核心概念。

矩阵作为一种数学工具在实际应用中有着非常广泛的应用。

由于矩阵具有一些重要的性质,因此矩阵可以根据这些性质进行分类,其中特殊矩阵是线性代数中常见的一个概念。

1. 对称矩阵对称矩阵是一种特殊的矩阵,它的转置矩阵与它本身相等,即A = A^T。

对称矩阵具有很多重要的性质,可以应用于广泛的领域。

例如,在椭圆偏微分方程中,对称矩阵的证明可以被用来证明谱定理;在统计学中,协方差矩阵是对称矩阵,用于描述变量之间的关系。

2. 上三角矩阵和下三角矩阵上三角矩阵和下三角矩阵也是特殊的矩阵类型。

上三角矩阵的所有下方元素都为0,下三角矩阵的所有上方元素都为0。

上下三角矩阵继承了其自身的性质。

上三角矩阵通常在求解线性方程组时用到,因为它可以轻松找出未知数。

上三角形式可以通过高斯消元算法来实现,这样,矩阵可以在O(n ^ 3)时间内求解。

3. 稀疏矩阵稀疏矩阵是一种非常特殊的矩阵。

如果矩阵中有大量元素值为0,则称该矩阵稀疏。

稀疏矩阵经常出现在一些实际应用和大型数据集中。

例如,社交媒体网站会生成巨量的关系矩阵,并且相互之间共享数据是非常常见的。

但是,在这个关系矩阵中,大多数元素的值都为0,因为人们只能与一小部分人进行交互。

稀疏矩阵可以通过一些优化算法来处理。

例如,压缩稀疏行(CSR)格式就是一种处理稀疏矩阵的算法,该算法将稀疏矩阵压缩为一个矩阵。

这个格式可以使得矩阵的计算变得非常高效,并且存储空间也可以大大减少。

总之,矩阵作为线性代数的核心概念,在实际应用中有着广泛的应用。

特殊矩阵是其中非常重要的一个概念,这些特殊矩阵都具有一些独特的性质,在实际应用中有着非常广泛的应用。

对于一个数学学习者来说,对于这些矩阵的掌握是十分必要的。

几种特殊的矩阵

几种特殊的矩阵

a11 a12 a13 ... a1n b11 b12 b13 ... a1n
0
a22
a23
...
a2n
0
b22
b23
...
b2n
0 0 a33 ... a3n 0 0 b33 ... b3n
0 0 0 ... ann 0 0 0 ... bnn
c11
0
0
0
c12 c13 c22 c24 0 c33
a11
0
a12 a22
a13 a23
... ...
a1n
a2
n
ka11
0
ka12 ka22
ka13 ka23
... ka1n
...
ka2n
k 0 0 a33 ... a3n 0
0 ka33 ... ka3n
0
0
0
...
ann
0
0
0 ... kann
即 数k乘n阶上三角矩阵后 还是n 阶上三角矩阵.
0 a33
... ...
0 0
0
0
0
... ann
a1n a2n a3n ... ann
同理, 所有n 阶下三角 矩 阵关于加法、数乘、
乘法封闭.下三角矩阵的转置矩阵 为上三角矩阵。
a11 0 ...
对角矩阵 0 a22 ...
0 0
既可看成上三角矩阵 也可看成下三角矩阵.
0
0
...
在矩阵的乘法中 数量矩阵 起着“数”的作用。
3.三角形矩阵
如果n阶方阵A=(aij)中 的元素满足条件:i j时,
aij 0 即
a11 a12 a13 ... a1n

数据结构——特殊矩阵

数据结构——特殊矩阵

数据结构——特殊矩阵数据结构,特殊矩阵特殊矩阵是一种在计算机科学中常见的数据结构,它是由一组元素组成的二维数组。

特殊矩阵具有特定的属性,使得它们在特定的问题领域中非常有用。

在这篇文章中,我们将介绍几种常见的特殊矩阵,并讨论它们的应用。

首先,我们来讨论对角矩阵。

对角矩阵是指只有主对角线上有非零元素的矩阵。

其他位置上的元素都是零。

对角矩阵可以用于多种计算问题,如线性方程组的求解和矩阵乘法。

由于对角矩阵的特殊结构,它的存储和运算都可以更高效地执行。

其次,我们来讨论上三角矩阵和下三角矩阵。

上三角矩阵是指只有主对角线及其以上的元素都不为零的矩阵,而下三角矩阵则是指只有主对角线及其以下的元素都不为零的矩阵。

这两种特殊矩阵也常用于矩阵运算中,因为它们具有更高效的存储和计算方式。

另一个常见的特殊矩阵是稀疏矩阵。

稀疏矩阵是指其中大部分元素都为零的矩阵。

在很多应用中,矩阵的元素并不是均匀分布的,而是集中在一些特定的位置。

因此,使用传统的二维数组来存储这种矩阵会浪费很多的空间。

稀疏矩阵的一个常见的存储方法是压缩矩阵,只存储非零元素的值和其对应的位置。

最后,我们来讨论特殊矩阵的应用。

特殊矩阵广泛应用于图论、网络分析和科学计算等领域。

在图论中,邻接矩阵是一种常见的特殊矩阵,用于表示图的连接关系。

在网络分析中,PageRank算法使用了特殊矩阵的运算方法,用于计算网页的重要性。

在科学计算中,特殊矩阵的高效存储和计算方式可以大大提高计算效率。

总结起来,特殊矩阵是一种重要的数据结构,它具有特定的结构和属性,使得它们在特定的问题领域中非常有用。

了解特殊矩阵的类型和应用可以帮助我们更好地理解和应用数据结构。

希望本文对读者对特殊矩阵有更深入的了解,并能在实际问题中灵活应用。

矩阵的特殊矩阵及其性质和应用

矩阵的特殊矩阵及其性质和应用

矩阵的特殊矩阵及其性质和应用矩阵是数学中一个非常重要的概念,它被广泛应用于各个领域,包括物理、经济学、统计学等。

特殊矩阵是一类具有特殊特性的矩阵,它们拥有许多重要的性质和应用。

在本文中,我们将探讨一些常见的特殊矩阵及其性质和应用。

对称矩阵对称矩阵是一个非常重要的特殊矩阵,具有以下性质:1. 对称矩阵的主对角线上的元素都相等。

2. 对称矩阵是实数域上的矩阵,且所有对称矩阵都可以对角化。

3. 对称矩阵的特征值都是实数,且对应的特征向量可以正交化。

对称矩阵在物理学中经常出现,例如量子力学中的哈密顿矩阵。

此外,在机器学习中,对称矩阵也被广泛应用于协方差矩阵的计算。

旋转矩阵旋转矩阵是一种常见的特殊矩阵,它们有以下特性:1. 旋转矩阵的行列式为1,且逆矩阵等于它的转置。

2. 旋转矩阵在欧几里得空间中保持距离、角度和方向不变,因此旋转矩阵在三维图像处理中被广泛应用于图像变换和计算机动画。

对角矩阵对角矩阵是一个具有以下特点的特殊矩阵:1. 对角矩阵的主对角线之外的元素都为0。

2. 对角矩阵的行列式等于对角线上的元素的乘积,因此可以很方便地进行行列式计算。

3. 对角矩阵是一个非常常见的矩阵,常常在代数学中使用。

4. 对角矩阵也是一类特殊的压缩矩阵,可以被用于计算机图形学和计算机视觉中。

希尔伯特矩阵希尔伯特矩阵是一种非常有趣的特殊矩阵,它们具有以下特性:1. 希尔伯特矩阵是一个n x n的方阵,其中第i行第j列的元素为1/(i+j-1)。

2. 希尔伯特矩阵是非对称的,且行列式随n的增大而缩小。

3. 希尔伯特矩阵是条件数极大的矩阵,因此求解它的逆矩阵需要耗费很大的计算资源。

4. 希尔伯特矩阵在数值分析中有广泛的应用,例如矩阵求逆、插值等。

总结特殊矩阵是数学中一个非常重要的概念,不同的特殊矩阵具有不同的性质和应用。

在本文中,我们探讨了四类常见的特殊矩阵,包括对称矩阵、旋转矩阵、对角矩阵和希尔伯特矩阵。

它们在各个领域都有广泛的应用,例如量子力学、机器学习、图形处理、计算机视觉等。

特殊矩阵知识点总结归纳

特殊矩阵知识点总结归纳

特殊矩阵知识点总结归纳一、特殊矩阵的定义在线性代数中,矩阵是一个非常重要的概念,它是一个按照矩形排列的数的集合。

特殊矩阵是指具有特殊性质的矩阵,这些特性可以是对角矩阵、上三角矩阵、下三角矩阵、对称矩阵、正交矩阵等。

1. 对角矩阵对角矩阵是一种形式特殊的矩阵,它的非对角元素都是零。

具体来说,一个n×n的矩阵A 是对角矩阵,当且仅当a_ij=0,i≠j。

对角矩阵的特点是计算简单,特殊类型的特殊矩阵可以大大简化计算过程。

2. 上三角矩阵和下三角矩阵上三角矩阵和下三角矩阵也是特殊矩阵的一种。

上三角矩阵是指所有主对角线以下的元素都为零的矩阵,而下三角矩阵是指所有主对角线以上的元素都为零的矩阵。

这两种矩阵的特点是对称性很强,可以简化矩阵的运算过程。

3. 对称矩阵对称矩阵是一种特殊的矩阵,它满足a_ij=a_ji。

也就是说,对称矩阵的元素关于主对角线对称。

对称矩阵具有许多特殊的性质,比如它的特征值都是实数,对应不同的特征值的特征向量是正交的等。

4. 正交矩阵正交矩阵是指满足Q^T·Q=I的方阵Q,其中Q^T表示Q的转置矩阵,I表示单位矩阵。

正交矩阵的特点是它的列向量是正交的,也就是说,Q^T·Q=I意味着Q的列向量正交。

正交矩阵在旋转、变换等领域有着广泛的应用。

二、特殊矩阵的性质特殊矩阵具有许多特殊的性质,这些性质使得它们在科学计算、工程学和物理学等领域中有着广泛的应用。

1. 对角矩阵的性质对角矩阵的特点是它的非对角元素都是零,这使得它的计算非常简单。

对角矩阵的特征值就是它的对角线上的元素,而特征向量就是标准基的元素。

此外,对角矩阵具有可逆性,只要对角线上的元素不全为零,对角矩阵就是可逆的。

2. 上三角矩阵和下三角矩阵的性质上三角矩阵和下三角矩阵都具有可逆性,只有主对角线上的元素不为零,它们就是可逆的。

此外,上三角矩阵和下三角矩阵的特征值就是它们的对角线上的元素,而特征向量就是标准基的元素。

几类特殊矩阵的满秩分解及其应用doc

几类特殊矩阵的满秩分解及其应用doc

目录0 引言 (1)1 预备知识 (1)2 几类特殊矩阵满秩分解 (2)2.1酉对称矩阵的满秩分解 (2)2.2行(列)对称矩阵的满秩分解 (3)2.3行(列)反对称矩阵的满秩分解 (4)2.4全对称矩阵中具有轴对称结构矩阵的满秩分解 (4)2.5广义延拓矩阵的满秩分解 (5)3 矩阵的满秩分解的应用 (6)3.1利用矩阵A的满秩分解求广义逆矩阵 (6)3.1.1 利用矩阵A的满秩分解求广义逆矩阵-A (6)3.1.2 利用矩阵A的满秩分解求M-P广义逆矩阵 A (7)3.2线性方程组的极小最小二乘问题 (8)参考文献致谢赵爱霞(天水师范学院数学与统计学院, 甘肃天水741001)摘要介绍了五类特殊矩阵,即酉对称矩阵、行(列)对称矩阵、行(列)反对称矩阵、全对称矩阵及广义延拓矩阵,的满秩分解和求解方法,并说明了满秩分解在求广义逆中的应用. 关键词酉对称矩阵;行(列)对称矩阵; 行(列)反对称矩阵;全对称矩阵;广义延拓矩阵;广义逆矩阵;满秩分解.Full Rank Decomposition and Application forsome kinds of Special MatrixZHAO Aixia(School of Mathematics and Statistics, Tianshui Normal University, Tianshui 741001)Abstract The formulas and methods, for full rank decompositions of five kinds of special matrices, such as unitary symmetric matrix, row (column) symmetric matrix,row (column) negative symmetric matrix, full symmetric matrix, are given, Moreover, we show the importance of the full rank decomposition in finding generalized inverse of matrix,Key words unitary symmetric matrix, row (column) symmetric matrix,row (column) negative symmetric matrix, full symmetric matrix, generalized inverse matrix, generalized continuation matrix, full rank decomposition.0 引言自20世纪50年代以来矩阵的理论和计算方法的研究取得了长足的发展,矩阵理论的应用日益广泛.矩阵已成为人们探索新理论的工具,矩阵分解的应用也越来越受到人们的重视,例如在文献[]5,4,3,2中都有不同的研究.在数值线性代数中,我们常常需要将数域P 上的某个已知矩阵写成若干满足一定条件的特殊类型的矩阵之和或矩阵之积的形式,并把这种矩阵表示成为矩阵分解.矩阵分解中有一类特殊的矩阵的分解,即矩阵的满秩分解,矩阵的满秩分解及其相关行满秩列满秩矩阵的定义和相关性质都有广泛的应用,本文给出几类特殊矩阵的满秩分解的公式和快速算法.1 预备知识定义[1]1.1(满秩分解)设A 是秩为>0r(r )的m n ⨯矩阵,若存在m r ⨯列满秩矩阵F 和r n ⨯行满秩矩阵G ,使得=A FG (1) 则称(1)式为矩阵A 的满秩分解.定义[2]1.2(行酉对称矩阵)令m n A C ⨯∈为任意给定的负矩阵,k 为任意给定的正整数.定义*12k 1R -L (A;G ,G ,,G )为*12k 1011T km n k RC ⨯--∈L L (A;G ,G ,,G )=(A ,A ,,A ),其中0,,i i i A A A G A G ==⋅为酉变换矩阵,1,2, 1.i k =-L 矩阵*12k 1R -L (A;G ,G ,,G )称为A 的k 次行酉对称矩阵.定义[2]1.3(列酉对称矩阵)令m n A C ⨯∈为任意给定的负矩阵,k 为任意给定的正整数.定义*12k 1C -L (A;G ,G ,,G )为*12k 1011m kn k C C ⨯--∈L L (A;G ,G ,,G )=(A ,A ,,A ),其中0,,i i i A A A A G G ==⋅为酉变换矩阵,1,2, 1.i k =-L 矩阵*12k 1C -L (A;G ,G ,,G )称为A 的k 次列酉对称矩阵.定义[3]1.4设=a m n ij A ⨯∈()R ,矩阵A 的行转置与列转置矩阵分别为12(1)1(1)2(1)2212211112m m mn m m m n R n n a a a a a a A a a a a a a ---⎛⎫⎪ ⎪ ⎪=⎪ ⎪ ⎪⎝⎭LL M MM L L11(1)121122(1)2221(1)(_1)(1)(1)2(1)1(1)21n n nn C m n m n m m m n mnm m a a a a a a a a A a a a a a a a a --------⎛⎫⎪ ⎪ ⎪=⎪ ⎪ ⎪⎝⎭L LMMM M L L若()R C A A A A ==,则称A 为行(列)对称矩阵; 若()R C A A A A =-=-,则称A 为行(列)反对称矩阵.定义[4]1.5设m n A ⨯∈R ,若(),T B A -=则称A 为全转置阵,记为0B A =;若0A A =,则称A 为全对称矩阵.定义[5]1.6(广义行延拓矩阵)设m n A C ⨯∈,可逆矩阵121,,,m nk P P P Ck ⨯-∈L 为任意为给定的正整数.定义12k 1R -L (A;P ,P ,,P )为12k 1011T km n k R C ⨯--∈L L (A;P ,P ,,P )=(A ,A ,,A ),其中0,,i i A A A P A ==⋅1,2, 1.i k =-L 矩阵12k 1R -L (A;P ,P ,,P )称为A 的广义行延拓矩阵.定义[5]1.7(广义列延拓矩阵)设m n A C ⨯∈,可逆矩阵121,,,m nk P P P Ck ⨯-∈L 为任意为给定的正整数.定义12k 1-L C(A;P ,P ,,P )为12k 1011m kn k C ⨯--∈L L C(A;P ,P ,,P )=(A ,A ,,A ),其中0,,i i A A A A P ==⋅1,2, 1.i k =-L 矩阵12k 1-L C(A;P ,P ,,P )称为A 的广义列延拓矩阵. 2 几类特殊矩阵满秩分解 2.1 酉对称矩阵的满秩分解酉对称矩阵有两种形式分别为行酉对称矩阵和列酉对称矩阵,下面对这两种矩阵的满值分解做出介绍.首先,给出行酉对称矩阵的满秩分解.定理 2.1.1 设(0)m n r A C r ⨯∈>,存在,m r r n r r F C G C ⨯⨯∈∈使.A FG =令**121,(;,,,),T k G G F F G F G F G F -==L 则〈1〉**,G F 分别是行满秩矩阵和列满秩矩阵;〈2〉***12k 1=RG -⋅L (A;G ,G ,,G )F . 对于列酉对称矩阵,其满秩分解同行酉对称矩阵的满秩分解很是相似.定理 2.1.2 设(0)m n r A C r ⨯∈>,存在,m r r n r r F C G C ⨯⨯∈∈使.A FG =令**121,(;,,,),T k F F G G GG GG GG -==L 则〈1〉**,G F 分别是行满秩矩阵和列满秩矩阵;〈2〉***12k 1=C G -⋅L (A;G ,G ,,G )F . 2.2行(列)对称矩阵的满秩分解本小节主要介绍行列对称矩阵的满秩分解,首先介绍行对称矩阵的满秩分解.定理 2.2.1 设n m r ⨯∈R B 的满秩分解为,,n r r r m r ,⨯⨯∈∈=R G R F FG B 则行对称矩阵n m R B J B A ⨯∈⎪⎪⎭⎫ ⎝⎛=2r m 的满秩分解为 .G F J F A m ⎪⎪⎭⎫ ⎝⎛=这是偶数行的对称矩阵的满秩分解.下面介绍奇数行的对称矩阵的满秩分解. 定理 2.2.2 设n m r ⨯∈R B 的满秩分解为,,n r r r m r αβ=∈∈=⨯⨯G R G R F FG B ,,n11,⨯⨯∈∈R R r αβ则行对称矩阵n m r m R B J B A ⨯+∈⎪⎪⎪⎭⎫ ⎝⎛=)12(α的满秩分解为.m G F J F A ⎪⎪⎪⎭⎫ ⎝⎛=β上面已经对行对称矩阵给出了满秩分解,接下来将介绍列对称矩阵的满秩分解,类似的有,偶数列对称矩阵和奇数列对称矩阵的满秩分解.定理 2.2.3(偶数列对称矩阵的满秩分解) 设n m r ⨯∈R B 的满秩分解为,,n r r r m r ,⨯⨯∈∈=R G R F FG B 则列对称矩阵()n m n R BJ BA 2r ⨯∈=的满秩分解为)(n GJ G F A =.定理 2.2.4(奇数列对称矩阵的满秩分解) 设n m r ⨯∈R B 的满秩分解为,,n r r r m r ,⨯⨯∈∈=R G R F FG B 11r ,⨯⨯∈∈=m R R F αβαβ,则列对称矩阵())12(r n +⨯∈=n m R BJ B A α的满秩分解为)(n GJ G F A β=.前面已经给出了行列对称矩阵的满秩分解,现在我们仿照它来研究各种形式的行列反对称矩阵的满秩分解.2.3行(列)反对称矩阵的满秩分解定理 2.3.1 (偶数行反对称矩阵) 设n m r ⨯∈R B 的满秩分解为,,n r r r m r ,⨯⨯∈∈=R G R F FG B 则行反对称矩阵nm R B J B A ⨯∈⎪⎪⎭⎫ ⎝⎛=2r m -的满秩分解为 .-G F J F A m ⎪⎪⎭⎫ ⎝⎛=定理 2.3.2 (奇数行反对称矩阵)设n m r ⨯∈R B 的满秩分解为,n r r ,⨯⨯∈∈=R G R F FG B r m r 则行反对称矩阵nm r m R B J B A ⨯+∈⎪⎪⎪⎭⎫⎝⎛=)12(-0的满秩分解为.-0m G F J F A ⎪⎪⎪⎭⎫ ⎝⎛=定理 2.3.3(偶数列反对称矩阵) 设n m r ⨯∈R B 的满秩分解为,,n r r r m r ,⨯⨯∈∈=R G R F FG B 则列对称矩阵()n m n R BJ B A 2r ⨯∈-=的满秩分解为)(n GJ G F A -=.定理 2.3.4(奇数列反对称矩阵) 设n m r ⨯∈R B 的满秩分解为,FG B =,,n r r r m r ⨯⨯∈∈R G R F 则列对称矩阵())12(r 0+⨯∈-=n m n R BJ B A 的满秩分解为)0(n GJ G F A -=.下面我们来介绍另一类特殊矩阵——全对称矩阵中具有轴对称结构矩阵的满秩分解,同样地,有比较多的形式.2.4全对称矩阵中具有轴对称结构矩阵的满秩分解定理 2.4.1 (偶数行偶数列全对称矩阵) 设n m r ⨯∈R B 的满秩分解为,FG B =,,n r r r m r⨯⨯∈∈R G RF 则矩阵nm n mR BJ J BJBJ BA 22rm n ⨯∈⎪⎪⎭⎫ ⎝⎛=的满秩分解为 .(n )GJ G F J F A m ⎪⎪⎭⎫ ⎝⎛= 定理 2.4.2 (偶数行奇数列全对称矩阵) 设n m r ⨯∈R B 的满秩分解为,,,1r n r r r m r ,,⨯⨯⨯∈=∈∈=R F R G R F FG B ββα则矩阵)12(2+⨯∈⎪⎪⎭⎫ ⎝⎛=n m r n m m m n R BJ J J B J BJ BA αα的满秩分解为 ().n m GJ G F J F A β⎪⎪⎭⎫⎝⎛=定理 2.4.2 (奇数行偶数列全对称矩阵) 设n m r ⨯∈R B 的满秩分解为,r m r ,⨯∈=R F FG B ,n r r ⨯∈R G ,1r ,⨯∈=R G ααβ则矩阵n m r R J BJ BA 2)12(n m mn n BJ J B J ⨯+∈⎪⎪⎪⎭⎫ ⎝⎛=ββ的满秩分解为 ().n m GJ GF J F A ⎪⎪⎪⎭⎫⎝⎛=α定理 2.4.2 (奇数行奇数列全对称矩阵)设n m r ⨯∈R B 的满秩分解为,r m r ,⨯∈=R F FG B ,n r r ⨯∈R G ,,n 1r 1,⨯⨯∈∈=R R G βαβα则矩阵⎪⎪⎪⎭⎫ ⎝⎛=n m n 000BJ J B J J BJ BA mn ββ)12(12+⨯+∈n m r R )(的满秩分解为().0n m GJ G F J F A ⎪⎪⎪⎭⎫⎝⎛=α定理 2.4.2 (奇数行奇数列全对称矩阵)设n m r ⨯∈R B 的满秩分解为,r m r ,⨯∈=R F FG B ,n r r ⨯∈R G 1m 1r ⨯⨯∈∈=R R F αβαβ,,,则矩阵⎪⎪⎪⎭⎫⎝⎛=n m m n 000BJ J J B J BJ BA mαα)12(12+⨯+∈n m r R )(的满秩分解为 ().0n m GJ G F J F A β⎪⎪⎪⎭⎫⎝⎛=2.5广义延拓矩阵的满秩分解定理 2.5.1 (广义行延拓矩阵) 设n m r ⨯∈R B 的满秩分解为,r m r ,⨯∈=R F FG B ,n r r ⨯∈R G 则广义行延拓矩阵n k m r 1k 21),,;(⨯-∈=R P P P B R A Λ,的满秩分解为 .),,;(1k 21G P P P F R A -=Λ,定理 2.5.2 (广义列延拓矩阵) 设n m r ⨯∈R B 的满秩分解为,r m r ,⨯∈=R F FG B ,n r r ⨯∈R G 则广义列矩阵n m r 1k 21),,;(k R P P P B C A ⨯-∈=Λ,的满秩分解为 ).,,;(1k 21-=P P P G FC A Λ,3 矩阵的满秩分解的应用3.1 利用矩阵A 的满秩分解求广义逆矩阵广义逆矩阵概念早在1920年就被提出,但是没有受到人们的关注.至到1955年R.Penrose 通过线性方程组的研究来定义广义逆矩阵,这才受到关注. 3.1.1 利用矩阵A 的满秩分解求广义逆矩阵-A在这里首先介绍最一般的广义逆矩阵的概念,并利用矩阵的满秩分解来求解一个矩阵A 的广义逆矩阵.-A定义 ]6[1.1.1.3(广义逆矩阵-A )设n m ⨯∈C A ,若存在m n ⨯∈C G ,使得A AG =A则称G 是A 的广义逆矩阵,并记为.-=A G有了矩阵的满秩分解和广义逆矩阵-A 的定义,现在给出对矩阵A 利用矩阵的满秩分解求广义逆矩阵-A 的算法定理 3.1.1.1设n C A ⨯∈m r ,{}n m ,m in r rank <=A ,且存在可逆矩阵n n m C Q C P ⨯⨯∈∈,m 使得⎪⎪⎭⎫ ⎝⎛=000rI PAQ ,A 有满秩分解FG A =, 则有 .000,rP I Q A F G A ⎪⎪⎭⎫ ⎝⎛==----或 例 3.1.1.1 试利用矩阵的满秩分解求如下矩阵A 的一个广义逆矩阵-A ..111100011200⎪⎪⎪⎪⎪⎭⎫⎝⎛=A 解 显然2rank =A ,先求A 的满秩分解:.000000100011111100011200⎪⎪⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎪⎪⎭⎫⎝⎛=A取⎪⎪⎭⎫ ⎝⎛=100011G ,从而FG A F =⎪⎪⎪⎪⎪⎭⎫⎝⎛=,得11100120. 再求:,--G F.12145162111110210106112)(11⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==---HH F F F F⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛==--100210212002100101)(11-H H GG G G 于是.242-851-62-51-62-2211214516211110021021⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛---⋅⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛==---F G A 3.1.2 利用矩阵A 的满秩分解求M-P 广义逆矩阵+A接下来将介绍由Moore 和Penrose 研究出的M-P 广义逆,并研究利用矩阵满秩分解来求解一个矩阵A 的M-P 广义逆矩阵.+A定义]6[1.2.1.3(广义逆矩阵+A )设n m ⨯∈C A ,若存在m n ⨯∈C G ,使得⑴;A A =AG ⑵;G GAG =⑶;)(AG AG H =⑷;)(GA GA H =则称G 是A 的P M -广义逆矩阵,并记为.+=A G定理 3.1.2.2 设n C A ⨯∈m r ,且FG A =是A 的满秩分解,则有,)()(11H H H H B B B DD D G --=就是A 的一个P M -广义逆矩阵,+A 并且+A 是惟一的.特别地, 对于行满秩和列满值秩矩阵,我们有⑴设n m C F ⨯∈是一个行满秩矩阵,则有;)(1-+=H H FF F F ⑵设n m C G ⨯∈是一个列满秩矩阵,则有.)(1H H G G G G -+=例3.1.2.1 设矩阵A 为,55444411⎥⎦⎤⎢⎣⎡----=A 求A 的P M -广义逆矩阵.+A解 取[],5441,11=⎥⎦⎤⎢⎣⎡-=G F 则A FG A 是=的满秩分解,由引理可得[])11()1111(11-⎥⎦⎤⎢⎣⎡--==--+HH F F F F )(⎥⎦⎤⎢⎣⎡-=2121, [],544158154415441544111⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==--+)(H HGG G G于是==+++F G A ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎦⎤⎢⎣⎡-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1165291291116111652912911161212154415813.2 线性方程组的极小最小二乘问题在高等代数中,对于给定的矩阵n n ⨯∈C A ,向量n C b ∈,存在矩阵n n C G ⨯∈使得Gb x =是线性方程组b =Ax 有解的充要条件是1-=A G .同样的,对于相容线性方程组))(b (,b A R Ax ∈=的解与广义逆矩阵-A 也有类似结果:对于给定的矩阵n m ⨯∈C A ,对任何)(A R b ∈,存在矩阵m ⨯∈n C G 使得b G x =是线性方程组b =Ax 相容的充要条件是.-=A G 进而, 线性方程组b =Ax 相容的充要条件是.b b AA =-事实上,由上面得到的结论b A x -=是b =Ax 的解,于是.b b AA =-另外,令b b AA A b A x ===--00x ,则,这说明方程组b =Ax 有解即)(A R b ∈,故线性方程组b =Ax 相容.现在利用线性方程组b =Ax 的系数矩阵A 的广义逆矩阵-A 可以给出相容线性方程组b =Ax 的通解.由于b -A x =是相容线性方程组b =Ax 的一个特解,并根据非其次线性方程组的解的结构可以得到,b =Ax 的通解是由它的特解和齐次线性方程组0=Ax 的通解)(,n 为任意向量)(y y AA I x --=组成.定理 3.2.1 设矩阵n m ⨯∈C A ,则相容线性方程组b =Ax 的通解为)(,b n 为任意向量)(y y AA I A x ---+=.例 3.2.1 求线性方程组⎪⎩⎪⎨⎧=++=+=+103233x 3212131x x x x x x 的通解.解 因对 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=103b ,111032301A有2),(rank rank ==b A A ,方程组相容.先求-A 得:⎪⎪⎪⎭⎫ ⎝⎛-=-000101001A于是所给方程组的通解为33213123023y 1002003-0002-3b y y y yAA I A x ⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=-+=--)(现在,假设线性方程组b =Ax 是不相容的,即它是矛盾方程组.虽然它在一般意义下无解,但是在实际问题中所遇到的线性方程组都是不相容的.在这种情况下,实际应用要求我们找到一个近似解n 0C x ∈使得它的误差范数最小,即{}n C x A A ∈=,b -x min b -x 0并将这样的近似解称为不相容线性方程组的最小二乘解.然而,对于一般的不相容线性方程组的最小二乘解并不唯一,通常将其中范数最小二乘解称为极小最小二乘解,并且它是唯一的.定理 3.2.2对于给定的矩阵n m ⨯∈C A ,对任何)(A R b ∉,存在矩阵m ⨯∈n C G 使得b G x =是线性方程组b =Ax 相容的充要条件是,+=A G 且极小最小二乘解为b +=A x .例 3.2.2 求线性方程组⎪⎪⎩⎪⎪⎨⎧=++=+=+=++3642x 122x 0x 332x 3213131321x x x x x x 的极小最小二乘解.解 因对 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=3101b ,642202101321A 有3),(rank 2rank ==b A A ,而,所以所给方程组不相容.先求+A 得:⎪⎪⎪⎭⎫ ⎝⎛=+221148-4-22-1051-301A , 故方程组的极小最小二乘解为.3211013101221148-4-22-1051-3010⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛==+bA x参考文献[1] 程云鹏. 矩阵论[M]. 西安: 西北工业大学出版社, 2000: 220-225.[2] 魏洪增. 矩阵理论与方法[M]. 北京: 电子工业出版社, 2006: 250-280.[3] 蔺小林,蒋耀林. 酉对称矩阵的QR分解及其算法[J]. 计算机学报. 2005. 28: 817-822.[4] 邹红星,王殿军,戴琼海. 行(或列)对称矩阵的QR分解[J]. 中国科学. 2009. 32(9): 842-849.[5] 郭伟. 全对称矩阵的满秩分解及其Moore-Penrose逆[J]. 四川师范大学学报. 2009. 32(4): 454-457.[6] 许成峰,刘智秉. 广义延拓矩阵的QR分解[J]. 九江学院学报. 2009. 29(6): 78-78.[7]黄延祝,钟字铭,李正良. 矩阵理论[M]. 北京: 高等教育出版社, 2003: 182-208.致谢光阴似箭,日月如梭,转眼间我的大学生涯即将结束了。

几种特殊类型的矩阵

几种特殊类型的矩阵

A1
a 1 22
.
0
a 1 nn
下三角形矩阵
a 11
a 21
0 a
22
0 与上三角形 0 矩阵的性质
类似.
a n1
a n2
a nn
正交矩阵
定义 实数域上的方阵A如果满足AA = AA
=E, 则称A为正交矩阵.
例如
cos sin
sin cos
1 0 0 1
都是正交矩阵.
aa i2 j2
a a in jn
0(i
j,i,
j 1,2,n).
a 2 1j
a2 2j
a2 nj
1,
j
1,2,, n.
a1i
a 1
j
a a 2i 2 j
a a ni nj
0(i
j,i,
j
1,2,n).
例 判1别 1下113列2 矩1阵1122是否11231为,正交阵2. 919984
8 9 1
9 4
9
4
9 4
.
9
7
9

1
1 1
2
1 2 1
1 3 1 2
1 3 1 2 1
考察矩阵的 第一列和第 二列,
由于
1
1 2
1 2
1
1 3
1 2
0,
所以它不是正交矩阵.

2
1
9 8
8 9 1
4
9 4
9 9 9
4 9
4 9
7 9
由于
1
9 8
9
4 9
8 9 1
定义 方阵的非主对角线的元素全部为零,

几种特殊的矩阵

几种特殊的矩阵

b 2Ob n
a 2 b 2Oa n b n
《线性代数》(第四版)教学课件
首页 上一页 下一页 结束
(一)对角矩阵
对角矩阵
a 1 1
A a 2 2 O a n n
对角矩阵的性质
如果A B为同阶对角矩阵 则kA AB AB仍为同阶对角 矩阵
提示
a 1
b 1
a 1 b 1
a 2Oa n
b 2Ob n
a 2 b 2Oa n b n
《线性代数》(第四版)教学课件
首页 上一页 下一页 结束
(一)对角矩阵
对角矩阵
a 1 1
A a 2 2 O a n n
对角矩阵的性质
如果A B为同阶对角矩阵 则kA AB AB仍为同阶对角 矩阵
对称矩阵
对称矩阵A的元素关于主对角线对称 因此有ATA 对称矩阵的性质
数乘对称矩阵及同阶对称矩阵之和仍为对称矩阵 但对 称矩阵乘积未必对称
举例例 如 1 1 0 1 1 1 0 2 0 2 1 1 2 3 1 均 为 对 称 矩 阵
《线性代数》(第四版)教学课件
首页 上一页 下一页 结束
(四)三角形矩阵
上三角形矩阵 如果n阶矩阵A(aij)中元素满足条件 aij0 ij (i, j1, 2, , n)
则称A为n阶上三角形矩阵 即
a 1 1 a 1 2 L a 1 n A a 2 2 L O a a M 2 n n n
《线性代数》(第四版)教学课件
首页 上一页 下一页 结束
(二)数量矩阵
数量矩阵
a A a O a 数量矩阵的性质
以数量矩阵A左乘或右乘(如果可乘)一个矩阵B 其乘积
等于以数a乘矩阵B

几种特殊的矩阵

几种特殊的矩阵
几种特殊的矩阵
1. 零矩阵
几种特殊的矩阵
所有元素均为0的矩阵称为零矩阵,记作O, 如果要指明其行数与列数,则记为Om×n,即
注意:行(列)数不同的零矩阵是不同的.
几种特殊的矩阵
2. 行(列)矩阵
3. n阶方阵
几种特殊的矩阵
矩阵的行数与列数都为n时,称为n阶矩阵或n阶方阵. 对于n阶方阵
连接其左上角元素a11和右下角元素ann的连线称为矩阵A的 主对角线,位于主对角线上的元素a11,a22,…,ann称为矩阵A 的对角元.
注意:当m=n=1时,在逻辑上,我们把一阶方阵A=a视同 为普通的数a.
4. 对角阵
几种特殊的矩阵
除对角元以外,其余元素全为0的n阶方阵称为n阶对 角阵,记为:
几种特殊的矩阵
注意:当n阶对角阵Λ中对角元a11=a22=…=ann=a时, 则称之为数量矩阵.特别地,当a=1时,该数量矩阵称为 单位矩阵,一般记为En,在不引起混淆的情况下,简记 为E(也有部分教材将n阶单位矩阵记为In或I),即
几种特殊的(上)方元素全为0的n阶方阵称为上 (下)三角形矩阵.例如,
分别是3阶上三角形矩阵和4阶下三角形矩阵. 显然,对角阵既是上三角形矩阵,也是下三角形 矩阵,但反之则不然.
谢谢聆听

几种特殊矩阵与矩阵的分块

几种特殊矩阵与矩阵的分块

0
0 annbnn





: 记 为I或E。

:I
1
0
0 1
IA AI A , I n I,规定:A0 I
a 0
三、数量矩阵:Ann
0 a
Ann Bnl aBnl , Bmn Ann aBmn
四、三角形矩阵
a11 上 三 角 形 矩 阵 :A
注意: 1) 矩阵乘法一般不满足交换律,即:
AB BA
如果对A, B有AB BA,则称A与B是可交换的。
2) AB 0一般不能得到A 0或B 0。 3) AB AC,且A 0,但一般不能得到B C.
4) A, B为同阶方阵,则AB A B . 推 广 :A1 A2 As A1 A2 As
矩阵的转置 ( AB:)T BT AT
§2.3 几种特殊的矩阵
对于一个方阵:
a11 a12 A a21 a22
aபைடு நூலகம்1 an2
a1n
a2n
ann
副对角线 主对角线
上三角阵、下三角阵、对角阵
a11 a12 a1n

三角阵:
0
a22
a2n
0
0
ann
a11 0 0
0 1 b
A11 E
O A22 ,
A11
a 0
1 a
O
0 0
0 0
E
1 0
0 1
A22
b 1
1 b
a 1 0 0
A
0 1
a 0
0 b
0 1
A1
A2
A3
A4 ,
0 1 1 b

特殊矩阵,对称矩阵,三角矩阵,稀疏矩阵的特点

特殊矩阵,对称矩阵,三角矩阵,稀疏矩阵的特点

特殊矩阵,对称矩阵,三角矩阵,稀疏矩阵的特点
特殊矩阵
•特点:
1.特殊矩阵是指满足某种特定规律的矩阵。

2.具有特殊结构,使得其在存储和计算上具有一定的优势。

3.常见的特殊矩阵有对角矩阵、单位矩阵、零矩阵等。

•对称矩阵:
1.特点:
•对称矩阵的元素关于主对角线对称。

•可以看作是自己的转置矩阵。

•对称矩阵是实数域上的矩阵,但也可以存在复数域上
的情况。

2.应用:
•在对称正定矩阵的特殊情况下,可以用于优化算法等
领域。

•在图像处理中,对称矩阵可以用于平滑图像。

•三角矩阵:
1.特点:
•三角矩阵的非零元素只出现在主对角线和其上方或下
方的元素中。

•可分为上三角矩阵和下三角矩阵。

2.应用:
•三角矩阵在线性方程组的求解中具有较高的计算效率。

•在图像处理中,三角矩阵可以用于图像变换等操作。

•稀疏矩阵:
1.特点:
•稀疏矩阵是指大部分元素为零的矩阵。

•非零元素的个数远小于矩阵的元素总数。

2.应用:
•稀疏矩阵的存储和计算可以节省大量的内存和计算资
源。

•在图论、网络分析等领域中经常使用稀疏矩阵进行数
据表示和计算。

以上所列举的四类矩阵都具有一定的特点和应用场景。

它们在不
同领域的算法和模型中发挥着重要的作用,有助于提高计算效率和节
省资源消耗。

了解并熟练运用这些特殊矩阵,对于一个资深的创作者来说,将会是一项重要的技能。

初中数学知识点矩阵的特殊类型与性质

初中数学知识点矩阵的特殊类型与性质

初中数学知识点矩阵的特殊类型与性质矩阵作为初中数学的一个重要知识点,是一种方阵,由行和列所组成。

在矩阵的学习中,我们不仅需要了解基本的矩阵运算,还需要了解矩阵的特殊类型和性质。

本文将重点讨论初中数学知识点矩阵的特殊类型与性质。

一、方阵与非方阵1. 方阵是指行数等于列数的矩阵,形如n×n。

例如,3×3、4×4和5×5的矩阵都是方阵。

方阵在求逆、求行列式等运算中具有特殊的性质,是矩阵运算的基础。

2. 非方阵是指行数不等于列数的矩阵,形如m×n。

例如,2×3、3×4和4×5的矩阵都是非方阵。

二、对角矩阵1. 对角矩阵是指除了主对角线上的元素外,其余元素均为零的矩阵。

对角矩阵的主对角线上的元素称为对角元素。

2. 对角矩阵的特殊性质是,对角元素之外的所有元素都为零。

这使得对角矩阵在矩阵运算中具有一些简化的特点。

例如,对角矩阵的乘法运算只需要对对角元素进行相应的运算,其他元素都为零,可以大大简化计算。

三、单位矩阵1. 单位矩阵是指主对角线上的元素均为1,其余元素均为零的对角矩阵。

单位矩阵通常用符号I表示。

2. 单位矩阵的特殊性质是,单位矩阵乘以任意矩阵得到的结果还是原来的矩阵。

即对于任意矩阵A,有AI=IA=A。

四、零矩阵1. 零矩阵是指所有元素都为零的矩阵,通常用符号O表示。

零矩阵的行数和列数可以是任意值。

2. 零矩阵的特殊性质是,任何矩阵与零矩阵进行加法运算的结果都是原来的矩阵。

即对于任意矩阵A,有A+O=O+A=A。

五、上三角矩阵和下三角矩阵1. 上三角矩阵是指主对角线以下的元素都为零的矩阵。

例如,3×3的上三角矩阵形如:a b c0 e f0 0 i2. 下三角矩阵是指主对角线以上的元素都为零的矩阵。

例如,3×3的下三角矩阵形如:a 0 0d e 0g h i六、转置矩阵1. 转置矩阵是指将矩阵的行和列互换得到的新矩阵。

1-3常见特殊矩阵

1-3常见特殊矩阵

A1-1=diag(1,…,1,1/a,1,…,1);
A2-1=I-beiejT;
A3-1=A3。
分块形式初等变换矩阵。
例1 设A∈Cm×n,B∈Cn×m ,证明:AB和BA的非 零特征值完全相同,而且重数也相同。此ห้องสมุดไป่ตู้还有 det(Im+AB)=det(In+BA)。
3. 对称矩阵
(a) 实对称矩阵和复Hermite矩阵
追求人生的美好!
我们的共同目标!
(b) 正定矩阵
设A∈SRn×n,如果对任意x∈Rn都有xTAx>0,则称 A为对称正定 (symmetric positive definite)矩阵。 记做A>0。 对称正定矩阵的特征值都是正数。 下列条件都等价: 1. A是正定矩阵; 2. A的所有顺序主子式都大于0; 3. 存在非奇异矩阵C,使得A=CCT; 4. A对称,且所有特征值都是正数。
把正定矩阵定义中的xTAx>0改成xTAx<0,则称A 是负定 (negative definite)矩阵。记做A<0。 负定矩阵的特征值都是负数。
设A∈SRn×n,如果对任意x∈Rn有xTAx≥(≤)0,则 称A为半正(负)定 (semi positive/negative definite) 矩阵,记做A≥(≤)0。
设A∈Rn×n,如果满足A=AT,则称A为对称矩阵 (symmetric matrix)。记做A∈SRn×n。 对称矩阵的特征值都是实数。
设A∈Rn×n,如果满足A=-AT,则称A为反对称矩 阵(skew-symmetric matrix)。 反对称矩阵的特征值只能是纯虚数或0。
设A∈Cn×n,如果满足A=A*,则称A为Hermite 矩 阵(Hermitian matrix);如果满足A=-A*,则称A为 反Hermite 矩阵(skew-Hermitian matrix)。

1-3 常见特殊矩阵

1-3 常见特殊矩阵

把正定矩阵定义中的x 改成x 把正定矩阵定义中的 TAx>0改成 TAx<0,则称 改成 ,则称A 矩阵。 是负定 (negative definite)矩阵。记做 矩阵 记做A<0。 。 负定矩阵的特征值都是负数 负数。 负定矩阵的特征值都是负数。
× 如果对任意x∈ 设A∈SRn×n,如果对任意 ∈Rn有xTAx≥(≤)0,则 ∈ , 称A为半正 负)定 (semi positive/negative definite) 为半正(负 定 矩阵,记做A≥(≤)0。 矩阵,记做 。
4. 正交矩阵
设Q∈Rn×n,如果 TQ=QQT=I,则称 为正交 ∈ × 如果Q ,则称Q为 (orthogonal)矩阵。 矩阵。 矩阵 正交矩阵一定可逆, 正交矩阵一定可逆,且Q-1=QT。 是正交矩阵, 设Q1,Q2是正交矩阵,则Q1-1, Q1Q2, diag(Q1,Q2)也 也 都是正交矩阵。 都是正交矩阵。 1. Givens变换: 变换: 变换 A = c s , c 2 + s 2 = 1, A = cosθ sinθ . − s c − sinθ cosθ 可以通过一系列的Givens变换把任意非零向量变 可以通过一系列的 变换把任意非零向量变 的倍数。 成e1的倍数。
1.3 常见特殊矩阵
1. 上三角矩阵 2. 初等变换矩阵 3. 对称矩阵 4. 正交矩阵 5. 内积空间
我们尽量采用如下记号: 我们尽量采用如下记号: 用大写英文字母表示矩阵, 用大写英文字母表示矩阵,如A,B,… 用小写英文字母加上下标表示矩阵的元素,如 用小写英文字母加上下标表示矩阵的元素, a11,b2n,… 用小写英文字母表示向量, 用小写英文字母表示向量,如x,y,z,… 用小写希腊字母表示标量, 用小写希腊字母表示标量,如α,β,λ,µ,…

第6章 几类特殊矩阵

第6章 几类特殊矩阵
k 1
n
,则
( A)
.
推论 4 设 A (aij ) C
n
nn
,又 x1 ,
x 2 , L , x n 为任意 n 个正
a x ij j j 1 数,设 1 max , xi xj n 1 max a ij xi i 1
j 1 j t
n
两边除以 x t 并取模得
| att | | atj |
j 1 j t
n
xj xt
| atj | Rt (A) ,
j 1 j t
n
所以 S t ,即 S S i .
i 1
n
例 3 设 A (aij ) C
nn
定义 2 设 A O 为不可约 n 阶矩阵, k 为 A 的模 令 等于 ( A) 的特征值的个数。若 k 1 时,则称 A 为本原矩 阵,若 k
1 时,则称 A 为具有指标 k 的循环矩阵
正矩阵是本原矩阵,但本原矩阵未必都是正矩阵
本原矩阵的性质: 定理 6 阵,则 (1) (2) (3) 设 A , B 均为 n 阶非负矩阵,且 A 是本原矩
设A
O 为 n 阶矩阵,则
A 有一非负特征值等于它的谱半径,此外,这特征值为
正,除非 A 为可约并且 A 的法式为严格上三角矩阵
(2) 对应于 ( A) 有特征向量 x
0
(3) 当 A 的任一元素增加时, ( A) 不减少
定理 4 则 ( B) 设 A 和 B 为两个 n 阶矩阵,并且 O

( A) mi n( 1 , 1 ) .

例4
0 1 0 设B 4 1 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五节 几类特殊矩阵
• 对角矩阵 • 三角矩阵 • 对称矩阵和反对称矩阵
一、对角矩阵
• 性质1 同阶对角矩阵的和仍为对角矩阵
• 性质2 数与对角矩阵的乘积仍为对角矩阵
• 性质3 同阶对角矩阵的乘积仍为对角矩阵

且他们相乘满足乘法交换律
• 性质4 对角矩阵与其转置矩阵相等
• 性质5 对角矩阵可逆的充分必要条件是主
• 性质1 对称(反对称)矩阵的和、差仍为对称 (反对称)矩阵。
• 性质2 数乘对称(反对称)矩阵仍为对称(反 对称)矩阵。
• 性质3 奇数阶反对称矩阵的行列式等于零。
对角线上的元素全不为零
• 性质6 n阶数量矩阵能够与所有的n阶方阵
•阶上(下)三角形矩阵的和、差 以及乘积矩阵仍为同阶的上(下)三角 形矩阵。
三、对称矩阵和反对称矩阵
• 定义 如果矩阵与其转置矩阵相等,则称该矩 阵为对称矩阵。即 A AT
• 定义 如果矩阵与其转置矩阵的负矩阵相等, 则称该矩阵为反对称矩阵。即 A AT
相关文档
最新文档