matlab一些图像处理函数 (1)

合集下载

MATLAB图像处理函数大全

MATLAB图像处理函数大全

Matlab图像处理函数大全目录图像增强 (3)1. 直方图均衡化的Matlab 实现 (3)1.1 imhist 函数 (3)1.2 imcontour 函数 (3)1.3 imadjust 函数 (3)1.4 histeq 函数 (4)2. 噪声及其噪声的Matlab 实现 (4)3. 图像滤波的Matlab 实现 (4)3.1 conv2 函数 (4)3.2 conv 函数 (5)3.3 filter2函数 (5)3.4 fspecial 函数 (6)4. 彩色增强的Matlab 实现 (6)4.1 imfilter函数 (6)图像的变换 (6)1. 离散傅立叶变换的Matlab 实现 (6)2. 离散余弦变换的Matlab 实现 (7)2.1. dct2 函数 (7)2.2. dict2 函数 (8)2.3. dctmtx函数 (8)3. 图像小波变换的Matlab 实现 (8)3.1 一维小波变换的Matlab 实现 (8)3.2 二维小波变换的Matlab 实现 (9)图像处理工具箱 (11)1. 图像和图像数据 (11)2. 图像处理工具箱所支持的图像类型 (12)2.1 真彩色图像 (12)2.2 索引色图像 (13)2.3 灰度图像 (14)2.4 二值图像 (14)2.5 图像序列 (14)3. MATLAB图像类型转换 (14)4. 图像文件的读写和查询 (15)4.1 图形图像文件的读取 (15)4.2 图形图像文件的写入 (16)4.3 图形图像文件信息的查询imfinfo()函数 (16)5. 图像文件的显示 (16)5.1 索引图像及其显示 (16)5.2 灰度图像及其显示 (16)5.3 RGB 图像及其显示 (17)5.4 二进制图像及其显示 (17)5.5 直接从磁盘显示图像 (18)图像处理函数 (18)图像处理函数详解——strel (18)图像处理函数详解——roipoly (19)图像处理函数详解——roifilt2 (20)图像处理函数详解——roifill (20)图像处理函数详解——roicolor (21)matlab图像处理函数详解——rgb2gray (22)Matlab图像处理函数:regionprops (22)图像处理函数详解——padarray (26)图像处理函数详解——nlfilter (27)图像处理函数详解——montage (27)函数详解——mat2gray (28)图像处理函数详解——imclose (29)图像处理函数详解——imopen (29)图像处理函数详解——imerode (30)图像处理函数详解——imdilate (30)图像处理函数详解——imresize (31)图像处理函数详解——imnoise (32)图像处理函数详解——imhist (32)图像处理函数详解——imfinfo (33)图像处理函数详解——imcomplement (34)图像处理函数详解——imapprox (35)图像处理函数详解——imadjust (35)图像处理函数详解——imadd (36)图像处理函数详解——im2uint8 (36)图像处理函数详解——im2bw (37)图像处理函数详解——histeq (37)图像处理函数详解——dither (38)图像处理函数详解——conv2 (38)图像处理函数详解——colfilt (39)图像处理函数详解——bwperim (39)图像处理函数详解——bwlabel (40)图像处理函数详解——bwareaopen (41)图像增强1. 直方图均衡化的Matlab 实现1.1 imhist 函数功能:计算和显示图像的色彩直方图格式:imhist(I,n)imhist(X,map)说明:imhist(I,n) 其中,n 为指定的灰度级数目,缺省值为256;imhist(X,map) 就算和显示索引色图像 X 的直方图,map 为调色板。

彩色图像处理MATLAB函数简介

彩色图像处理MATLAB函数简介

thresholding.
im2double - Convert image array to double precision.
1 函数简介
ind2gray - Convert indexed image to intensity image.
ind2rgb
- Convert indexed image to RGB image
rgb2ycbcr - Convert RGB values to YCBCR color
space.
whitepoint - Returns XYZ values of standard
illuminants.
xyz2double - Convert XYZ color values to double.
grayslice - Create indexed image from intensity image
by thresholding.
graythresh - pute global image threshold using
Otsu's method.
im2bw
- Convert image to binary image by
space transform structure.
ntsc2rgb - Convert NTSC values to RGB color space.
1 函数简介
rgb2hsv - Convert RGB values to HSV color space
MATLAB Toolbox .
rgb2ntsc - ConvБайду номын сангаасrt RGB values to NTSC color space.

matlab图像处理之image和imagesc函数

matlab图像处理之image和imagesc函数

matlab图像处理之image和imagesc函数imshow主要⽤于调⽤图像索引,⽐如:imshow(X,map)其功能等同于:image(X) colormap(map)但是,imshow的功能要强⼤⼀些,⽐如⽤于灰度图像,RGB图像,⼆进制图像,都可以应⽤。

imagesc属于图像缩放函数具体说⼀些例⼦:要显⽰⼀副灰度图像,可以调⽤函数 imshow 或 imagesc (即imagescale,图像缩放函数)(1) imshow 函数显⽰灰度图像使⽤ imshow(I) 或使⽤明确指定的灰度级书⽬:imshow(I,32)由于Matlab⾃动对灰度图像进⾏标度以适合调⾊板的范围,因⽽可以使⽤⾃定义⼤⼩的调⾊板。

其调⽤格式如下:imshow(I,[low,high])其中,low 和 high 分别为数据数组的最⼩值和最⼤值。

(2) imagesc 函数显⽰灰度图像下⾯的代码是具有两个输⼊参数的 imagesc 函数显⽰⼀副灰度图像imagesc(1,[0,1]);colormap(gray);imagesc 函数中的第⼆个参数确定灰度范围。

灰度范围中的第⼀个值(通常是0),对应于颜⾊映象表中的第⼀个值(颜⾊),第⼆个值(通常是1)则对应与颜⾊映象表中的最后⼀个值(颜⾊)。

灰度范围中间的值则线型对应与颜⾊映象表中剩余的值(颜⾊)。

在调⽤ imagesc 函数时,若只使⽤⼀个参数,可以⽤任意灰度范围显⽰图像。

在该调⽤⽅式下,数据矩阵中的最⼩值对应于颜⾊映象表中的第⼀个颜⾊值,数据矩阵中的最⼤值对应于颜⾊映象表中的最后⼀个颜⾊值。

5.3 RGB 图像及其显⽰(1) image(RGB)不管RGB图像的类型是double浮点型,还是 uint8 或 uint16 ⽆符号整数型,Matlab都能通过 image 函数将其正确显⽰出来。

RGB8 = uint8(round(RGB64×255)); %将 double 浮点型转换为 uint8 ⽆符号整型RGB64 = double(RGB8)/255; %将 uint8 ⽆符号整型转换为 double 浮点型RGB16 = uint16(round(RGB64×65535)); %将 double 浮点型转换为 uint16 ⽆符号整型RGB64 = double(RGB16)/65535; %将 uint16 ⽆符号整型转换为 double 浮点型(2) imshow(RGB) 参数是⼀个 m×n×3 的数组5.4 ⼆进制图像及其显⽰(1) imshow(BW)在 Matlab 7.0 中,⼆进制图像是⼀个逻辑类,仅包括 0 和 1 两个数值。

imresize函数的用法

imresize函数的用法

imresize函数的用法一、介绍imresize函数是MATLAB中的一种图像处理函数,用于对图像进行缩放操作。

它可以将图像按照指定的比例进行缩小或放大,并且可以选择不同的插值算法来实现缩放操作。

二、语法imresize(A, scale, method)其中,A表示要进行缩放的图像,scale表示缩放比例,method表示插值算法。

三、参数说明1. A:要进行缩放的图像,可以是灰度图像或彩色图像。

2. scale:缩放比例,可以是一个标量或者一个二元组。

如果scale是一个标量,则表示将原始图像等比例缩小或放大;如果scale是一个二元组,则第一个元素表示在水平方向上的缩放比例,第二个元素表示在垂直方向上的缩放比例。

3. method:插值算法,可以选择以下几种:(1)nearest:最近邻插值法。

该方法会找到离目标点最近的已知点,并将其值作为目标点的值。

(2)bilinear:双线性插值法。

该方法会根据目标点周围四个已知点之间的距离和位置关系来计算目标点的值。

(3)bicubic:双三次插值法。

该方法会根据目标点周围16个已知点之间的距离和位置关系来计算目标点的值。

四、示例以下是一个简单的示例,演示如何使用imresize函数对图像进行缩放操作:```matlab% 读取原始图像I = imread('lena.jpg');% 将原始图像缩小一半J = imresize(I, 0.5);% 将原始图像放大两倍,并使用双线性插值法K = imresize(I, 2, 'bilinear');```在上面的示例中,首先使用imread函数读取了一张名为lena.jpg的图像,并将其存储在变量I中。

然后,使用imresize函数将该图像缩小了一半,并将结果存储在变量J中。

最后,使用imresize函数将该图像放大了两倍,并选择了双线性插值法作为插值算法,并将结果存储在变量K中。

常用图像处理函数

常用图像处理函数

一. 读写图像文件1. imreadimread函数用于读入各种图像文件,如:a=imread('e:\w01.tif')注:计算机E盘上要有w01相应的.tif文件。

2. imwriteimwrite函数用于写入图像文件,如:imwrite(a,'e:\w02.tif',’tif’)3. imfinfoimfinfo函数用于读取图像文件的有关信息,如:imfinfo('e:\w01.tif')二. 图像的显示1. imageimage函数是MATLAB提供的最原始的图像显示函数(主要彩色显示图象),如:a=[1,2,3,4;4,5,6,7;8,9,10,11,12];image(a);2. imshowimshow函数用于灰度图像文件的显示,如:i=imread('e:\w01.tif');imshow(i);3. colorbarcolorbar函数用显示图像的颜色条。

通常,颜色映象进行过调节,把数据从最小扩展到最大,也就是说整个颜色映象都用于绘图。

有时也许想改变颜色使用的方法。

函数caxis代表颜色轴,因为颜色增加了另一个维数,它允许对数据范围的一个子集使用整个颜色映象或者对数据的整个集合只使用当前颜色映象的一部分。

[cmin,cmax]=caxis返回映射到颜色映象中第一和最后输入项的最小和最大的数据。

它们通常被设成数据的最小值和最大值。

比如,函数mesh(peaks) 会画出函数peaks的网格图,并把颜色轴caxis设为[-6.5466,8.0752],即Z的最小值和最大值。

这些值之间的数据点,使用从颜色映象中经插值得到的颜色。

如:i=imread('e:\w01.tif');imshow(i);colorbar;4 .figurefigure函数用于设定图像显示窗口,如:figure(1);/figure(2);5.imagesc(a); caxis([-3 8]) ; colorbar;标尺标度从-3,到8 显示标度尺。

MATLAB图像处理函数大全

MATLAB图像处理函数大全

Matlab数字数字图像处理函数汇总:1、数字数字图像的变换①fft2:fft2函数用于数字数字图像的二维傅立叶变换,如:i=imread('104_8.tif'); j=fft2(i);②ifft2::ifft2函数用于数字数字图像的二维傅立叶反变换,如:i=imread('104_8.tif');j=fft2(i);k=ifft2(j);2、模拟噪声生成函数和预定义滤波器①imnoise:用于对数字数字图像生成模拟噪声,如:i=imread('104_8.tif');j=imnoise(i,'gaussian',0,0.02);%模拟高斯噪声②fspecial:用于产生预定义滤波器,如:h=fspecial('sobel');%sobel水平边缘增强滤波器h=fspecial('gaussian');%高斯低通滤波器h=fspecial('laplacian');%拉普拉斯滤波器h=fspecial('log');%高斯拉普拉斯(LoG)滤波器h=fspecial('average');%均值滤波器2、数字数字图像的增强①直方图:imhist函数用于数字数字图像的直方图显示,如:i=imread('104_8.tif');imhist(i);②直方图均化:histeq函数用于数字数字图像的直方图均化,如:i=imread('104_8.tif');j=histeq(i);③对比度调整:imadjust函数用于数字数字图像的对比度调整,如:i=imread('104_8.tif');j=imadjust(i,[0.3,0.7],[]);④对数变换:log函数用于数字数字图像的对数变换,如:i=imread('104_8.tif');j=double(i);k=log(j);⑤基于卷积的数字数字图像滤波函数:filter2函数用于数字数字图像滤波,如:i=imread('104_8.tif');h=[1,2,1;0,0,0;-1,-2,-1];j=filter2(h,i);⑥线性滤波:利用二维卷积conv2滤波, 如:i=imread('104_8.tif');h=[1,1,1;1,1,1;1,1,1];h=h/9;j=conv2(i,h);⑦中值滤波:medfilt2函数用于数字数字图像的中值滤波,如:i=imread('104_8.tif');j=medfilt2(i);⑧锐化(1)利用Sobel算子锐化数字数字图像, 如:i=imread('104_8.tif');h=[1,2,1;0,0,0;-1,-2,-1];%Sobel算子j=filter2(h,i);(2)利用拉氏算子锐化数字数字图像, 如:i=imread('104_8.tif');j=double(i);h=[0,1,0;1,-4,0;0,1,0];%拉氏算子k=conv2(j,h,'same');m=j-k;3、数字数字图像边缘检测①sobel算子如:i=imread('104_8.tif');如有帮助,欢迎支持。

MATLAB 图像处理命令使用

MATLAB 图像处理命令使用

MATLAB 图像处理命令使用1.MATLAB中图像处理的一些简单函数A、imreadimread函数用于读入各种图像文件,其一般的用法为[X,MAP]=imread(‘filename’,‘fmt’)其中,X,MAP分别为读出的图像数据和颜色表数据,fmt为图像的格式,filename为读取的图像文件(可以加上文件的路径)。

例:[X,MAP]=imread(’flowers.tif’,’tif’);比较读取二值图像,灰度图像,索引图像,彩色图像的X和MAP的特点,可以利用size 函数用来显示数组的维数,了解数据的特点。

B=size(a) 返回数组a 的维数。

B、imwriteimwrite函数用于输出图像,其语法格式为:imwrite(X,map,filename,fmt)imwrite(X,map,filename,fmt)按照fmt指定的格式将图像数据矩阵X和调色板map写入文件filename。

C、imfinfoimfinfo函数用于读取图像文件的有关信息,其语法格式为imfinfo(filename,fmt)imfinfo函数返回一个结构info,它反映了该图像的各方面信息,其主要数据包括:文件名(路径)、文件格式、文件格式版本号、文件的修改时间、文件的大小、文件的长度、文件的宽度、每个像素的位数、图像的类型等。

2.MATLAB中图像文件的显示imshowimshow函数是最常用的显示各种图像的函数,其语法如下:imshow(X,map)其中X是图像数据矩阵,map是其对应的颜色矩阵,若进行图像处理后不知道图像数据的值域可以用[]代替map。

(1)二进制(二值)图像显示方法,在MATLAB中一幅二值图像是uint8或双精度的,该矩阵仅包含0和1。

如果希望工具箱中的函数能将图像理解为二进制的,那么所有数据都要是逻辑数据,必须对其进行设置(将所有数据标志均设置on).可以对数据利用“~”取反操作实现图像逆转即黑白反色。

Matlab中图像处理常用函数的用法

Matlab中图像处理常用函数的用法

Matlab中常见函数的用法1 size()函数1)s=size(A),当只有一个输出参数时,返回一个行向量,该行向量的第一个元素时矩阵的行数,第二个元素是矩阵的列数。

2)[r,c]=size(A),当有两个输出参数时,size函数将矩阵的行数返回到第一个输出变量r,将矩阵的列数返回到第二个输出变量c。

3)size(A,n)如果在size函数的输入参数中再添加一项n,并用1、2或者3为n赋值,则 size将返回矩阵的行数或列数。

其中r=size(A,1)该语句返回的时矩阵A的行数, c=size(A,2) 该语句返回的时矩阵A的列数。

如果A为一个二维数组,则可以将其看成一个第三维为1的数组,即size(A,3)的返回值为1。

2 padarray()函数B = padarray(A,padsize,padval,direction)A为输入图像,B为填充后的图像,padsize给出了给出了填充的行数和列数,通常用[r c]来表示。

padval和direction分别表示填充方法和方向。

它们的具体值和描述如下:Padval选项:'symmetric'表示图像大小通过围绕边界进行镜像反射来扩展;'replicate'表示图像大小通过复制外边界中的值来扩展;'circular'图像大小通过将图像看成是一个二维周期函数的一个周期来进行扩展。

Direction选项:'pre'表示在每一维的第一个元素前填充;'post'表示在每一维的最后一个元素后填充;'both'表示在每一维的第一个元素前和最后一个元素后填充,此项为默认值。

若参量中不包括direction,则默认值为'both';若参量中不包含padval,则默认用0来填充。

若参量中不包括任何参数,则默认填充为零且方向为'both'。

matlab图像处理教程1

matlab图像处理教程1

基本概念一点通从理论上讲,图像是一种二维的连续函数,然而在计算机上对图像进行数字处理的时候,首先必须对其在空间和亮度上进行数字化,这就是图像的采样和量化的过程。

空间坐标(x,y)的数字化称为图像采样,而幅值数字化称为灰度级量化。

对一幅图像采样时,若每行(横向)采样数为M,每列(纵向)采样数为N,则图像大小为M*N个像素,f(x,y)表示点(x,y) 处的灰度值,则F(x,y)构成一个M*N 实数矩阵****************************经验分享:“像素”的英文为“pixel”,它是“picture”和“element”的合成词,表示图像元素的意思。

我们可以对“像素”进行如下理解:像素是一个面积概念,是构成数字图像的最小单位。

****************************把采样后所得的各像素灰度值从模拟量到离散量的转换称为图像灰度的量化。

量化是对图像幅度坐标的离散化,它决定了图像的幅度分辨率。

量化的方法包括:分层量化、均匀量化和非均匀量化。

分层量化是把每一个离散样本的连续灰度值只分成有限多的层次;均匀量化是把原图像灰度层次从最暗至最亮均匀分为有限个层次,如果采用不均匀分层就称为非均匀量化。

当图像的采样点数一定时,采用不同量化级数的图像质量不一样。

量化级数越多,图像质量越好;量化级数越少,图像质量越差。

量化级数小的极端情况就是二值图像。

****************************经验分享:“灰度”可以认为是图像色彩亮度的深浅。

图像所能够展现的灰度级越多,也就意味着图像可以表现更强的色彩层次。

如果把黑——灰——白连续变化的灰度值量化为256个灰度级,灰度值的范围为0~255,表示亮度从深到浅,对应图像中的颜色为从黑到白。

****************************因此,对数字图像进行处理,也就是对特定的矩阵进行处理。

在C语言中,对M×N数字图像处理的核心代码如下:for (j=1;j<N+1;j++)for(i=1;i<M+1;i++){对I(i,j)的具体运算};在Matlab中,对M×N数字图像处理的核心代码如下:for i=1:Nfor j=1:M对I(i,j)的具体运算endend一幅数字图像可以用一个矩阵来表示,对数字图像进行处理,实质上就是对特定的图像矩阵进行变换的过程,因此,图像变换是数字图像处理技术的基础。

matlab图像处理函数大全

matlab图像处理函数大全

matlab图像处理函数大全Matlab是一种强大的科学计算软件,广泛应用于各个领域,包括图像处理。

在Matlab中,有许多内置的图像处理函数,可以帮助我们实现各种图像处理任务。

本文将介绍一些常用的Matlab图像处理函数,帮助您更好地理解和运用这些函数。

1. imread函数imread函数用于读取图像文件,并将其存储为Matlab的图像矩阵。

它可以读取多种图像格式,如JPEG、PNG、BMP等。

例如,可以使用以下代码读取名为"image.jpg"的图像文件:```matlabimage = imread('image.jpg');```2. imshow函数imshow函数用于显示图像。

它可以接受一个图像矩阵作为输入,并将其显示在Matlab的图像窗口中。

例如,可以使用以下代码显示之前读取的图像:```matlabimshow(image);```3. imresize函数imresize函数用于调整图像的大小。

它可以接受一个图像矩阵和目标大小作为输入,并返回调整大小后的图像矩阵。

例如,可以使用以下代码将图像调整为200x200的大小:```matlabresized_image = imresize(image, [200, 200]);```4. rgb2gray函数rgb2gray函数用于将彩色图像转换为灰度图像。

它可以接受一个彩色图像矩阵作为输入,并返回一个灰度图像矩阵。

例如,可以使用以下代码将彩色图像转换为灰度图像:```matlabgray_image = rgb2gray(image);```5. imadjust函数imadjust函数用于调整图像的对比度和亮度。

它可以接受一个灰度图像矩阵和目标对比度和亮度范围作为输入,并返回调整后的图像矩阵。

例如,可以使用以下代码增加图像的对比度和亮度:```matlabadjusted_image = imadjust(gray_image, [0.2, 0.8], [0, 1]);```6. imfilter函数imfilter函数用于对图像进行滤波操作。

matlab图像处理-常用函数列表.docx

matlab图像处理-常用函数列表.docx

附录MATLAB图像处理工具箱函数表1通用函数函数功能语法colorbar 显示颜色条colorbar colorbar(.../peer\axes_handle) colorbar(axes_handle) colorba^location1) colorbar(.../PropertyName*,property value) cbar_axes = colorbar(…)getimage 从坐标轴取得图像数据A = getimage(h)[x,y,A] = getimage(h) [...,A,flag] = getimage(h) [...]=getimageimage 创建并显示图像对象image(C)image(x,y,C) image(.../PropertyName\Property Value,...) image(,PropertyName\Property Value,...) Formal syntax - PN/PV onlyhandle = image(…)imagesc 按图像显示数据矩阵imagesc(C) imagesc(x,y,C) imagesc(…Qims) h =imagesc(...)imshow 显示图像imshow(I,n) imshow(IJlow high]) imshow(BW) imshow(X,map)imshow(RGB)imsho w(…,display_option) imshow(x,yA …) imshow filename h = imshow(…)imview 利川图像浏览器显示图像imview(I)imview(RGB)imview(X,map)imview(I,range) imview(filename)imview(.../InitialMagnification\initial_mag) h = imview(…)imview close allmontage在矩形框中同时显示多帧图像montage(I) montage(BW) montage(X,map)montage(RGB) h = montage(.^)immovie 创建多帧索引色图像的电影动画mov = immovie(X,map)mov = immovie(RGB)subimage 在一个图形中显示多个图像,结合函数subplot使用subimage(X.map) subimage(I) subimage(BW)subimage(RGB) subimage(x,y^..) h =subimage(…)truesize 调整图像显示尺寸truesize(fig,[mrows mcols])truesize(fig)wrap 将图像显示到纹理映射农面warp(X.map) warp(I5n) warp(BW) warp(RGB)warp(z,...) warp(x,y,z,…) h = warp(...)zoom onzoom offzoom outzoom resetzoom 缩放图像或图形zoomzoom xonzoom yon zoom(factor) zoom(fig, option)表2图像文件I/O函数函数功能语法imfinfo 返回图像文件信息info = imfinfo(filename5fmt)info = imfinfo(filename)imread 从图像文件中读取图像A = imread(filename,fmt)[X,map] = imread(filename,fmt) [...]=imread(filename)[...]=imread(URL,...)[…]=imread(...,idx)(CUR, GIF, ICO, and TIFF only)=imread(..., 'PixelRegion', { ROWS, COLS )) (TIFF only)[...]=imread(.../frames\idx) (GIF only) [...]=imread(...,ref) (HDF only) [...]=imread(.../BackgroundColor\BG) (PNG only)[A,map,alpha] = imread(…)(ICO, CUR, and PNG only)imwrite 把图像写入图像文件中imwrite(A,filename,fmt)imwrite(X,map,filename,fmt)i m write(...,filename)imwrite(…,Param 1 ,Vall f aram2,Val2 …)表3空间变换函数函数功能语法findbounds 为空间变换寻找输出边界outbounds = findbounds(TFORM,inbounds) fliptform切换空间变换结构的输入和输出角色TFLIP = fliptform(T)imcrop 剪切图像12 = imcrop(I)X2 = imcrop(X,map)RGB2 = imcrop(RGB)12 = imcrop(I,rect)X2 = imcrop(X,map,rect)RGB2 = imcrop(RGB,rect) […]=imcrop(x,y,…) [A,rectJ = imcrop(…) [xyAject] = imcrop(…)imresize 图像缩放B = imresize(A,m)B = imresize( A,m,method)B = imresize(A,[mrows ncols],method)B = imresize(...,method,n)B = imresize(…,method,h)imrotate 图像旋转B = imrotate(A,angle)B = imrotate(A,angle,method)B = imrotate(A,angle,method,bbox)interp2 2-D数据插值ZI = interp2(X,Y,Z,XI,YI)ZI = interp2(Z,XI,YI)ZI = interp2(Z,ntimes)ZI = interp2(X,Y,Z,XI,YI,method)imtransform 对图像进行2-D空间变换B = imtransform(A,TFORM)B = imtransform(A,TFORM,INTERP)[B,X DATA, YD ATA] = imtransform(...) [B,X DATA, YD ATA] = imtransform(..M param 1, vail, param2, val2,…)makeresampler 生成重采样结构R = makeresampler(interpolant,padmethod) maketform 生成几何变换结构T = maketform(transformtype v..)tformarray 多维数组的空间变换 B = tformarray(A, T, R, TDIMS_A,TDIMS_B, TSIZE_B, TMAP_B,F)tformfwd 正向空1'可变换[X,Y] = tformfwd(T,U,V)[X1,X2,X3,...] = tformfwd(T,U 1 ,U2,U3,...) X = tformfwd(T,U)[X1,X2,X3,...]二tformfwd(T,U)X = tformfwd(T,Ul ,U2,U3,...)tforminv 逆向空间变换U = tforminv(X,T)表4像素和统计处理函数函数功能语法corr2计算两个矩阵的2-D相关系数r = COIT2(A,B)imcontour 创建图像的轮廓图imcontour(I)imcontour(Ln) imcontour(Lv) imcontour(x,y,...)imcontour(...,LineSpec) [C,h] = imcontour(…)imhist 显示图像的直方图imhist(I,n)imhist(X,map) [counts,xj = imhist(…)impixel 确定像素颜色值P = impixel(I)P = impixeI(X,map)P = impixel(RGB)P = impixel(I,c,r)P = impixel(X,map,c,r)P = impixeI(RGB,c,r)fc,r,Fl = impixel(…)P = impixel(x,y」,xi,yi)P = impixel(x,y,X,map,xi,yi)P = impixel(x,y,RGB,xi,yi) [xi,yi,P] = impixel(x,y,…)improfile 沿线段计算剖面图的像索值c = improfilec = improfile(n)c = improfile(I,xi,yi)c = improfile(I,xi,yi,n)[cx,cy,c] = improfile(…) [cx,cy,c,xi,yi] = improfile(…) [...]=improfile(x,yj,xi,yi) [...]=improfile(x,y,I,xi,yi,n)[...]=improfile(...,method)mean2 求矩阵元素平均值 B = mean2(A)pixval 显示图像像素信息pixval onpixval offpixval pixval(fig,option) pixval(ax,option) pixval(H,option)regionprops 得到图像区域属性STATS = regionprops(L,properties) std2 计算矩阵元素的标准偏移 b = std2(A)函数功能语法edge 识别灰度图像中的边界BW = edged,,sober)BW = edge(I,'sobel',thresh)BW = edge(I,'sobel',thresh,direction) [BW,thresh] = edge(I,'sobel',...)BW = edge(I,'prewitt')BW = edge(I,'prewitt',thresh)BW = edge(I,'prewitt*,thresh,direction) [BW,thresh] = edge(I,'prewitt*,...)BW = edge(I,'roberts*)BW = edge(I,'roberts1,thresh) [BW,thresh] = edgeCI/roberts1,...)BW = edge(I;log')BW = edge(I,'log',thresh)BW = edge(I,'log*,thresh,sigma) [BW,threshold] = edge(I,'log',...)qtdecomp 执行四义树分解S = qtdecomp(I)S = qtdecomp(Lthreshold)S = qtdecomp(I,threshold jnindim)S = qtdecomp(I,threshold,[mindim maxdim]) S = qtdecomp(I,fun)S = qtdecomp(I,fun,Pl,P2,…)qtgetblk获取四义树分解中的数组块值[vals,r,c] = qtgetblk(I,S,dim) [vals,idx] = qtgetblk(I,S,dim)qtsetblk设置四叉树分解屮的数纽•块值J = qtsetblk(LS,dim,vals)函数功能语法adaplhisteq执行对比度受限的宜方图均衡J = adapthisteq(I)J = adapthisteq(I,paraml,vall,param2,val2...)decorrstretch对多通道图像应用解卷积延拓S = decorrstretch(I)S = decorrstretch(I,TOL)histeq 用直方图均等化增强对比度J = histeq(Lhgram)J = histeq(I,n)[J,T] = histeq(I,...)n ewmap = histeq(X,map,hgram) n ewmap = histeq(X5map) [newmap,T| = histeq(X,.<.)imadjust调整图像灰度值或颜色映射表J = imadjust(I)J = imadjust(I,[low_in; high_in],[low_out; high_out])J = i madj ust(..gamma)new map = imadjust(map, [low _in high_in], [low_out high_out], gamma)RGB2 = imadjust(RGBl,...)imnoise 向图像中加入噪声J = imnoise(Ltype)J = imnoise(I,type,parameters)medfilt2 进行二维中值滤波B = medfilt2(A,[m n])B = medfilt2(A)B = medfilt2( A,'indexed',...)ordfilt2 进行二维统计顺序滤波B = ordfilt2( A,order,domain) B = ordfilt2( A,order,domain,S) B = ordfilt2(...,padopt)stretchlim 得到图像对比度延拓的灰度上下限LOW_HIGH = stretchlim(I,TOL)LOW_HIGH = stretchlim(RGB,TOL)wiener2 进行二维适应性去噪滤波J = wiener2(IJm n],noise) [J,noise] = wiener2(I,[m nJ)表7线性滤波函数函数功能语法conv2 二维卷积C = conv2(A,B)C = conv2(hcol,hrow,A) C = conv2(.../shape1)convmtx2 二维矩阵卷积T = convmtx2(H,m,n)T = convmtx2(H,[m n])convn n维卷积C = convn(A,B)C = con vn( A,B /shape1)filter2 二维线性滤波Y= filter2(h,X)Y= filter2(h,X,shape)fspecial 创建预定义滤波器h = fspecial(type)h = fspecial(type,parameters) imfilter 多维图像滤波 B = imfi!ter(A,H)B = imfilter( A,H,option l,option2v«)表8线性二维滤波器设计函数函数功能语法freqspace确定二维频率响应的频率空间[fl ,f2] = freqspace(n) ffl,f2] = freqspace([m n]) [xl,yl] = freqspace(.../meshgricr) f = freqspace(N) f = freqspace(N/whole f)freqz2 计算二维频率响应[H,fl, f2] = freqz2(h,nl,n2) [H,fl,f2] = freqz2(h,[n2nl]) [H,fl,f2] = freqz2(h)[H,fl,f2] = freqz2(h,fl,f2) [...]=freqz2(h,...,[dx dy]) [...]=freqz2(h,...,dx) freqz2(...)fsamp2用频率采样法设计二维FIR滤波器h = fsamp2(Hd)h = fsamp2(fl,f2,Hd,[m nJ)ftrans2 通过频率转换法设计二维FIR滤波器h = ftrans2(b,t)h = ftrans2(b)fwind 1 用一维窗口方法设计二维FIR滤波器h = fwind l(Hd,win)h = fwind 1 (Hd,win 1 ,win2)h = fwind l(fl,f2,Hd,...)fwind2用二维窗口方法设计二维FIR滤波器h = fwind2(Hd,win)h = fwind2(f 1 ,f2,Hd, win)表9图像变换函数函数功能语法dct2 进行二维离散余弦变换B = dct2(A)B = dct2(A,m,n) B = dct2(A,[m n])dctmtx 计算离散余弦变换矩阵 D = dctmtx(n) fft2 进行二维快速傅立叶变换Y= fft2(X)Y= fft2(X,m,n) fftn 进行n维快速傅立叶变换Y= fftn(X)Y= fftn(X,siz)fftshift转换快速傅立叶变换的输出象限Y= fftshift(X)Y= ff(shift(X,dim)idct2 计算二维逆离散余弦变换B = idct2(A)B = idct2(A,m,n) B = idct2(A,[m nJ)ifft2 计算二维逆快速傅立叶变换Y= ifft2(X)Y= ifft2(X,m,n)y = ifft2(..., 'nonsymmetric1) y = ifft2(..., 'nonsymmetric1)ifftn 计算n维逆快速傅立叶变换Y= ifftn(X)Y= ifftn(X,siz)y = ^onsymmetric1) y = ^onsymmetric1)iradon 逆Radon变换I = iradon(R,theta)I = iradon(R, theta, interp, filter, frequency_scaling, output_size) [I,H] = iradon(...)phantom 产生一个头部幻影图像P = phantom(def,n) P = phantom(E,n) [P,E] = phantom(…)radon 计算Radon变换R=radon(I,theta)[R,xp]=radon(...)F = fanbeam(I,D)F = fanbeam 计算扇形投影变换fanbeam(...,param 1 ,val 1,param 1 ,val2,...) [Esensor_positions,fan_rotation_angles] fanbeam(…)表10边沿和块处理函数函数功能语法bestblk 确定进行块操作的块人小siz = bestblk([m n],k)[mb,nbj = bestblk([m n],k)blkproc实现图像的非重叠(distinct)块操作B = blkproc(A,[m n],fun)B = blkproc(A,[m n],fun,Pl,P2,...)B=blkproc(A,[m n],[mborder nborder], fun,…)B = blkproc(A/indexed\...)col2im 将矩阵的列重新组织到块中A = col2im(B,[m n],[mm nnj, block_type)A = col2im(B,[m nn])colfilt利用列相关两数进行边沿操作B = colfilt(A,[m n],block_type,fun)B = colfilt(A,[m n],block_type,fun,P 1 ,P2,...)B = colfilt(A, [m n], [mblock nblock], block_type, fun,…)B = colfill(A,'indexed',...)im2col 重调图像块为列B = im2col(A,[m nj,block_type) B = im2col(A,[m nJ)B = im2col(A,indexed;…)nlfilter 通用滑动邻域操作B = nlfilter(A,[m n],fun)B = nlfilter(A,[m n],fun,Pl,P2,...)B = nlfilter( A,'indexed',...)表11图像形态学操作函数函数功能语法applylut 在二值图像屮利用查找表进行邻域操作A = applylut(BW,LUT)bwarea 计算二值图像的对象面积total = bwarea(BW) bweuler 计算二值图像的欧拉数eul = bweuler(BW.n)bwhitmiss执行二值图像的击中和击不中操作BW2 = bwhitmiss(BWl,SEl,SE2) BW2 = bwhitmiss(B W1JNTERVAL)bwlabel 标注二值图像中己连接的部分L = bwlabel(BW,n)[L,num] = bwlabel(BW,n)bwmorph 二值图像的通用形态学操作BW2 = bwmorph(BW,operation)BW2 = bwmorph(BW,operation^) bwperim 计算二值图像中对象的周长BW2 = bwperim(BWl)BW2 = bwperim(BWl,CONN)bwselect 在二值图像中选择对象BW2 = bwselect(BW,c,r,n)BW2 = bwselect(BW,n)[BW2,idx] = bwselect(...)BW2 = bwselect(x,y,BW,xi,yi,n) [x,y,BW2,idx,xi,yi] = bwselect(...)makelut创建用于applylut函数的查找表lut = makelut(fun.n)lut = makelut(fun,n,P 1 ,P2,...)bwdist 距离变换D = bwdist(BW)[D,L] = bwdist(BW)[D,L] = bwdist(BW,METHOD)imbothat 执行形态学的闭包运算IM2 = imbothat(IM,SE)IM2 = imbothat(IM,NHOOD)imclose 图像的闭运算IM2 = imclose(IM,SE)IM2 = imclose(IM,NHOOD)imopen 图像的开运算IM2 = imopen(IM,SE)IM2 = imopen(IM,NHOOD)imdilate 图像的膨胀IM2 = imdilate(IM,SE)IM2 = imdilate(IM,NHOOD)IM2 = imdilate(IM,SE,PACKOPT) IM2 = imdilate(...,PADOPT)imerode 图像的腐蚀IM2 = imerode(IM,SE)IM2 = imerode(IM,NHOOD)IM2 = imerode(IM,SE,PACKOPT,M) IM2 = imerode(...,PADOPT)imfill 填充图像区域BW2 = imfill(BW,locations)BW2 = imfill(BW,'holes1)12 = imfill(I)BW2 = imfill(BW)[BW2 locations] = imfill(BW)BW2 = imfill(BW,locations,CONN) BW2 = imfill(BW,CONN,'holes1) 12 = imfill(I,CONN)imtophat用开运算后的图像减去原图像IM2 = imtophat(IM,SE)IM2 = imtophat(IM,NHOOD)strel 创建形态学结构元素SE = strel(shape,parameters)表12区域处理函数函数功能语法roicolor 选择感兴趣的颜色区BW = roicolor(AJow,high)BW = roicolor(A,v)roifill在图像的任意区域中进行平滑插补J = roifill(I,c,r)J = roifill(I)J = roifill(I,BW)[J,BW] = roifill(…)J = roifill(x,yj,xi,yi)[x,y,J,BW,xi,yi] = roifill(...)roifilt2 滤波特定区域J = roifilt2(h,I,BW)J = roifilt2(I,BW?fun)J = roifilt2(I,BW,fun,Pl,P2,...)roipoly 选择一个感兴趣的多边形区域BW = roipoly(I,c,r)BW = roipoly(I)BW = roipoly(x,y,I,xi,yi)[BW,xi,yi] = roipoly(...)[x,y,BW,xi,yi] = roipoly(...)表13图像代数操作函数功能语法imadd 加运算Z = imadd(X,Y) imsubtract 减运算Z = imsubtract(X,Y) immultiply 乘运算Z = immultiply(X,Y) imdivide 除运算Z = imdivide(X,Y)表14颜色空间转换函数函数功能语法hsv2rgb转换HSV的值为RGB颜色空间M = hsv2rgb(H)ntsc2rgb转换NTSC的值为RGB颜色空间rgbmap = ntsc2rgb(yiqmap) RGB = ntsc2rgb(YIQ)rgb2hsv转换RGB的值为HSV颜色空间cmap = rgb2hsv(M)rgb2ntsc转换RGB的值为NTSC颜色空间yiqmap = rgb2ntsc(rgbmap) YIQ = rgb2ntsc(RGB)rgb2ycbcr转换RGB的值为YCbCr颜色空间ycbcrmap = rgb2ycbcr(rgbmap) YCBCR = rgb2ycbcr(RGB)ycbcr2rgb转换YCbCr的值为RGB颜色空间rgbmap = ycbcr2rgb(ycbcrmap) RGB = ycbcr2rgb(YCBCR)表15图像类型和类型转换函数函数功能语法dither 通过抖动增加外观颜色分辨率,转换图像X = dither(RGB,map)BW = dither(I)gray2ind 转换灰度图像为索引色图像[X,map] = gray2ind(I,n)[X,map] = gray2ind(BW,n) grayslice 从灰度图像为索引色图像X = grayslice(I,n)X = grayslice(Lv)im2bw 转换图像为二值图像BW = im2bw(I,level)BW = im2bw(X,map,level) BW = im2bw(RGB,level)im2double 转换图像矩阵为双精度类型12 = im2double(I)RGB2 = im2double(RGB)I = im2double(BW)X2 = im2double(X,'indexed')double 转换数据为双粘度类熨double(X) uint8 转换数据为8位无符号整熨I = uint8(X)im2uint8 转换图像阵列为8位为无符号整型12 = im2uint8(I)RGB2 = im2uint8(RGB)I = im2uint8(BW)X2 = im2uint8(X;indexed*)im2uintl6转换图像阵列为16位为无符号整型12 = im2uintl6 (I)RGB2 = im2uintl6(RGB)I = im2uintl6(BW)X2 = im2uint 16(X,'indexed')uintl6转换数据为16位无符号整型I = uintl6(X)ind2gray 转换索引色图像为灰度图像I = ind2gray(Xjnap) ind2rgb转换索引色图像为RGB图像RGB = ind2rgb(X,map) isbw 判断是否为二值图像flag = isbw(A)isgray 判断是否为灰度图像flag = isgray(A)isind 判断是否为索引色图像flag = isind(A)isrgb 判断是否为RGB图像flag = isrgb(A)mat2gray 转换矩阵为灰度图像I = mat2gray(A,[amin amax])I = mat2gray(A)rgb2gray转换RGB图像或颜色映射表为灰度图像I = rgb2gray(RGB) newmap = rgb2gray(map)rgb2ind转换RGB图像为索引色图像[X,map] = rgb2ind(RGB ,tol) [X,map] = rgb2ind(RGB,n)X = rgb2ind(RGB,map) [...]=rgb2ind(...,dither_option)表A.16图像复原函数函数功能语法deconvwnr 用维纳滤波复原图像J = deconvwnr(I,PSF)J = deconvwnr(I,PSF,NSR)J = deconvwnr(I,PSF,NCORRJCORR)deconvreg用最小约束二乘滤波复原图像J = deconvreg(I,PSF)J = deconvreg(I,PSF,NOISEPOWER) J = deconvreg(I, PSF, NOISEPOWER, LRANGE)J = deconvreg(I, PSF, NOISEPOWER, LRANGE, REGOP)[J, LAGRA] = deconvreg(I,PSF,...)deconvlucy用Richardson-Lucy滤波复原图像J = deconvlucy(I,PSF)J = deconvlucy(I,PSF,NUMIT)J = deconvlucy(I,PSF,NUMIT,DAMPAR) J = deconvlucy(I, PSF, NUMIT, DAMPAR, WEIGHT)J = deconvlucy(I, PSF, NUMIT, DAMPAR, WEIGHT READOUT)J = deconvlucy(I, PSF, NUMIT, DAMPAR, WEIGHT, READOUT, SUBSMPL)deconvblind 用盲卷积滤波复原图像[J,PSF] = deconvblind(IJNITPSF)卩,PSF] = deconvblind(I,INITPSF,NUMIT) 卩,PSF] = deconvblind(I, INITPSF, NUMIT, DAMPAR)[J,PSF] = deconvblind(I, INITPSF, NUMIT, DAMPAR, WEIGHT)[J,PSF] = deconvblind(I, INITPSF, NUMIT, DAMPAR, WEIGHT, READOUT)[J,PSF] = deconvblind(..., FUN, Pl, P2, PN)。

matlab中images函数

matlab中images函数

1. 图像处理在科学研究和工程领域中具有重要作用,而MATLAB作为一种强大的科学计算软件,拥有丰富的图像处理功能。

其中,images 函数是MATLAB中用于图像处理的重要函数之一。

2. images函数是MATLAB中一个用于创建图像的函数。

它可以在MATLAB中生成各种类型和大小的图像,包括灰度图像、彩色图像以及各种特定形状和大小的图像。

images函数的基本语法如下所示: ```matlabimg = images('PropertyName', 'PropertyValue', ...)```其中,img是生成的图像对象,'PropertyName'和'PropertyValue'是用于指定图像属性的参数。

3. images函数可以用来创建各种类型的图像,包括灰度图像和彩色图像。

对于灰度图像,可以通过指定图像的大小和灰度值来创建。

下面的代码创建了一个大小为256x256的灰度图像,灰度值为128:```matlabimg = images('CData', ones(256,256)*128);```对于彩色图像,可以通过指定图像的大小和RGB值来创建。

下面的代码创建了一个大小为256x256的彩色图像,颜色为红色:```matlabimg = images('CData', cat(3, ones(256,256), zeros(256,256),zeros(256,256)));```4. images函数还可以用来创建特定形状和大小的图像。

通过指定图像的大小和形状参数,可以轻松地创建各种形状的图像,如矩形、圆形和椭圆形。

下面的代码创建了一个大小为256x256的红色矩形图像: ```matlabimg = images('CData', cat(3, ones(256,256), zeros(256,256), zeros(256,256)), 'XData', [0 10], 'YData', [0 10]);```5. images函数还可以用来处理图像的显示和调整。

在MATLAB中进行图像处理的方法

在MATLAB中进行图像处理的方法

在MATLAB中进行图像处理的方法引言图像处理是一门研究如何对数字图像进行分析、处理和识别的学科。

在现代社会中,图像处理已经广泛应用于各个领域,如医学影像、电子商务和计算机视觉等。

MATLAB是一种强大的数值计算环境和编程语言,被广泛用于图像处理领域。

在本文中,我们将介绍在MATLAB中进行图像处理的一些常见方法。

一、图像读取与显示在MATLAB中,可以使用imread函数读取图像文件,并使用imshow函数显示图像。

例如,可以使用以下代码读取并显示一张图像:```matlabimg = imread('image.jpg');imshow(img);```二、图像增强图像增强是指通过改变图像的外观或质量,以提高图像的观感和可识别性。

在MATLAB中,有多种方法用于图像增强。

下面介绍其中的几种方法:1. 灰度转换灰度转换是将彩色图像转换为灰度图像的过程。

在MATLAB中,可以使用rgb2gray函数将彩色图像转换为灰度图像。

例如,可以使用以下代码实现灰度转换:```matlabgray_img = rgb2gray(img);imshow(gray_img);```2. 直方图均衡化直方图均衡化是一种常用的图像增强方法,用于提高图像的对比度。

在MATLAB中,可以使用histeq函数实现直方图均衡化。

例如,可以使用以下代码实现直方图均衡化:```matlabeq_img = histeq(gray_img);imshow(eq_img);```3. 锐化锐化是一种增强图像边缘和细节的方法。

在MATLAB中,可以使用imsharpen 函数对图像进行锐化处理。

例如,可以使用以下代码实现图像锐化:```matlabsharp_img = imsharpen(img);imshow(sharp_img);```三、图像滤波图像滤波是指对图像进行平滑处理以去除噪声或减小图像细节的过程。

在MATLAB中,有多种滤波方法可供选择。

matlabimread,imshow,subplot,figure,imwrite的用法

matlabimread,imshow,subplot,figure,imwrite的用法

matlabimread,imshow,subplot,figure,imwrite的用法1. imread:这个函数用于从文件中读取图像。

它的语法如下:```A = imread(filename)```其中,`filename`是字符串类型的参数,表示要读取的图像文件名。

`A`是一个矩阵,表示读取到的图像。

2. imshow:imshow函数用于显示图像。

它的语法如下:```imshow(A)```其中,`A`是一个矩阵,表示要显示的图像。

3. subplot:subplot函数用于在一个图形窗口中创建一个均匀的子图网格,并指定当前操作的子图。

它的语法如下:```subplot(m,n,p)```其中,`m`表示子图网格的行数,`n`表示子图网格的列数,`p`表示当前要操作的子图的位置。

4. figure:figure函数用于创建一个新的图形窗口。

它的语法如下:```figure```这个函数调用时不带参数,只创建一个新的图形窗口。

5. imwrite:imwrite函数用于将图像保存到一个文件中。

它的语法如下:```imwrite(A,filename)```其中,`A`是一个矩阵,表示要保存的图像,`filename`是保存图像的文件名。

这些函数在MATLAB中经常被用于图像处理和分析领域。

在具体使用时,我们可以结合其他函数一起使用,来完成一些复杂的图像处理任务。

例如,我们可以使用imread读取一张图像,然后使用imshow显示该图像:```A = imread('image.jpg');imshow(A);```我们也可以创建一个带有多个子图的图形窗口,并在不同的子图中显示不同的图像:```figure;subplot(2,2,1);imshow(A);subplot(2,2,2);imshow(B);subplot(2,2,3);imshow(C);subplot(2,2,4);imshow(D);```最后,我们还可以对处理后的图像使用imwrite保存到文件中:```C = someImageProcessingFunction(A);imwrite(C,'processed_image.jpg');```这些函数都是MATLAB中图像处理和分析的基本操作,通过它们的灵活使用,可以实现各种不同的图像处理任务。

matlab函数大全

matlab函数大全

图像处理和图像识别中常用的matlab函数2012年03月28日星期三9:42下面仅给出函数的大概意思,详细用法见:help 函数名或matlab help1、imread:read image from graphics file;2、imshow:display image in Handle Graphics figure;3、imwrite:write image to graphics file;4、rgb2gray:convert RGB image or colormap to grayscale;5、im2bw:convert image to bi nary image, based on threshold;6、exist:check existence of variable, functi on, directory, or class;7、size:size of array,用此函数可以获得图像的高和宽;8、min:smallest elements in array;9、max:largest elements in array;10、fprintf:write data to text file;将信息显示到屏幕上或将数据写到指定的文件中;11、conv2:two dimensional convolution;二维卷积(图像滤波);12、ones(m, n):create array of all ones;13、zeros(m, n):create array of all zeros;14、interp2:2-D data interpolati on;二维插值(图像插值),多和meshgrid一起用;15、meshgrid:generate X and Y arrays for 3-D plots;用于产生网格,将向量区域转换成矩阵;16、clf:clear current figure window;清除当前的图像,图像窗口仍存在;17、pause:halt execution temporarily;暂停;18、figure:create figure graphics object;19、pinv:Moore-Penrose pseudoinverse of matrix;求矩阵的伪逆;20、hold on:holds the current plot and all axis properties so that subsequent graphingcommands add to the existing graph;21、hold off:returns to the default mode whereby PLOT commands erase the previousplots and reset all axis properties before drawing new plots;22、error:di splay message and abort function;23、isempty:determine whether array is empty;24、close:remove specified figure;25、repmat:replicate and tile an array;26、find:find indices and val ues of nonzero elements;27、cell:construct cell array;28、atan2:four quadrant inverse tangent;29、prod:product(乘积) of array elements,对于向量返回的是其所有元素的积、对于矩阵返回的是按列向量的所有元素的积,然后组成一行向量;30、abs:absolute value and complex magnitude;31、disp:Display text or array;32、clear:remove items from workspace, freeing up system memory;33、clc:clear command window;34、delete:delete file or graphics object;35、diary:save text of MATLAB session(a copy of all subsequent command window input and most of the resulting command window output to be appended to the named file);36、save:saves all workspace variables to the binary "MAT-file"(disk);37、rand:uniformly distributed pseudo-random numbers;均匀分布的伪随机数;38、memory:di splay memory information;39、pack:consolidate workspace memory;40、pwd:displays the current working directory;41、feature('memstats'):可以用来查看内存的使用情况;42、length:length of vector or largest array dimension;43、floor:round towards minus infinity;朝负无穷方向靠近最近的整数;44、ceil:round towards plus i nfinity;朝正无穷方向靠近最近的整数;45、round:round towards nearest integer;取最近的整数(相当于四舍五入);46、fix:round towards zero;取离0最近的整数;47、norm:matrix or vector norms(范数);48、mod:modulus after divi sion;求余数;49、reshape:reshape array;改变指定矩阵的形状,元素个数不变;50、graythresh:global image threshold using Otsu's method;51、xor:logical exclusive OR;逻辑异或;52、imopen:morphologically open image;形态学开运算;53、imclose:morphologically close image;形态学闭运算;54、imerode:erode image;图像腐蚀;55、imdilate:dilate image;图像膨胀;56、bwlabel:label connected components in 2-D binary image;57、cpselect:i s a graphical user interface that enables you to select control points from two related images;手动在两幅图像中选取配准控制点;它会自动存到两个points 数组里面58、cp2tform:takes pairs of control points and uses them to infer spatial transformation;图象配准一个求坐标转换参数的函数;能修正6种变形;59、imcrop:crops an image to a specified rectangle;图像剪切;60、imresize:resize image;61、imrotate:rotate image;62、imtransform:apply 2-D spatial transformation to image;图像空间变换;多与cp2tform或maketform 一起用;63、maketform:create spatial transformation structure (TFORM);64、edge:find edges i n grayscale image;包括Sobel、Prewitt、Roberts、Laplacian of Gaussian、Zero-cross、Canny;65、cpcorr:tune control point locations usi ng cross-correlation;采用互相关法协调控制点位置,在图像配准中,对已选定的控制点进行微调;66、isnan:array elements that are NaN;67、ischar:determine whether item is character array;68、strcmp:compare strings;69、colstyle:parse color and style from string;70、gcf:get handle to current figure;71、print:print figure or model;save to di sk as image or M-file;72、warning:di splay warning message;di sable or enable warning messages;73、nargout:number of function output arguments;74、nargi n:number of function input arguments;75、any:determine whether any array elements are nonzero;76、median:median value of array;77、imfinfo:information about graphics file;78、filter2:two-dimensional digital filter;在计算filter2时先将卷积核旋转180度,再调用conv2函数进行计算,其实filter2和conv2是等价的;79、fspecial:create predefined 2-D filters;80、det:matrix determinant(行列式);81、trace:sum of diagonal(对角线) elements;矩阵的迹;82、plot:2-D line plot;用于在指定位置标注;83、eye:i dentity matrix(单位矩阵);84、mean:average or mean value of array;85、exp:exponential(指数);86、imagesc:scale data and display as image;87、all:determine whether all array elements are nonzero or true;88、sort:sort array elements i n ascending or descending order;89、sparse:create sparse matrix;90、set:set Handle Graphics object properties;91、inv:matrix inverse(逆矩阵);92、drawnow:flush event queue and update figure window;93、rem:remainder after divi sion(取余数);94、tril:extract lower triangular part of matrix;95、nargchk:validate number of input arguments;96、ordfilt2:2-D order-statistic filtering;97、im2double:convert image to double preci sion;98、pdi st:pairwise distance between pairs of objects;99、version:version number for MATLAB and libraries;100、nargchk:validate number of input arguments;101、isa:determine whether input is object of given class(类型,如:char、int8);102、varargin:variable length input argument list;103、varargout:variable length output argument list;104、strcmpi:compare strings ignoring case(忽略大小写);105、ndims:number of array dimensions;106、assert:generate an error when a condition is vi olated;107、strcmp:compare strings;108、ordfilt2:2-D order-stati stic filtering(类似于形态学灰度图像膨胀);109、eps:floating-poi nt relati ve accuracy;110、randsample:random sample, with or without replacement;111、feval:execute the specified function;112、dot:vector dot product(向量点积);113、cross:vector cross product(向量叉积);114、svd:singular value decompositi on(奇异值分解);115、numel:number of elements in an array or subscripted array expressi on;116、nnz:number of nonzero matrix elements;可以用来计算某矩阵中某元素的个数;117、wiener2:2-D adaptive noise-removal filtering(二维自适应维纳滤波);118、medfilt2:2-D median filtering;119、wavedec2:multilevel 2-D wavelet decomposition;120、wrcoef2:reconstruct single branch from 2-D wavelet coefficients;121、wpdencmp:de-noi sing or compression using wavelet packets;122、adjust:adj ust image intensity values or colormap;123、movegui:move a figure window to a specified positi on on the screen;124、uicontrol:create user interface control;125、waitforbuttonpress:wait for key/buttonpress over figure;126、imhist:display histogram of image data;127、smooth:smooth response data;128、cputime:returns the CPU time in seconds;129、bitset:set bit at specified position;设置数的某一位二进制位为1或0;130、bitget:get bit at specified position;取的数的某一位二进制位(只能是0或1);131、load:load workspace variables from disk;132、axis:control axis scaling and appearance;133、subpl ot:create axes in tiled positions;134、uimenu:create user interface menu;135、eval:execute string with MATLAB expression;136、segment:segments data and estimate models for each segment(分割字符);137、strcat:concatenate strings horizontally;138、num2str:convert numbers to string;139、diff:difference and approximate derivative(导数);140、imcomplement:complement image(图像反色处理);141、bwmorph:morphological operations on binary image(二值图像形态学运算);142、strel:create morphological structuring element;143、regionprops:measure properties of image regions;144、rectangle:create rectangle, rounded-rectangle, or ellipse;145、text:create text object in current axes;146、radon:radon transform(用于检测图像中的线);147、ind2sub:multiple subscripts from linear index(把数组的单索引值(按列进行排列)转化相应的下标值(行列值));148、uigetfile:open standard dialog box for retrieving files;149、im2col:rearrange image blocks into columns(按列重新排列图像块);150、sim:simulate dynamic system(仿真动态系统,如仿真神经网络);151、newff:create feed-forward backpropagation network(生成一个BP网络);152、imadjust:adjust image intensity values or col ormap;153、stretchlim:find limits to contrast stretch an image(获得图像对比度拉伸范围);154、input:request user input;155、mse:mean squared normalized error performance function(可用来计算神经网络的均方误差);156、legend:graph legend for lines and patches(图例的线条和patches);157、init:initialize neural network(初始化一个神经网络);158、train:train neural network(训练一个神经网络);159、dir:folder listing(列举当前文件夹里(或指定文件夹)所有的文件与文件夹);。

MATLAB图像处理函数大全(中文)

MATLAB图像处理函数大全(中文)

Import, Export, and ConversionRead and Write Image Data from Filesimread从图形文件读取图像imwrite写入图像到图形文件imfinfo关于图形文件的信息nitfinfo从国家图像传输格式的元数据(NITF)文件nitfread从NITF文件读取图像dpxinfo读取DPX文件元数据dpxread读取DPX图像analyze75info从分析7.5数据集的头文件读取元数据analyze75read从分析7.5数据集的图像文件中读取图像数据interfileinfo从归档文件元数据interfileread在内部文件格式读取图像Read and Write Image Data from DICOM Filesdicomanon匿名DICOM文件dicomdict获取或设置活动DICOM数据字典dicomdisp显示DICOM文件结构dicominfo读取DICOM消息元数据dicomlookup发现在DICOM数据字典属性dicomread读取DICOM图像dicomuid生成DICOM的唯一标识符dicomwrite写图像的DICOM文件High Dynamic Range Imageshdrread读高动态范围(HDR)图像hdrwrite写下光辉的高动态范围(HDR)图像文件makehdr创建高动态范围图像tonemap用于观看的高动态范围图像Large Image FilesImageAdapter图像I / O接口isrset检查文件是否存在与r-组openrset开放与r-组文件rsetwrite从图像文件创建减少的分辨率数据集Image Type Conversiongray2ind将灰度或二值图像转换为索引图像ind2gray将索引图像转换为灰度图像mat2gray转换矩阵到灰度图像rgb2gray将RGB图像的灰度或颜色表ind2rgb索引图像的RGB图像转换label2rgb转换成RGB图像标签矩阵demosaic Bayer编码图像转换为彩色图像imbinarize二值化图像的阈值分割imquantize量化图像使用指定的量化电平和输出值multithresh采用多级图像阈值Otsu方法adaptthresh采用局部一阶统计的自适应图像阈值otsuthresh使用全局直方图阈值Otsu方法im2bw基于阈值的图像转换成二值图像graythresh使用全局阈值Otsu方法grayslice采用多层阈值化方法将灰度图像转换为索引图像im2double将图像转换为双精度im2int16将图像转换为16位有符号整数im2java2d将图像转换成java缓冲图像im2single将图像转换为单精度im2uint16将图像转换为16位无符号整数im2uint8将图像转换为8位无符号整数Synthetic Imagescheckerboard创建棋盘格图像phantom创建头部影像imnoise添加噪声到图像Display and ExplorationBasic Displayimshow显示图像montage显示多个图像帧矩形蒙太奇subimage在单个图形中显示多个图像immovie从多帧图像的电影implay播放电影、视频或图像序列warp显示图像作为纹理映射的表面iptgetpref获取图像处理工具箱的首选项iptprefs显示图像处理工具箱首选项对话框iptsetpref设置图像处理工具箱的首选项或显示有效值Interactive Exploration with the Image Viewer Appimtool图像查看器应用程序imageinfo图像信息的工具imcontrast对比度调整工具imdisplayrange显示范围的工具imdistline距离工具impixelinfo像素信息的工具impixelinfoval无文本标签的像素信息工具impixelregion像素区域的工具immagbox用于滚动面板的放大盒imoverview在滚动面板中显示的图像的概述工具iptgetpref获取图像处理工具箱的首选项iptprefs显示图像处理工具箱首选项对话框iptsetpref设置图像处理工具箱的首选项或显示有效值Build Interactive Toolsimageinfo图像信息的工具imcolormaptool选择映射工具imcontrast对比度调整工具imcrop作物图像imdisplayrange显示范围的工具imdistline距离工具impixelinfo像素信息的工具impixelinfoval无文本标签的像素信息工具impixelregion像素区域的工具impixelregionpanel像素区域工具面板immagbox用于滚动面板的放大盒imoverview在滚动面板中显示的图像的概述工具imoverviewpanel滚动面板中显示的图像的工具面板imsave保存图像的工具imscrollpanel用于交互式图像导航的滚动面板imellipse创建可拖动椭圆imfreehand创建可拖动自由区域imline创建可拖动,可调整大小的线impoint创建可拖动点impoly创建可拖动,可调整大小的多边形imrect创建可拖动矩形imroi感兴趣区域(感兴趣区域)基类getline用鼠标选择多段线getpts用鼠标指定点getrect用鼠标指定矩形getimage从轴的图像数据getimagemodel图像对象的图像模型对象imagemodel图像模型对象axes2pix将坐标轴转换为像素坐标imattributes关于图像属性的信息imgca获取当前包含图像的轴的句柄imgcf获取当前图像包含图像的句柄imgetfile打开图像对话框imhandles获取所有图像处理iptaddcallback添加函数句柄到回调列表iptcheckhandle检查处理的有效性iptgetapi获取处理的应用程序程序员接口(接口)iptGetPointerBehavior从汞对象检索指针行为ipticondir目录包含了IPT和Matlab的图标iptPointerManager创建图形中的指针管理器iptremovecallback从回调列表中删除函数句柄iptSetPointerBehavior句柄图形对象中的存储指针行为结构iptwindowalign排列图的窗口makeConstrainToRectFcn创建矩形拖动约束函数有界truesize调整图像的显示大小Geometric Transformation, Spatial Referencing, and Image Registration Geometric Transformationsimcrop作物图像imresize调整图像大小imrotate旋转图像imtranslate转换图像impyramid图像金字塔的还原与扩展imwarp将几何变换应用于图像fitgeotrans拟合控制点对的几何变换imtransform二维空间变换在图像中的应用findbounds查找空间变换的输出范围fliptform输入和输出翻转平台结构的作用makeresampler创建重采样结构maketform创造空间转换结构(平台)tformarray将空间变换N-D数组tformfwd应用前向空间变换tforminv应用逆空间变换checkerboard创建棋盘格图像affine2d二维仿射几何变换affine3d三维仿射几何变换projective2d二维射影几何变换images.geotrans.PiecewiseLinearTransformation2D二维分段线性几何变换images.geotrans.PolynomialTransformation2D二维多项式几何变换images.geotrans.LocalWeightedMeanTransformation2D二维局部加权平均几何变换Spatial Referencingimwarp将几何变换应用于图像imregister基于强度的图像配准imregtform估计对齐两个二维或三维图像的几何变换imshow显示图像imshowpair比较图像之间的差异imfuse两幅图像的复合imref2d参考二维图像到世界坐标imref3d参考三维图像到世界坐标Automatic Registrationimregister基于强度的图像配准imregconfig基于强度的注册的配置imregtform估计对齐两个二维或三维图像的几何变换imregcorr使用相位相关的两个二维图像的几何变换估计imregdemons估计对齐两个二维或三维图像的位移场imfuse两幅图像的复合imshowpair比较图像之间的差异registration.metric.MattesMutualInformation Mattes互信息度量的配置对象registration.metric.MeanSquares均方误差度量配置对象registration.optimizer.RegularStepGradientDescent正规步长梯度下降优化配置对象registration.optimizer.OnePlusOneEvolutionary一加一进化优化配置对象Control Point Registrationcpselect控制点选择工具fitgeotrans拟合控制点对的几何变换cpcorr使用交叉相关的调整控制点位置cpstruct2pairs cpstruct转换控制点的有效对normxcorr2标准化二维互相关cp2tform从控制点对的空间变换Image EnhancementContrast Adjustmentimadjust调整图像的灰度值或颜色表imcontrast对比度调整工具imsharpen利用反锐化掩模图像锐化histeq采用直方图均衡化增强对比度adapthisteq对比度自适应直方图均衡化(CLAHE)imhistmatch调整直方图的图像与参考图像n-bin直方图decorrstretch申请去相关拉伸的多通道图像stretchlim查找对比度拉伸图像的限制intlut使用查找表转换整数值imnoise添加噪声到图像Image Filteringimfilter N维的多维图像滤波imgaussfilt二维图像的二维高斯滤波imgaussfilt3三维图像的三维高斯滤波fspecial创建预定义的二维滤波器imguidedfilter图像引导滤波normxcorr2标准化二维互相关wiener2二维自适应噪声滤除medfilt2二维中值滤波ordfilt2二维阶统计滤波stdfilt图像局部标准偏差rangefilt局部图像范围entropyfilt灰度图像局部熵nlfilter一般滑动邻域运算gabor Gabor滤波器和Gabor滤波器组的创建imgaborfilt应用Gabor滤波器或滤波器组二维图像imboxfilt二维图像的二维图像滤波imboxfilt3三维图像的三维盒滤波integralImage计算积分图像integralImage3计算三维积分图像integralBoxFilter积分图像的二维箱滤波integralBoxFilter3三维整体图像的三维箱滤波bwareafilt通过大小从二值图像中提取对象bwpropfilt使用属性从二值图像中提取对象padarray焊盘阵列freqz2二维频率响应fsamp2采用频率采样的二维滤波器ftrans2采用频率变换的二维滤波器fwind1二维FIR滤波器采用一维窗口的方法fwind2采用二维窗法的二维二维滤波器convmtx2二维卷积矩阵Morphological Operationsbwhitmiss二进制命中错误操作bwmorph二值图像的形态学运算bwulterode终极侵蚀bwareaopen从二值图像中删除小对象imbothat帽子底部过滤imclearborder抑制连接到图像边缘的光结构imclose形态接近的图像imdilate放大图像imerode腐蚀图像imextendedmax扩展极大值变换imextendedmin扩展最小变换bwtraceboundary二进制图像中的跟踪对象bwunpack打开二进制图像conndef创建连接的阵列demosaic Bayer编码图像转换为彩色图像edge在强度图像中查找边缘fitgeotrans拟合控制点对的几何变换fspecial创建预定义的二维滤波器getrangefromclass基于它的类的图像的默认显示范围grayconnected选择具有相似灰度值的连续图像区域histeq采用直方图均衡化增强对比度hough Hough变换houghlines基于Hough变换提取直线段houghpeaks确定峰Hough变换hsv2rgb转换到RGB的色度HSV颜色图im2double将图像转换为双精度im2int16将图像转换为16位有符号整数im2single将图像转换为单精度im2uint16将图像转换为16位无符号整数im2uint8将图像转换为8位无符号整数imabsdiff两幅图像的绝对差imadjust调整图像的灰度值或颜色表imbinarize二值化图像的阈值分割imbothat帽子底部过滤imboxfilt二维图像的二维图像滤波imclearborder抑制连接到图像边缘的光结构imclose形态接近的图像imcomplement补充图像imcrop作物图像imdilate放大图像imerode腐蚀图像imextendedmax扩展极大值变换imextendedmin扩展最小变换imfill填充图像区域和孔imfilter N维的多维图像滤波imfindcircles发现使用Hough变换圆imgaborfilt应用Gabor滤波器或滤波器组二维图像imgaussfilt二维图像的二维高斯滤波imgradient3查找图像的三维梯度幅值和方向imgradientxyz查找三维图像的方向梯度imhist图像数据直方图imhmax h-maxima变换imhmin利用H-minima变换imlincomb图像的线性组合immse均方误差imopen形态上打开的图像imoverlay将二元掩模烧成二维图像impyramid图像金字塔的还原与扩展imquantize量化图像使用指定的量化电平和输出值imread从图形文件读取图像imreconstruct形态重构imregionalmax区域极值imregionalmin局部极小imresize调整图像大小imrotate旋转图像imtophat顶帽滤波imtranslate转换图像imwarp将几何变换应用于图像integralBoxFilter积分图像的二维箱滤波integralImage计算积分图像intlut使用查找表转换整数值imtophat顶帽滤波iradon逆Radon变换mat2gray转换矩阵到灰度图像mean2矩阵元素的平均值或平均值medfilt2二维中值滤波normxcorr2标准化二维互相关padarray焊盘阵列radon Radon变换regionprops图像区域的测量特性rgb2gray将RGB图像的灰度或颜色表rgb2ycbcr转换到YCbCr色彩空间RGB颜色值std2矩阵元素的标准偏差stdfilt图像局部标准偏差stretchlim查找对比度拉伸图像的限制。

详解matlab图像函数及应用

详解matlab图像函数及应用

详解matlab图像函数及应用MATLAB是一个用于科学计算和数据可视化的强大工具。

它提供了许多用于处理和分析图像的函数和工具。

在这篇文章中,我将详细介绍MATLAB中常用的图像函数及其应用。

MATLAB中的图像函数可以分为以下几类:1. 读取和显示图像:MATLAB提供了imread和imshow函数用于读取和显示图像。

imread函数可以从文件中读取图像,并将其存储为矩阵,imshow函数可以显示图像矩阵。

2. 调整图像尺寸和缩放:MATLAB提供了imresize函数用于调整图像的尺寸。

可以使用该函数将图像缩小或放大到指定的尺寸。

3. 调整图像亮度和对比度:MATLAB提供了imadjust函数用于调整图像的亮度和对比度。

可以使用该函数将图像的像素值映射到新的范围,从而改变图像的亮度和对比度。

4. 图像滤波和增强:MATLAB提供了许多用于图像滤波和增强的函数,如imfilter、medfilt2和imsharpen。

可以使用这些函数来平滑图像、去除噪声和增强图像的细节。

5. 图像变换:MATLAB提供了一些常用的图像变换函数,如imrotate、imcrop 和imresize。

可以使用这些函数对图像进行旋转、裁剪和缩放。

6. 图像分割和边缘检测:MATLAB提供了一些图像分割和边缘检测函数,如imsegm、edge和regionprops。

可以使用这些函数将图像分割成不同的区域,并检测图像中的边缘。

7. 形态学操作:MATLAB提供了一些形态学操作函数,如imerode、imdilate 和imopen。

可以使用这些函数来处理二值图像,如腐蚀、膨胀和开运算等操作。

8. 颜色空间转换:MATLAB提供了一些颜色空间转换函数,如rgb2gray、rgb2hsv和rgb2lab。

可以使用这些函数将图像从一种颜色空间转换到另一种颜色空间。

这些图像函数可以广泛应用于许多领域,如计算机视觉、模式识别、医学图像处理和遥感图像分析等。

Matlab图像处理工具箱中部分函数用法

Matlab图像处理工具箱中部分函数用法

1. blkproc( )用法blkproc功能:对图像进行分块处理调用形式: B = blkproc(A,[m n],fun, parameter1, parameter2, ...)B = blkproc(A,[m n],[mborder nborder],fun,...)B = blkproc(A,'indexed',...)参数解释:[m n] :图像以m*n为分块单位,对图像进行处理(如8像素*8像素)Fun:应用此函数对分别对每个m*n分块的像素进行处理parameter1, parameter2:要传给fun函数的参数mborder nborder:对每个m*n块上下进行mborder个单位的扩充,左右进行nborder个单位的扩充,扩充的像素值为0,fun函数对整个扩充后的分块进行处理。

这里:fun='P1*x*P2',fun的参数P1,P2,将T,T'传递给fun的参数,即:P1= T,P2=T'.2.dwt2( )用法d wt2功能:单级二维离散小波变换调用格式: [cA,cH,cV,cD] = dwt2(X,'wname')[cA,cH,cV,cD] = dwt2(X,Lo_D,Hi_D)其意义为使用指定的小波基函数'wname'对二维信号X进行二维离散小波变换。

cA,cH,cV,cD分别为近似细节分量、水平细节分量、垂直细节分量和对角细节分量。

3.wavedec2( )用法waveder2功能:二维信号的多层小波分解调用格式:[C,S] = wavedec2(X,N,'wname')[C,S] = wavedec2(X,N,Lo_D,Hi_D)其意义为使用小波基函数'wname'对二维信号X进行N层分解。

4.idwt2( )用法idwt2功能:单级二维离散小波反变换调用格式:X = idwt2(cA,cH,cV,cD,'wname')X = idwt2(cA,cH,cV,cD,Lo_R,Hi_R)X = idwt2(cA,cH,cV,cD,'wname',S)X = idwt2(cA,cH,cV,cD,Lo_R,Hi_R,S)X = idwt2(...,'mode',MODE)其意义为由信号小波分解的近似信号cA和细节信号cH,cV,cD经小波反变换重构原信号X。

使用Matlab进行图像处理的常用函数介绍

使用Matlab进行图像处理的常用函数介绍

使用Matlab进行图像处理的常用函数介绍引言:图像处理是计算机科学和电子工程领域中的重要分支,它利用数字技术对图像进行各种操作和改变,以实现图像的增强、分割、恢复等目标。

而Matlab作为一种功能强大的科学计算软件,被广泛应用于图像处理领域。

本文将介绍几个常用的Matlab图像处理函数,并结合实例进行详解。

一、图像读取与显示函数1. imread函数imread函数是Matlab中用于读取图像的函数,它可以读取各种图像格式(如JPEG、PNG、BMP等)的图像文件,并将其转换为Matlab中的矩阵形式。

示例:```img = imread('image.jpg');```2. imshow函数imshow函数用于在Matlab中显示图像,它可以接受矩阵形式的图像作为输入,并在新窗口中显示出来。

此外,imshow函数还可以对显示的图像进行一些调整,如调整图像的亮度、对比度等参数。

示例:```imshow(img); % 显示读取的图像```二、图像增强函数1. imadjust函数imadjust函数可以调整图像的亮度和对比度,以增强图像的视觉效果。

它通过对图像的像素值进行映射,将原始图像灰度值的范围进行调整,从而使图像的显示效果更好。

示例:```img_adjusted = imadjust(img, [0.2 0.8], [0 1]);```2. histeq函数histeq函数可以进行直方图均衡化处理,使图像的像素值在不同灰度级之间更均匀分布,从而增强图像的对比度和细节。

示例:```img_equalized = histeq(img);```三、图像滤波函数1. imfilter函数imfilter函数实现了不同类型的图像滤波算法,包括平滑滤波、锐化滤波等。

它可以对图像的每个像素点进行卷积运算,以消除噪声、增强边缘等。

示例:```filter = fspecial('average', [5 5]); % 创建一个平滑滤波器img_filtered = imfilter(img, filter); % 对图像进行平滑滤波```2. medfilt2函数medfilt2函数是一种中值滤波算法,它可以有效地去除图像中的椒盐噪声、脉冲噪声等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、MATLAB的size函数:获取数组的行数和列数二、(1)s=size(A),当只有一个输出参数时,返回一个行向量,该行向量的第一个元素时数组的行数,第二个元素是数组的列数。

三、(2)[r,c]=size(A),当有两个输出参数时,size函数将数组的行数返回到第一个输出变量,将数组的列数返回到第二个输出变量。

四、(3)如果在size函数的输入参数中再添加一项,并用1或2为该项赋值,则size将返回数组的行数或列数。

其中r=size(A,1)该语句返回的时数组A的行数, c=size(A,2) 该语句返回的时数组A的列数。

原文地址:MATLAB常用形态学操作函数作者:ggbondgt常用形态学操作函数1、dilate函数该函数能够实现二值图像的膨胀操作,有以下形式:BW2=dilate(BW1,SE)BW2=dilate(BW1,SE,…,n)其中:BW2=dilate(BW1,SE)表示使用二值结构要素矩阵SE队图像数据矩阵BW1执行膨胀操作。

输入图像BW1的类型为double或unit8,输出图像BW2的类型为unit8。

BW2=dilate(BW1,SE,…,n)表示执行膨胀操作n次。

2、erode 函数该函数能够实现二值图像的腐蚀操作,有以下形式:BW2= erode(BW1,SE)BW2= erode(BW1,SE,…,n)其中:BW2= erode(BW1,SE)表示使用二值结构要素矩阵SE队图像数据矩阵BW1执行腐蚀操作。

输入图像BW1的类型为double或unit8,输出图像BW2的类型为unit8。

BW2= erode(BW1,SE,…,n)表示执行腐蚀操作n次。

3、bwmorph函数该函数的功能是能实现二值图像形态学运算。

它的格式如下:① BW2=bwmorph(BW1,operation)② BW2=bwmorph(BW1,operation,n)其中:对于格式①,bwmorph函数可对二值图像BW1采用指定的形态学运算;对于格式②,bwmorph函数可对二值图像BW1采用指定的形态学运算n次。

operation为下列字符串之一:‘clean’:除去孤立的像素(被0包围的1)‘close’:计算二值闭合‘dilate’:用结构元素计算图像膨胀‘erode’:用结构元素计算图像侵蚀4、imclose函数该函数功能是对灰度图像执行形态学闭运算,即使用同样的结构元素先对图像进行膨胀操作后进行腐蚀操作。

调用格式为:IM2=imclose(IM,SE)IM2=imclose(IM,NHOOD)5、imopen函数该函数功能是对灰度图像执行形态学开运算,即使用同样的结构元素先对图像进行腐蚀操作后进行膨胀操作。

调用格式为:IM2=imopen(IM,SE)IM2=imopen(IM,NHOOD)Matlab中函数strel在操作结构元素应用,用于膨胀腐蚀及开闭运算等操作的结构元素对象具体用法:SE = strel(shape,parameters)创建由指定形状shape对应的结构元素。

其中shape的种类有arbitrary''pair''diamond''periodicline''disk''rectangle''line''square''octagon’参数parameters一般控制SE的大小。

例子:se1 = strel('square',6)%创建6*6的正方形se2 = strel('line',10,45)%创建直线长度10,角度45se3 = strel('disk',15)%创建圆盘半径15se4 = strel('ball',15,5)%创建椭圆体,半径15,高度5最终编辑hyb841729963STREL 创建形态学结构元素。

语法:SE = STREL('arbitrary',NHOOD) 创建一个指定领域的平面结构化元素。

NHOOD是一个包含1/0的矩阵;1的位置定义了领域的形态学操作。

NHOOD的中心就是它的中心元素,位置在FLOOR((SIZE(NHOOD) + 1)/2)。

你也可以忽略参数串'arbitrary'而只使用STREL(NHOOD).SE = STREL('arbitrary',NHOOD,HEIGHT) 创建一个指定领域的非平面结构化元素。

HEIGHT是一个矩阵,大小和NHOOD相同,他指定了NHOOD中任何非零元素的高度值。

HEIGHT必须是实有限值。

你也可以忽略参数串'arbitrary'而只使用STREL(NHOOD,HEIGHT).SE = STREL('ball',R,H,N) 创建一个空间椭球状的结构元素,其X-Y平面半径为R,高度为H。

R必须为非负整数,H是一个实数。

N必须为一个非负偶数,当N>0时此球形结构元素由一系列空间线段结构元素来近似;当N=0时不需要近似,结构化元素的成员由所有中心距圆点>R的元素组成,相应的高度值可由R/H指定的椭球中提取。

如果N未指定,缺省值8,并且。

注: 使用球体近似的形态学操作N>0的情况要比N=0的情况快许多。

SE = STREL('diamond',R) 创建一个指定大小R平面钻石形状的结构化元素。

R是从结构化元素原点到其点的距离,必须为非负整数。

SE = STREL('disk',R,N) 创建一个指定半径R的平面圆盘形的结构元素。

这里R必须是非负整数. N须是0, 4, 6, 8.当N大于0时,圆盘形结构元素由一组N(或N+2)个周期线结构元素来近似。

当N等于0时,不使用近似,即结构元素的所有像素是由到中心像素距离小于等于R的像素组成。

N可以被忽略,此时缺省值是4。

注: 形态学操作在N>0情况下要快于N=0的情形。

功能:腐蚀图像用法:IM2 = imerode(IM,SE)腐蚀灰度、二进制或压缩二进制图像 IM ,返回腐蚀图像 IM2 。

参数 SE 是函数 strel 返回的一个结构元素体或是结构元素体阵列。

如果 IM 是逻辑图像,结构元素是平坦的, imerode 执行二进制膨胀;否则执行灰度腐蚀。

如果SE 是一个结构元素体阵列, imerode 接连使用 SE 中的每个结构元素体对输入图像进行多重腐蚀。

IM2 = imerode(IM,NHOOD)腐蚀图像 IM ,这里的 NHOOD 是一个 0 和 1 组成的阵列,指明了结构元素邻域。

这等同于 imerode(IM,strel(NHOOD)) 的句法规则。

函数 imerode 通过 floor((size(NHOOD)+1)/2) 确定了邻域的中心元素。

IM2 = imerode(...,PACKOPT,M)指定 IM 是否为一幅压缩二进制图像,如果是,需要提供原始未压缩图像的行的维数 M 。

PACKOPT 可以取以下值之一。

默认值由大括号({})标出。

Value(值)Description(描述)'ispacked ' IM 可以作为一幅由bwpack 产生的压缩二进制图像。

IM 必须是一个2-D 的uint32 类型数组,SE 必须是平坦的2-D 结构元素。

{'notpacked'}IM 作为一个正常的数组对待。

如果 PACKOPT 是 'ispacked' ,你必须为 M 指定一个值。

常用形态学操作函数1、dilate函数该函数能够实现二值图像的膨胀操作,有以下形式:BW2=dilate(BW1,SE)BW2=dilate(BW1,SE,…,n)其中:BW2=dilate(BW1,SE)表示使用二值结构要素矩阵SE队图像数据矩阵BW1执行膨胀操作。

输入图像BW1的类型为double或unit8,输出图像BW2的类型为unit8。

BW2=dilate(BW1,SE,…,n)表示执行膨胀操作n次。

2、erode 函数该函数能够实现二值图像的腐蚀操作,有以下形式:BW2= erode(BW1,SE)BW2= erode(BW1,SE,…,n)其中:BW2= erode(BW1,SE)表示使用二值结构要素矩阵SE队图像数据矩阵BW1执行腐蚀操作。

输入图像BW1的类型为double或unit8,输出图像BW2的类型为unit8。

BW2= erode(BW1,SE,…,n)表示执行腐蚀操作n次。

3、bwmorph函数该函数的功能是能实现二值图像形态学运算。

它的格式如下:① BW2=bwmorph(BW1,operation)② BW2=bwmorph(BW1,operation,n)其中:对于格式①,bwmorph函数可对二值图像BW1采用指定的形态学运算;对于格式②,bwmorph函数可对二值图像BW1采用指定的形态学运算n次。

operation为下列字符串之一:‘clean’:除去孤立的像素(被0包围的1)‘close’:计算二值闭合‘dilate’:用结构元素计算图像膨胀‘erode’:用结构元素计算图像侵蚀4、imclose函数该函数功能是对灰度图像执行形态学闭运算,即使用同样的结构元素先对图像进行膨胀操作后进行腐蚀操作。

调用格式为:IM2=imclose(IM,SE)IM2=imclose(IM,NHOOD)5、imopen函数该函数功能是对灰度图像执行形态学开运算,即使用同样的结构元素先对图像进行腐蚀操作后进行膨胀操作。

调用格式为:IM2=imopen(IM,SE)IM2=imopen(IM,NHOOD)matlab连通域处理函数们分类:数字图像、视频处理2011-08-09 14:35 820人阅读评论(0) 收藏举报1、matlab函数bwareaopen──删除小面积对象格式:BW2 = bwareaopen(BW,P,conn)作用:删除二值图像BW中面积小于P的对象,默认情况下使用8邻域。

算法:(1)Determine the connected components.L = bwlabeln(BW, conn);(2)Compute the area of each component.S = regionprops(L, 'Area');(3)Remove small objects.bw2 = ismember(L, find([S.Area] >= P));2、matlab函数bwarea──计算对象面积格式:total = bwarea(BW)作用:估计二值图像中对象的面积。

相关文档
最新文档