Materials studio 简单教程
计算机材料设计materialsstudio教程

计算机材料设计materialsstudio教程1. 介绍材料科学与工程是一门跨学科领域,涉及到物理、化学、工程等多个学科的知识。
在材料研究中,计算机模拟和设计已经成为一种常见的方法。
材料Studio是一款用于材料设计和模拟的软件,广泛应用于材料科学领域。
本教程将介绍材料Studio的基本使用方法,以及在材料设计方面的应用。
2. 安装和启动在开始使用材料Studio之前,首先需要进行软件的安装。
可以通过官方全球信息湾下载安装包,根据指示进行安装。
安装完成后,双击图标启动软件。
3. 界面介绍材料Studio的界面分为多个模块,如建模模块、分子动力学模块等。
用户可以根据需要选择不同的模块进行操作。
在界面的顶部是菜单栏和工具栏,通过菜单栏可以打开新的文件、保存文件、进行模拟等操作。
在界面的中部是主要的视图区域,用户可以在这里进行模拟的展示和操作。
在界面的底部是状态栏,显示了当前软件的状态信息。
4. 材料建模材料Studio提供了丰富的建模功能,用户可以通过拖拽、旋转等操作来建立各种不同的材料模型。
在建模过程中,可以选择不同的原子结构、周期表元素等,还可以进行原子的排列和连接。
建模完成后,可以对材料进行优化,并进行力场计算等操作。
5. 分子动力学模拟分子动力学模拟是材料研究中常用的方法,可以模拟材料的微观结构和动力学行为。
材料Studio提供了强大的分子动力学模拟功能,用户可以在软件中设置模拟的参数,进行分子动力学的模拟。
在模拟过程中,可以观察材料的变化,了解材料的热力学和力学性质。
6. 导入和导出数据在材料研究中,通常需要对模拟的数据进行分析和处理。
材料Studio 可以方便地导入和导出数据,用户可以将模拟结果导出为文本文件、图像文件等格式,方便后续的数据分析。
还可以导入实验数据进行对比分析,帮助验证模拟的结果。
7. 实例分析为了更好地理解材料Studio的使用方法和应用,下面我们以某一具体材料的模拟和分析为例,进行实例分析。
materials studio操作手册

materials studio操作手册Materials Studio是一款功能强大的材料模拟软件,广泛应用于材料科学、化学、物理等领域。
本手册旨在向初学者介绍Materials Studio 的基本操作方法,帮助读者快速上手和熟练使用该软件。
一、软件介绍Materials Studio是由Accelrys公司开发的一款材料模拟软件,提供了多种计算和模拟工具,包括材料结构建模、分子动力学模拟、密度泛函理论计算等。
软件界面简洁直观,操作相对简单,适合初学者学习和使用。
二、软件安装1. 下载Materials Studio安装包,双击运行安装程序。
2. 按照安装向导的提示进行安装,并选择安装路径。
3. 安装完成后,打开软件,输入许可证信息进行激活。
三、材料结构建模1. 打开Materials Studio,点击菜单栏的“建模”选项。
2. 在“建模”界面中,选择所需的建模工具,如“晶体构建”、“分子段构建”等。
3. 根据需要输入所需的参数,如晶体的晶面、晶格常数等。
4. 完成结构建模后,保存并命名该模型。
四、模拟计算1. 在Materials Studio主界面,点击菜单栏的“计算模拟”选项。
2. 在“计算模拟”界面中,选择所需的计算方法,如分子动力学模拟、能带计算等。
3. 根据需要输入所需的参数,如温度、压力、模拟时间等。
4. 点击“开始计算”按钮,等待计算结果的生成。
五、数据分析与可视化1. 根据计算结果,在Materials Studio主界面选择“后处理与分析”选项。
2. 在“后处理与分析”界面中,选择所需的分析工具,如晶体结构分析、能带分析等。
3. 输入相应的参数和选择所需的分析方法。
4. 运行分析工具后,生成分析结果,并通过可视化方式展示。
六、参数优化1. 在Materials Studio主界面,选择“参数优化”选项。
2. 在“参数优化”界面中,选择所需的优化算法,如遗传算法、全局优化算法等。
MaterialsStudio快速入门教程

1. 输入一个结构
File / Import,打开输入文件对话框
(注意,此对话框也可用工具栏上的输入按钮
打开)。
选择 Examples / Documents / 3D Model / TON.msi,单击 Import 按钮。
来选择相应的对象。单击
* 在TON 结构上单击选中的原子,此原子颜色改变,说明被选中。
* 单击一个键,此键的颜色改变,说明被选中。
键被
选中
原子被选中
* 按住鼠标左键,沿斜线托拽,可以选择一定区域内的所有对象,包括原子和键。
此区域的 原子和键 都被选中
* 在结构中的某个原子或键上双击鼠标可以选择整个结构。 * 在3D Viewer 上无TON 结构的地方单击或双击鼠标,则取消对象的选择。 * 需要将结构保存为project的一部分时,单击3D Viewer 的 ,再按 Yes 按钮。 * File / Save Project ,Windows / Close All
点击Modify Element 按钮 右侧的箭头,在下拉选项中选择 Nitrogen,则碳 原子变为氮原子。
在3D Viewer的任意位置点击左键,取消原子选择。
C
N
一般选中某个原子后,在Modify 菜单下的Modify Element 中选择Oxygen 或其它原子来改变原子类型。
6. 编辑键的类型
在 3D Viewer 工具栏上,单击 3D Viewer Selection Mode 按钮 。
如果 3D Viewer 工具栏
没有出现, 在View /
MS简单入门s

一、计 算一般一次提交一 个。也就是只能有 一个running。
这就是软件打开的样子。
二、体系优化
我们运用此软件,首先对要研究的体系进行优化,
优化就是使体系达到最稳定的状态。只有稳定的
状态才是可能存在的实际状态。
然后对已经优化好的体系进行其他性质的计算, 比如(导电性,光学性质等) 最后导出需要的数据,就是所算的性质,进行分 析画图。最终构成论文。
即可出现模型。
二、体系优化
导入模型以后 :
导入后,保持模型在当前打开状态, 点击modules, 可以选择优化所用的 模块。(若模型显示风格与下不同, 可右键,display style – boll and stick 选球棍模型)
二、体系优化
点击Modules,点击DMol3, 再点击calculation,进入 参数设置,也可以选择castep, 在点击calculation。 视不同的需要。DMol3适合分子,团簇的计算, castep 适于周期性结构的计算。
二、体系优化
导入模型方法一
具体路径是:C盘,program file,Accelrys, Materials Studio, share, structure, (此为默认软件 安装路径,若安装时有改动,视自己改动后而定)
二、体系优化
导入模型方法一 :
以半导体为例,我们试着导入一个模型。
进入structure 文件夹 后,双击 半导体
二、体系优化
参数设置(体系优化的)
点击DMol3 ---calculation后,出现此对话 框,Setup---task中可选进行的下一步操 作,一般先选Gemetry Optimization(几何 优化),对体系进行优化。 再点击More,进行具体参数设置 此处参数设置试 具体情况而定。 Medium是中等精 度,若要提高精 度,可选Quality 中的其他选项如 fine,其他项可参 照文献,或经验, 或软件默认的设 定。
Materials studio 简单教程ppt课件

(3)绘制CH3F分子 点击工具栏中的 ,选择C原子 ,并绘制单个C原子,然后点击 ,自 动添加H原子,然后点击 ,并选中任 意一个H原子,选择Modify / Modify Element / Periodic Table,选择F元素。这 样就把选中的H原子换成了F原子, CH3F 分子绘制成功。点击 ,得到合理的初 始配置。
5
(4)文件重命名 选中Project Explorer 中的3D Atomistic.xsd ,2、在模其型上几单何击优鼠化标计右算键,选择Rename , 将点名击称工改具为栏m中e的thylfluo,rid选e,择其Ca文lcu件la名tio变n,为 m在esthetyulfplu选or项id中e.x,sd。将Task由Energy设置为 Geometry Optimization ,Quality由 Medium设置为Coarse,Function保留系统 默认值: LDA 和PWC,然后点击Run。
10
(2)参数设置 将Number of frames 设置为25,勾选
Supe关闭窗口。
11
选择菜单栏的Build / Bonds ,打开对 (话3框),生在成键动和画形式中勾选Monitor bonding 。点然击后关闭按对钮话,框选。择Bounce,然后点击 按钮,播放动画,点击 ,动画停止播 放。
8
4、动画演示反应过程 在菜单栏选择Window/Tile Horizontally
,把两个分子模型放在同一窗口,旋转两 个分子,使没有键结构的两个F原子一个 在左边,一个在右边。
9
(1)反应物、生成物原子匹配 在菜单栏选择Tools / Reaction Preview,
Materials Studio 培训教程

Materials Studio 培训教目录Materials Studio 快速入门教程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 Visualizer 模块快速入门教程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11用第一性原理预测AlAs 的晶格参数⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯36 CO 分子在Pd(110)表面的吸附⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯43Pd(110)面上的CO 分子电荷密度变化⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯55模拟CO_Pd(110)体系的STM 图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯61使用DMol3 中的离域内坐标对固体进行几何优化⋯⋯⋯⋯⋯⋯64 用LST/QST 搜索过渡态⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯69气体在聚合体中扩散的测量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯76聚合物与金属氧化物表面的相互作用⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯86计算共存相之间的界面张力⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯96运行简单的MesoDyn 模拟⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯99使用粉末衍射图进行分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯108指标化粉末衍射图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯117无机物的Rietveld 精修⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯125使用Reflex Plus 来解析3-氯-反-苯乙烯酸的结构⋯⋯⋯⋯⋯⋯⋯133 无机化合物FIN31 的结构确定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯142创腾科技有限公司Neotrident Technology Limited 2Materials Studio 快速入门教程该教程将介绍Materials Studio 软件的基本功能,在这一部分,你将学到:1.生成Projects2.打开并且观察3D 文档3.绘制苯甲酰胺分子4.观察并且处理研究表格文档5.处理分子晶体:尿素6.建造Alpha 石英晶体7.建造多甲基异丁烯酸盐8.保存Project 并结束1. 生成Projects(1).运行Material Visualizer从运行菜单中运行或者在桌面点击快捷方式。
手把手教你用Materials studio

手把手教你用Materials Studio计算碳纳米管的能带结构Materials Studio是Accelrys专为材料科学领域开发的可运行于PC机上的新一代材料计算软件,可帮助研究人员解决当今化学及材料工业中的许多重要问题。
Material s Studio软件采用Client/Server结构,使得任何的材料研究人员可以轻易获得与世界一流研究机构相一致的材料模拟能力。
在这里,我们将介绍如何用Materials Studio 中的Dmol模块计算碳纳米管的能带结构。
Dmol是Materials Studio中自带的密度泛函(DFT)量子力学程序,可计算能带结构、态密度。
基于内坐标的算法强健高效,支持并行计算。
MS4.0版本中加入了更方便的自旋极化设置,可用于计算磁性体系。
4.0版本起还可以进行动力学计算。
碳纳米管是1991年发现的一种新型碳结构,它是由碳原子形成的石磨烯片层卷成的无缝、中空的管体。
一般可分为单壁纳米碳管和多壁纳米碳管。
纳米碳管作为新型的碳材料,其应用具有越来越广阔的天地。
比如说由碳纳米管组成的纤维,具有一般材料所不具有抗拉升能力;金属的碳纳米管,可以被用来作为场效应管之间的连接电路;碳纳米管还可以用来做场效应发射的电极等。
所有的这些应用,都基于对碳纳米管本身的力学和电学性质的了解。
下面的例子介绍如何用Materials Studio 4.0构造不同性质的碳纳米管,以及如何用Dmol模块计算碳纳米管的能带结构。
形象地说,碳纳米管可以想象为将一个石墨层按照一定的法则卷曲后得到。
下图中的OA是碳纳米管的Chiral Vector,也就是将石墨层沿着OA方向卷曲,将O点和A点重叠。
OB是碳纳米管沿轴向的平移矢量。
碳纳米管通常由(n,m)来表征,其意义就是OA=n a1+m a2。
下图是个(4,1)的碳纳米管,图中的θ是碳纳米管的chiral angle,其取值范围在0到30度之间。
materials studio操作手册

materials studio操作手册(实用版)目录1.Materials Studio 简介2.操作手册的主要内容3.如何使用 Materials Studio 进行基本操作4.高级操作技巧与示例5.材料建模与模拟的实践应用6.常见问题与解决方案正文【1.Materials Studio 简介】Materials Studio 是一款专业的材料科学模拟软件,广泛应用于材料研究、教育等领域。
该软件集成了多种模拟方法,如第一性原理、分子动力学、蒙特卡洛模拟等,能够实现对材料的结构、性能、缺陷等方面的研究。
Materials Studio 具有用户友好的界面,支持可视化操作,使得用户可以轻松地搭建模型、设置参数、运行模拟和分析结果。
【2.操作手册的主要内容】Materials Studio 操作手册主要包括以下几个方面的内容:(1)软件安装与配置:介绍如何安装 Materials Studio 及其依赖库,以及配置环境变量等。
(2)界面与基本操作:介绍 Materials Studio 的操作界面,包括菜单栏、工具栏、状态栏等,以及如何进行文件的保存、导入、导出等基本操作。
(3)模型构建与参数设置:介绍如何添加原子、分子、晶体等模型,以及如何设置模拟参数,如温度、压力、晶格常数等。
(4)模拟运行与结果分析:介绍如何运行模拟,以及如何分析结果,如计算能量、力、电荷密度等。
(5)高级操作技巧与示例:介绍如何进行高级操作,如自定义模拟算法、编写脚本等,并提供典型示例。
(6)材料建模与模拟的应用:介绍如何应用 Materials Studio 进行材料研究,如晶体结构预测、材料性能优化等。
【3.如何使用 Materials Studio 进行基本操作】(1)打开软件:在 Windows 系统下,点击“开始”菜单,找到“Materials Studio”并双击;在 Mac 和 Linux 系统下,进入终端,输入命令并回车。
material-studio-入门教程:构建晶胞以及forcite动力学模拟

动力学计算步骤:一、构造分子1:File-new-3D atomistic document-重命名2:构建分子-右键改Display style-adjust hydrogen加氢-clean3:优化分子-moduces-forcite-calculation-几何优化more里面可以改参数-改任务名称-Run二、构建晶胞点开优化好的分子-modules-amorphous cell-construction-添加指定分子-改number,密度,number of configurations调成1-setup-forcefield-compass-Construct三、使分子有序排列,构建超级晶胞先构建一个分子的晶胞-bulid- symmetry –supercell-扩大a,b-保存四、将不同晶胞合并将两个晶胞的参数改成一样后,Bulid-bulid layer-打开所选晶胞-layer details 调节方向-bulid五、动力学模拟计算第一步:Forcite-calculation-dynamic-more-NVT,number of steps和flame output every一样;温度Anderen;Energy中forcefield选择compass-Run。
第二步:Forcite-calculation-dynamic-more-NPT,压力选择0.0001Gpa(常压),number of steps和flame output every一样;thermostat选择Anderen;barostat选择Berendsen;Energy 中forcefield选择compass-Run六、分析参数Modules-forcite-analysis1:径向分布。
2:密度分布。
Materials Studio操作步骤(本人原创)

第3章铁基块体非晶合金-纳米晶转变的动力学模拟过程3.1 Discover模块动力学模拟3.1.1 原子力场的分配在使用Discover模块建立基于力场的计算中,涉及几个步骤。
主要有:选择力场、指定原子类型、计算或指定电荷、选择non-bond cutoffs。
在这些步骤中,指定原子类型和计算电荷一般是自动执行的。
然而,在某些情形下需要手动指定原子类型。
原子定型使用预定义的规则对结构中的每个原子指定原子类型。
在为特定的系统确定能量和力时,定型原子使工作者能使用正确的力场参数。
通常,原子定型由Discover使用定型引擎的基本规则来自动执行,所以不需要手动原子定型。
然而,在特殊情形下,人们不得不手动的定型原子,以确保它们被正确地设置。
图 3-1调出选择原子窗口图3-2 选择原子窗口计算并显示原子类型:点击Edit→Atom Selection,如图3-1所示。
弹出对话框,如图3-2所示。
从右边的…的元素周期表中选择Fe,再点Select,此时所建晶胞中所有Fe原子都将被选中,原子被红色线圈住即表示原子被选中。
再编辑集合,点击Edit→Edit Sets,如图3-3、3-4所示。
图3-3 编辑集合图3-4 设定新集合弹出对话框见图3-4,点击New...,给原子集合设定一个名字。
这里设置为Fe,则3D视图中会显示“Fe”字样,再分配力场:在工具栏上点击Discover按钮,从下拉列表中选择Setup,显示Discover Setup对话框,选择Typing选项卡,见图3-5。
图3-5 给原子添加力场在Forcefield types里选择相应原子力场,再点Assign(分配)按钮进行原子力场分配。
注意原子力场中的价态要与Properties Project里的原子价态(Formalcharge)一致。
3.1.2体系力场的选择点击Energy选项卡,见图3-6。
图3-6 Energy选项卡图3-7 力场下拉菜单力场的选择:力场是经典模拟计算的核心,因为它代表着结构中每种类型的原子与围绕着它的原子是如何相互作用的。
MaterialsStudio快速入门教程

材料性质预测
分子动力学模拟:预测材料力学性 质
弹性常数计算:评估材料稳定性
添加标题
添加标题
添加标题
添加标题
密度泛函理论:计算材料电子结构
声子谱分析:研究材料热力学性质
分子结构优化
目的:通过优化 分子结构来提高 材料的性能
方法:使用 MaterialsStudi o软件中的模块 进行分子结构优 化
目的:预测材料的物理、化学和机械性能,为材料设计和优化提供 依据
方法:利用MaterialsStudio的高级功能,如X射线衍射、中子衍 射和电子显微镜等手段进行实验测量和数据处理
应用:广泛应用于材料科学、化学、物理学和工程等领域
Part Five
常见问题与解决方 案
常见问题汇总
材料计算软件 运行缓慢
量子力学计算
MaterialsStudio中的量子力 学计算模块可用于模拟分子的 电子结构和性质
支持多种量子力学方法,如密 度泛函理论、分子力学等
可用于研究分子的电子结构、 能量、振动频率等性质
用户可以通过简单的界面和操 作完成量子力学计算
晶体结构分析
定义:通过MaterialsStudio软件对晶体结构进行分析,了解材料 的性质和行为
应用场景:在 MaterialsStudi o中,蒙特卡罗 模拟可用于模拟 材料的物理性质, 如热导率、电导 率等。
优势:蒙特卡罗 模拟可以快速得 到近似解,对于 大规模复杂系统 具有很高的计算 效率。
操作步骤:在 MaterialsStudi o中,用户可以 通过选择 “Simulate”菜 单下的“Monte Carlo”选项来 进行模拟。
步骤:选择优化 算法、设置优化 参数、执行优化 计算、分析优化 结果
Materials Studio绘制尖晶石(spinel MgAl2O4)晶胞教程

Materials Studio绘制尖晶石(spinel/MgAl2O4)晶胞教程1.打开MS,新建工作区,文件名需英文。
2.右键左边spinel→new→3D Ato
3 Build---crystals---build crystal。
弹出的对话框的enter group选择尖晶石所属晶系FD-3M,切换到lattice选项卡,输入晶格常数8.0831,然后点击build。
工作区按住右键拖动可以旋转图像,按住滚轮拖动可以移动图像。
4 Build---add atoms。
输入镁原子的相对位置a=0,b=0,c=0,然后按照图示顺序操作。
添加一个镁原子就可以了,系统会自动添加其它位置。
同理按照图示顺序添加:
O (0.375/ 0.125/ 0.125)
Al (0.625/ 0.125/ 0.125)
5右键黑色工作区,选择display style。
弹出的对话框中选择ball and stick.可以调整旁边的参数改变球径。
这时修改的是所有的原子。
鼠标左键点击选择一个原子可以调整该类原子直径。
同时可以在选项卡右上方改变原子颜色。
6 鼠标左键选择一根短棒,然后右键选择delete,可以删除短棒。
7 右键工作区,调出display style,切换到lattice调整max下参数可以调整各方向晶胞数。
选择2或更大,然后回退,可以去除建立单胞外的原子。
8 右键工作区选择display option,切换到backgrounds,可以更改背景颜色。
9.file---export---保存类型选择bmp即可保存为图片。
Materials Studio建模操作详细步骤(本人原创)

第2章Materials Studio建模2.1界面常用操作2.1.1 Materials Studio的启动从Windows“启动”菜单中选择“程序”Accelrys Materials Studio 4.0| Materials Studio。
如果在桌面上有Materials Studio图标,也可以通过双击图标来启动Materials Studio。
在启动Materials Studio时,首先会出现一个所谓的欢迎界面(Welcome to Materials Studio),必须创建一个新的项目或从对话框中载入一个已经存在的项目。
注意:如果是第一次打开Materials Studio,会看到一个叫做Materials Studio 文件关联的对话框,如果出现这种情况,按照提示点击OK按钮即可。
2.1.2 创建项目在欢迎界面对话框上选择创建一个新的项目,然后点击OK。
然后会出现新建项目对话框,选择要存储文件的位置并且键入“tiejifeijinghejin”作为文件名,然后点击OK。
此时的项目管理器如图2-1所示:图2-1 Project 界面Materials Studio对中文支持不好,命名时最好用英文字母,可以右击点Rename,进行重命名。
2.1.3 输出图像可以将3D Atomistic文件显示的图像作为位图输出,输出的图像可以包含到其它文件中。
位图图像被存储为.bmp格式,可以使用简单的位图编辑器比如Windows的画图进行编辑。
从菜单栏中选择File | Export...显示Export对话框。
点击Export as type文本框右侧的选项箭头,从下拉列表中选择Structure Bitmap (*.bmp)。
一旦选择了位图格式,Options...按钮就被激活了。
点击Options...按钮以显示Bitmap Export Options对话框。
可以调节对话框中的位图图像的像素尺寸以适合相关需求。
material_studio教程

A. 在一个新的 3D 文档中 B. 从Build 菜单选择Crystal 下的Build Crystal...会打 开相关的晶体模建对话框。 C. 在Space Group 栏中,选择Enter Group,输入P3221, 并且按下Tab 键进行确认。 D. 也可以从下拉菜单中选择该空间群,如果你知道该空间 群的序号,也可以直接输入该序号。 E. 在 Lattice Paramenters 栏中,在相应的地方可以输 入Alpha 石英的a 和c 晶胞参数为a=4.910 c=5.402。
5.处理分子晶体:尿素 5.
处理分子晶体:尿素
医药、农药、色素、染料、专用化合物以及爆炸物等在工 业制造过程的某些阶段,都是晶体材料。 对这些材料进行模拟,可以扩展我们对其的认识,最终帮 助我们控制其性质,例如溶解性、模板寿命、形态、生物 药效率、颜色、振动强度、气压和密度等。 在练习中我们将使用尿素作为一个简单的例子进行分子晶 体材料的模拟。
(5).检测结构中氢键连 (5).
A. 旋转结构观测氢键网络 B. 使用键盘上的上、下、左、右键头将按照 45°为单位 进行旋转转。
6.建造Alpha 石英晶体 Alpha 6.
建造Alpha 石英晶体 Alpha
应用领域:
异相催化剂的应用
沸石催化剂 在石油、天然气探测中的矿物采样分析
建造Alpha 石英晶体 Alpha
打开并且观察3D 文档 3D
(3).选择对象的各种类型 (3). 在 3D View 工具栏上选择3D Viewer Selection Mode。 通过单击原子、键来选择相应的对象该对象变为黄色表 示已经被选中。 通过鼠标的托拽操作可以选择一定区域内的所有对象, 包括原子和键。 在结构中的某个原子或键上双击鼠标可以选择整个结构。
Materials Studio 培训教程

Materials Studio 培训教目录Materials Studio 快速入门教程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 Visualizer 模块快速入门教程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11用第一性原理预测AlAs 的晶格参数⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯36 CO 分子在Pd(110)表面的吸附⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯43Pd(110)面上的CO 分子电荷密度变化⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯55模拟CO_Pd(110)体系的STM 图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯61使用DMol3 中的离域内坐标对固体进行几何优化⋯⋯⋯⋯⋯⋯64 用LST/QST 搜索过渡态⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯69气体在聚合体中扩散的测量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯76聚合物与金属氧化物表面的相互作用⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯86计算共存相之间的界面张力⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯96运行简单的MesoDyn 模拟⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯99使用粉末衍射图进行分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯108指标化粉末衍射图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯117无机物的Rietveld 精修⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯125使用Reflex Plus 来解析3-氯-反-苯乙烯酸的结构⋯⋯⋯⋯⋯⋯⋯133 无机化合物FIN31 的结构确定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯142创腾科技有限公司Neotrident Technology Limited 2Materials Studio 快速入门教程该教程将介绍Materials Studio 软件的基本功能,在这一部分,你将学到:1.生成Projects2.打开并且观察3D 文档3.绘制苯甲酰胺分子4.观察并且处理研究表格文档5.处理分子晶体:尿素6.建造Alpha 石英晶体7.建造多甲基异丁烯酸盐8.保存Project 并结束1. 生成Projects(1).运行Material Visualizer从运行菜单中运行或者在桌面点击快捷方式。
materialstudio教程PPT课件

.
2
1. 生成Projects
.
3
生成Projects
(1).运行Material studio (2).生成Project
.
4
2.打开并且观察3D 文档
.
5
打开并且观察3D 文档
(1)调整显示风格 在 3D 结构上单击右键 并选择Display Style
对话框中的各选项的意义如下 Atom栏 Line:线状模型 Stick:棍状模型 Ball and stick:球棍模型 CPK:球堆砌模型 Polyhedron:多面体堆积模型(晶体) Lattice 栏: Display:显示单个晶胞或者元胞 Range:显示在X、Y、Z 方向上晶胞的数量 Lattice:显示晶胞边界的风格
.
18
Байду номын сангаас
4.观察并且处理研究表格文档
.
19
观察并且处理研究表格文档
.
8
3.绘制苯甲酰胺分子
.
9
绘制苯甲酰胺分子
下面是要建造的苯甲酰胺结构:
(1).生成3D 文档
➢ 在菜单上选择 New,并且选择3D Atomistic Document 后单 击OK此时文件名称出现。
➢ 在左侧的Project Explorer 中,名称为3D Atomistic Document.xsd,在其上单击鼠标右键,选择ReName 进行改 名并进行保存。
单击原子将键连接到该原子上,然后移动鼠标并在合适 位置单击设置另一个原子。
要结束绘制,请在最后一个原子上双击鼠标左健或者按
下键盘上的 Esc 键。
.
11
绘制苯甲酰胺分子
(3).将分子改变为球棍模型
material-studio-入门教程:构建晶胞以及forcite动力学模拟

material-studio-入门教程:构建晶胞以及forcite动力学模拟动力学计算步骤:一、构造分子1:File-new-3D atomistic document-重命名2:构建分子-右键改Display style-adjust hydrogen加氢-clean 3:优化分子-moduces-forcite-calculation-几何优化more里面可以改参数-改任务名称-Run二、构建晶胞点开优化好的分子-modules-amorphous cell-construction-添加指定分子-改number,密度,number of configurations调成1-setup-forcefield-compass-Construct三、使分子有序排列,构建超级晶胞先构建一个分子的晶胞-bulid- symmetry –supercell-扩大a,b-保存四、将不同晶胞合并将两个晶胞的参数改成一样后,Bulid-bulid layer-打开所选晶胞-layer details 调节方向-bulid五、动力学模拟计算第一步:Forcite-calculation-dynamic-more-NVT,number of steps和flame output every一样;温度Anderen;Energy中forcefield选择compass-Run。
第二步:Forcite-calculation-dynamic-more-NPT,压力选择0.0001Gpa(常压),number of steps和flame output every一样;thermostat选择Anderen;barostat选择Berendsen;Energy 中forcefield选择compass-Run六、分析参数Modules-forcite-analysis1:径向分布。
2:密度分布。
Materials Studio 培训教程

Materials Studio 培训教目录Materials Studio 快速入门教程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 Visualizer 模块快速入门教程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11用第一性原理预测AlAs 的晶格参数⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯36 CO 分子在Pd(110)表面的吸附⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯43Pd(110)面上的CO 分子电荷密度变化⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯55模拟CO_Pd(110)体系的STM 图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯61使用DMol3 中的离域内坐标对固体进行几何优化⋯⋯⋯⋯⋯⋯64 用LST/QST 搜索过渡态⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯69气体在聚合体中扩散的测量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯76聚合物与金属氧化物表面的相互作用⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯86计算共存相之间的界面张力⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯96运行简单的MesoDyn 模拟⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯99使用粉末衍射图进行分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯108指标化粉末衍射图⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯117无机物的Rietveld 精修⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯125使用Reflex Plus 来解析3-氯-反-苯乙烯酸的结构⋯⋯⋯⋯⋯⋯⋯133 无机化合物FIN31 的结构确定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯142创腾科技有限公司Neotrident Technology Limited 2Materials Studio 快速入门教程该教程将介绍Materials Studio 软件的基本功能,在这一部分,你将学到:1.生成Projects2.打开并且观察3D 文档3.绘制苯甲酰胺分子4.观察并且处理研究表格文档5.处理分子晶体:尿素6.建造Alpha 石英晶体7.建造多甲基异丁烯酸盐8.保存Project 并结束1. 生成Projects(1).运行Material Visualizer从运行菜单中运行或者在桌面点击快捷方式。
在materials studio中用铁原子替换二硫化钼的钼原子的详细操作方法

在materials studio中用铁原子替换二硫化钼的钼原子的详细操作方法一、准备工作。
1.1 安装并打开Materials Studio软件。
咱得先把Materials Studio这个强大的工具安装好,就好比战士上战场得先把武器装备准备齐全。
安装完成后,双击打开它,进入那熟悉又充满可能性的界面。
1.2 导入二硫化钼结构文件。
在软件里找到导入文件的选项,把咱提前准备好的二硫化钼结构文件给导进去。
这就好比把原材料搬进了的“工作室”,准备大展身手一番。
二、定位钼原子。
2.1 显示原子信息。
导入文件后,要让软件把原子信息清晰地展示出来。
通过相关的设置选项,让每个原子都“暴露”在眼前,就像把它们放在聚光灯下,看得明明白白。
2.2 找到钼原子。
在众多原子中,得把钼原子给揪出来。
可以根据原子的属性、坐标等信息,把钼原子一个个找出来,就像在人群中找出特定的人一样,得细心又有耐心。
2.3 标记钼原子。
找到钼原子后,给它们做个标记,方便后续操作。
这就好比给要替换的“目标”贴上标签,免得一会儿弄混了。
三、替换钼原子为铁原子。
3.1 选择替换工具。
在软件的工具栏里找到替换原子的工具,这工具就像是的“魔法棒”,能帮完成关键的替换操作。
3.2 设置替换参数。
点击替换工具后,会弹出设置参数的窗口。
在这里,把要替换的原子设为钼原子,替换成的原子设为铁原子。
这一步就像是给“魔法棒”设定好指令,让它知道该怎么变。
3.3 执行替换操作。
设置好参数后,点击确定或者执行按钮,软件就会按照的要求,把钼原子一个个替换成铁原子。
看着原子在屏幕上发生变化,就像见证了一场神奇的“变身”,真的挺让人激动的。
四、检查与优化。
4.1 检查替换结果。
替换完成后,要仔细检查一下,看看是不是所有的钼原子都被成功替换成了铁原子,有没有漏网之鱼。
这就好比检查作业,得保证每一个细节都没问题。
4.2 优化结构。
如果发现结构有点不太对劲,比如原子之间的距离不太合适,那就得用软件的优化功能调整一下。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
21
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!
,预览后关闭窗口。
.
11
Xi’an Jiaotong University
选择菜单栏的Build / Bonds ,打开对话框,在键和形式中勾选Monitor bonding 。然后关闭对话框。
(3)生成动画 点击 按钮,选择Bounce,然后点击
止播放。
按钮,播放动画,点击
,动画停
.
12
Xi’an Jiaotong University
Display Style中选择Ball and stick 。点击 关闭对话框。 这样在本project 中,默认显示方式被设置为 ball and stick。
.
4
Xi’an Jiaotong University
(3)绘制CH3F分子
点击工具栏中的 ,选择C原子
,并绘制单个C原子,然后点击 ,自
/ Save Project保存文件,然后选择Window / Close All,关闭所有Project Explorer窗 口。 (3)创建生成物
跟前面一样,创建新的文件,取名为SN2Product.xsd,然后复制SN2reactant.xsd 的模型到该文件。
.
8
Xi’an Jiaotong University
在SCF选项中,勾选Use smearing;在Orbital Cutoff选项中,勾选Custom,设 置Global orbital cutoff的值为5.0 Å。然后点击Assign并关闭窗口。
.
14
Xi’an Jiaotong University
在计算对话框的Properties选项中勾选Frequency,点击Run,开始计算。得到计 算结果。
.
18
Xi’an Jiaotong University
打开SN2reactant-SN2product DMol3 TSConf文件夹中的SN2reactant-SN2product TSConfirmation.xcd文件,保存并关闭所有窗口。
.
19
Xi’an Jiaotong University
点击 按钮,选择Periodic Table中的F原子,选中已有C原子,添加一个与已 有C-F键位置相对的C-F键。然后点击 ,选择Distance,选中C原子,左键拖 拽新添加的F原子,调节C-F键的键长为3 Å。
.
7
Xi’an Jiaotong University
(2)删除新C-F键 点击 按钮,按住Ctrl键,选中C-F键和标注的键长,然后按Delete键。选择File
.
16
Xi’an Jiaotong University
选择频率为负数的一行,点击Animation,关闭窗口。此时播放动画,按 止。然后保存文件,关闭所有Project Explorer窗口。
,停
.
17
Xi’an Jiaotong University
打开Sห้องสมุดไป่ตู้2reactant-SN2product.xtd,然后打开DMol3 Calculation对话框,选择 Task选项的TS Confirmation;点开More,打开DMo13 TS Confirmation对话框, 选择Path quality选项的Coarse并关闭该窗口;在Properties选项中,取消选择 Frequency,最后点击Run。
2、模型几何优化计算 点击工具栏中的 ,选择Calculation,在setup选项中,将Task由Energy设置 为Geometry Optimization ,Quality由Medium设置为Coarse,Function保留系 统默认值: LDA 和PWC,然后点击Run。
.
6
Xi’an Jiaotong University
SN2reactant.xsd 和SN2product.xsd 作为反应物和生成物。点击Match按钮,将反 应物和生成物的六个原子的分别相匹配。
.
10
Xi’an Jiaotong University
(2)参数设置 将Number of frames 设置为25,勾选Superimpose structures,点击Preview
.
2
Xi’an Jiaotong University
1、创建CH3F分子模型 (1)创建新文件 在菜单上选择File / New Project,新建文件,设置文件名为LSTQST后单击OK。此 时文件名称出现在左侧的Project Explorer 中。
.
3
Xi’an Jiaotong University
打开SN2reactant-SN2product.xtd 和SN2reactant-SN2product TSConfirmation.xcd 选择则菜单栏的Window/Tile Vertically,把分子结构和计算结果放在同一窗口。
.
20
Xi’an Jiaotong University
Thank you
4、动画演示反应过程 在菜单栏选择Window/Tile Horizontally,把两个分子模型放在同一窗口,旋转两
个分子,使没有键结构的两个F原子一个在左边,一个在右边。
.
9
Xi’an Jiaotong University
(1)反应物、生成物原子匹配 在菜单栏选择Tools / Reaction Preview,打开Reaction Preview 对话框,分别选
单击工具栏中的 按钮,选择3D Atomistic 然后点击确定。此时文件名称出现在 左侧的Project Explorer 中,名称为3D Atomistic.xsd。
(2)设置球棍模型为默认显示方式 从菜单栏中选择 Modify / Default Atom Style ,打开 Default Atom Style 对话框。在
Xi’an Jiaotong University
计算材料学
materials studio
.
1
Xi’an Jiaotong University
1.创建CH3F分子模型 2.模型几何优化计算 3.创建反应物和生成物分子模型 4.动画演示反应过程 5.使用LST/QST计算分子的过渡状态 6.振动分析
3、创建反应物和生成物分子模型 双击打开methylfluoride DMol3 GeomOpt文件夹中的methylfluoride.xsd,利用
CTRL + A 和CTRL + C全选并复制所有原子。然后右击文件名,选择New/3D Atomistic Document,创建新文件后, CTRL + V 复制所有原子到该文件,并重命 名为SN2reactant.xsd 。 (1)添加第二个F原子
5、使用LST/QST计算分子的过渡状态 点击 ,选择Calculation,打开对话框,在Setup选项中,Task选TS Search,
Functional为默认值,Charge值设为-1;在Electronic选项中,点击More,进入另一 个对话框。
.
13
Xi’an Jiaotong University
.
15
Xi’an Jiaotong University
6、振动分析 打开SN2reactant-SN2product DMol3 TS Search文件夹里的SN2reactant-
SN2product.xsd 文件,在菜单栏选择Tools / Vibrational Analysis,打开对话框,点 击Calculate,开始计算。
动添加H原子,然后点击 ,并选中任意一个H原子,选择Modify / Modify
Element / Periodic Table,选择F元素。这样就把选中的H原子换成了F原子, CH3F
分子绘制成功。点击 ,得到合理的初始配置。
.
5
Xi’an Jiaotong University
(4)文件重命名 选中Project Explorer 中的3D Atomistic.xsd,在其上单击鼠标右键,选择Rename , 将名称改为methylfluoride,其文件名变为methylfluoride.xsd。