实数完备性定理相互等价的证明
实数完备性定理的等价性证明及其应用任务书
目录1毕业论文正文2皖西学院本科毕业论文(设计)任务书3皖西学院本科毕业论文(设计)开题报告4皖西学院本科毕业论文(设计)中期检查表5皖西学院本科毕业论文(设计)指导教师意见表6皖西学院本科毕业论文(设计)评阅教师意见表7皖西学院本科毕业论文(设计)答辩记录表皖西学院本科毕业论文(设计)任务书系别:数理系专业:数学与应用数学皖西学院本科毕业论文(设计)开题报告系别:数理系专业:数学与应用数学皖西学院本科毕业论文(设计)中期检查表系别:数理系专业:数学与应用数学皖西学院本科毕业论文(设计)指导记录表系别:数理系专业:数学与应用数学注:本表由指导教师根据毕业论文(设计)指导工作方案和实际指导情况填写,在指导工作完成后交系保存。
皖西学院本科毕业论文(设计)指导教师意见表系别:数理系专业:数学与应用数学皖西学院本科毕业论文(设计)评阅教师意见表系别:数理系专业:数学与应用数学皖西学院本科毕业论文(设计)评阅教师意见表系别:数理系专业:数学与应用数学皖西学院本科毕业论文(设计)答辩记录表(小组答辩)系别:数理系专业:数学与应用数学问题与解答:1、具体阐述有限覆盖定理的内容?答:闭区间的任一开覆盖都含有一个有限子覆盖, 即H 中可找出有限个开集覆盖。
2、定理的等价性证明顺序性有何要求?答:文章中只是给出了一种证明的顺序,对顺序没有要求,只要能够形成一个环形结构证明即可。
3、用柯西准则判断敛散性的优越性体现在哪里?答:作为判别敛散性的工具,柯西准则较其它判别法具有更多的优点。
其一,条件的充分必要条件决定其适用范围更广、更普遍;其二,柯西准则只利用题目本身的条件,不必借助极限结果。
答辩小组评语:该生基础知识扎实,知识的综合运用能力较强,文章选题实用性较强,内容充实,有一定的创新,质量较高。
答辩小组评定等级良好答辩小组组长签字:年月日。
实数完备性等价命题及证明
一、问题提出确界存在定理(定理1.1)揭示了实数的连续性和实数的完备性. 与之等价的还有五大命题,这就是以下的定理1.2至定理1.6.定理1.2 (单调有界定理)任何单调有界数列必定收敛.定理1.3 (区间套定理)设为一区间套:.则存在唯一一点定理1.4 (有限覆盖定理) 设是闭区间的一个无限开覆盖,即中每一点都含于中至少一个开区间内.则在中必存在有限个开区间,它们构成的一个有限开覆盖.定理1.5 (聚点定理) 直线上的任一有界无限点集至少有一个聚点,即在的任意小邻域内都含有中无限多个点(本身可以属于,也可以不属于).定理1.6 (柯西准则) 数列收敛的充要条件是:,只要恒有.(后者又称为柯西(Cauchy)条件,满足柯西条件的数列又称为柯西列,或基本列.)这些定理构成极限理论的基础.我们不仅要正确理解这六大定理的含义,更重要的还要学会怎样用它们去证明别的命题.下面通过证明它们之间的等价性,使大家熟悉使用这些理论工具.下图中有三种不同的箭头,其含义如下::(1)~(3) 基本要求类:(4)~(7) 阅读参考类:(8)~(10) 习题作业类下面来完成(1)~(7)的证明.二、等价命题证明(1)(用确界定理证明单调有界定理)(2)(用单调有界定理证明区间套定理)(3)(用区间套定理证明确界原理)*(4)(用区间套定理证明有限覆盖定理)*(5)(用有限覆盖定理证明聚点定理)*(6)(用聚点定理证明柯西准则)*(7)(用柯西准则证明单调有界定理)(1)(用确界定理证明单调有界定理)〔证毕〕(返回)(2)(用单调有界定理证明区间套定理)设区间套.若另有使,则因.[证毕][推论]设为一区间套,.则当时,恒有.用区间套定理证明其他命题时,最后常会用到这个推论.(返回)(3) (用区间套定理证明确界原理)证明思想:构造一个区间套,使其公共点即为数集的上确界.设, 有上界.取;,再令如此无限进行下去,得一区间套.可证:因恒为的上界,且,故,必有,这说明是的上界;又因,故,而都不是的上界,因此更不是的上界.所以成立.[证毕](返回)*(4)(用区间套定理证明有限覆盖定理)设为闭区间的一个无限开覆盖.反证法假设:“不能用中有限个开区间来覆盖”.对采用逐次二等分法构造区间套,的选择法则:取“不能用中有限个开区间来覆盖”的那一半.由区间套定理,.导出矛盾:使记由[推论],当足够大时,这表示用中一个开区间就能覆盖,与其选择法则相违背.所以必能用中有限个开区间来覆盖.[证毕][说明]当改为时,或者不是开覆盖时,有限覆盖定理的结论不一定成立.(返回)*(5)(用有限覆盖定理证明聚点定理)设为实轴上的有界无限点集,并设.由反证法假设来构造的一个无限开覆盖:若有聚点,则.现反设中任一点都不是的聚点,即在内至多只有.这样,就是的一个无限开覆盖.用有限覆盖定理导出矛盾:据定理9,存在为的一个有限开覆盖(同时也覆盖了).由假设,内至多只有所属个邻域内至多只有属于(即只覆盖了中有限个点).这与覆盖了全部中无限多个点相矛盾.所以,有界无限点集必定至少有一个聚点.[证毕][推论(致密性定理)]有界数列必有收敛子列.即若为有界数列,则使有.子列的极限称为原数列的一个极限点,或称聚点.(返回)*(6)(用聚点定理证明柯西准则)柯西准则的必要性容易由数列收敛的定义直接证得,这里只证其充分性.已知条件:当时.欲证收敛..首先证有界.对于当时,有令,则有..由致密性定理,存在收敛子列,设..最后证,由条件,当时,有.于是当(同时有)时,就有.[证毕](返回)*(7)(用柯西准则证明单调有界原理) 设为一递增且有上界M的数列.用反证法(借助柯西准则)可以证明:倘若无极限,则可找到一个子列以为广义极限,从而与有上界相矛盾.现在来构造这样的.对于单调数列,柯西条件可改述为:“当时,满足”.这是因为它同时保证了对一切,恒有.倘若不收敛,由上述柯西条件的否定陈述:,对一切,,使.依次取把它们相加,得到.故当时,可使,矛盾.所以单调有界数列必定有极限. [ 证毕 ]在以上六个等价命题中,最便于推广至中点集的,当属聚点定理与有限覆盖定理.为加深对聚点概念的认识,下例所讨论的问题是很有意义的.[例]证明“是点集的聚点”的以下三个定义互相等价:(i) 内含有中无限多个点(原始定义);(ii) 在内含有中至少一个点;(iii) ,时,使.证:(i)(ii) 显然成立.(ii)(iii) 由(ii),取,;再取;……一般取;……由的取法,保证,,.(iii)(i)时,必有,且因各项互不相同,故内含有中无限多个点.[证毕]。
实数完备性定理的等价性证明及其应用
实数完备性定理的等价性证明及其应用一、实数完备性定理的等价性证明:1.柯西收敛准则证明实数完备性:我们假设存在一个无穷序列{an},满足对于任意的正实数ε,都存在正整数N,使得当m > n > N时,有,am - an,< ε。
由于{an}是有序序列,它必然有上确界和下确界。
我们将上确界记为A,下确界记为B。
首先,我们来证明A和B是相等的。
假设A > B,那么A - B > 0,根据柯西收敛准则,我们可以找到正整数N1,使得当p > q > N1时,有,ap - aq, < A - B。
由于A是上确界,所以存在一个正整数n1,使得an1 > A - (A - B) = B。
同样地,我们可以找到正整数N2,使得当r >s > N2时,有,ar - as, < A - B。
由于A是上确界,所以存在一个正整数n2,使得an2 > A - (A - B) = B。
由于n1和n2是正整数,所以我们可以取N = max{N1, N2},使得当p > q > N时,有,ap - aq, < A- B。
但是,同时存在正整数n1和n2,使得an1 > B和an2 > B,与前面所述矛盾。
因此,A和B必然相等,记为C。
接下来,我们证明C是这个序列的极限。
假设对于任意的正实数ε,存在一个正整数N,使得当n > N时,有,an - C,< ε。
我们取ε =ε/2,那么根据柯西收敛准则,必然存在一个正整数N,使得当p > q >N时,有,ap - aq,< ε/2、由于C就是上确界和下确界,所以必然存在正整数n > N,使得,an - C,< ε/2、根据三角不等式,我们有,ap - C,≤ ,ap - aq, + ,aq - C,< ε/2 + ε/2 = ε。
因此,C就是这个序列的极限,这就证明了实数完备性。
《数学分析》实数完备性七大定理证明与七大定理相互证明
《数学分析》实数完备性七大定理证明与七大定理相互证明在数学分析中,实数完备性是一个非常重要的概念。
实数完备性是指实数轴上不存在任何空缺的性质,即任何实数序列都有收敛的子序列。
实数完备性可由七大定理进行证明,并且这七个定理之间也可以相互证明。
下面将对这七大定理进行证明,并且展示它们之间的相互证明。
第一个定理是确界定理(或称上确界定理)。
它的表述是:有上界的非空实数集必有上确界。
证明如下:先证明存在性,假设S是有上界的非空实数集,令M为S的一个上界,那么对于S中的任意元素x,都有x≤M。
接下来我们来证明M是S的上确界。
首先,我们要证明M是S的一个上界,即对于任意x∈S,x≤M。
其次,我们要证明对于任意ε>0,存在一个元素s∈S,使得M-ε<s≤M。
这两点都可以使用导致上确界的性质来证明。
因此,我们证明了确界定理。
第二个定理是区间套定理。
它的表述是:若{[an,bn]}是一个递减的闭区间序列,并且满足an≤bn,则存在一个唯一的实数x同时含于所有闭区间[an,bn]中。
证明如下:首先,我们证明了区间套的任意两个闭区间之间的交集不为空。
其次,我们证明了{an}是一个递增有上界的实数序列,{bn}是一个递减有下界的实数序列。
因此,根据实数完备性的定义,存在唯一的实数x满足an≤x≤bn,即x属于所有闭区间的交集。
第三个定理是柯西收敛准则。
它的表述是:一个实数序列是收敛的充分必要条件是它满足柯西收敛准则,即对于任意ε>0,存在自然数N,使得当m,n≥N时,有,am-an,<ε。
证明如下:首先,我们证明了柯西收敛准则蕴含了实数序列的有界性。
其次,我们证明了柯西收敛准则蕴含了实数序列的单调性。
因此,根据实数完备性的定义,实数序列的柯西收敛准则是实数序列收敛的充分必要条件。
第四个定理是实数域的离散性。
它的表述是:任意两个实数之间必存在有理数和无理数。
证明如下:假设a和b是两个实数,并且a<b。
关于实数完备性相关定理等价性研
关于实数完备性相关定理等价性的研究摘要:实数集的完备性是实数集的一个基本特征,它是微积分学的坚实的理论基础。
可以从不同的角度来描述和刻画实数集的完备性,因此有多个实数集的完备性基本定理。
与之相关的七个基本定理(确界存在定理、单调有界定理、区间套定理、致密性定理、聚点定理、闭区间有限覆盖定理以及柯西收敛准则)是彼此等价的。
本文主要是讨论证明这七个定理的等价性。
在这里我们首先论证确界存在定理,然后由此出发依次论证实数系的其它六个基本定理,并最终形成一个完美的论证“环”。
关键词:实数集 完备性 基本定理 等价性 证明Research about the equivalence theorems of completeness ofreal numbersAbstract: Completeness of the set of real numbers is its basic character, and it is stable theory background of calculus. It can be described and depicted in different angles, so there are considerable fundamental theorems about it. Fundamental Theorems of seven related about supremum and form a ideal proof “loop”.Key words: set of real numbers , completeness , fundamental theorem ,equivalence , proof.引言:我们知道实数的完备性在理论上有很大的价值,与之相关的七个基本定理从不同的角度描述了实数的基本性质。
并且这七个基本定理是相互等价的,在这里我们先证明出实数的确界存在定理,然后以此为基础顺次证明其他的六个定理最后再回到确界存在定理得到一个完美的“环”状结构的证明。
实数完备性基本定理相互证明
关于实数连续性的基本定理关键词:实数基本定理 确界定理 单调有界原理 区间套定理 有限覆盖定理 紧致性定理 柯西收敛定理 等价证明以上的定理表述如下:实数基本定理:对R 的每一个分划A|B ,都∃唯一的实数r ,使它大于或等于下类A 中的每一个实数,小于或等于上类B 中的每一个实数。
确界定理:在实数系R 内,非空的有上(下)界的数集必有上(下)确界存在。
单调有界原理:若数列}{n x 单调上升有上界,则}{n x 必有极限。
区间套定理:设{,[n a ]n b }是一个区间套,则必存在唯一的实数r,使得r 包含在所有的区间里,即∞=∈1],[n n n b a r 。
有限覆盖定理:实数闭区间[a,b]的任一覆盖E,必存在有限的子覆盖。
紧致性定理:有界数列必有收敛子数列。
柯西收敛定理:在实数系中,数列}{n x 有极限存在的充分必要条件是:εε<->>∃>∀||,,,0m n x x ,N m N n N 有时当。
这些定理虽然出发的角度不同,但描写的都是实数连续性这同一件事,它们之间是相互等价的,即任取其中两个定理,它们可以相互证明。
那么,它们在证明过程中有哪些联系?作为工具,它们又各具有什么特点?以下先给出它们的等价证明。
(二)实数基本定理的等价证明一.用实数基本定理证明其它定理 1.实数基本定理→单调有界定理证明:设数列}{n x 单调上升有上界。
令B 是数列}{n x 全体上界组成的集合,即B={b|n b x n ∀≤,},而A=R ﹨B ,则A|B 是实数的一个分划。
事实上,由单调上升}{n x ,故1x -1∈A ,即A 不空,由A=R ﹨B ,知A 、B 不漏。
又对任给a ∈A ,b ∈B ,则存在0n ,使a <0n x ≤b ,即A 、B 不乱。
故A|B 是实数的一个分划。
根据实数基本定理,A ,a R r ∈∀∈∃使得对,b r aB ,b ≤≤∈有。
实数完备性六个定理的互相证明
0 , x S ,使得 x ,
记为 xn a ( n ) 。如果不存在实数 a,使 xn 收敛于 a,则称数列 xn 发散。
lim xn a 0 , N N , n N ,有 xn a 。
二、一些基本概念
1.有界集: 设 S 是一个非空数集,如果 M R ,使得 x S ,有 x M ,则称 M 是 S 的
一个上界;如果 m R ,使得 x S ,有 x m ,则称 m 是 S 的一个下界。当数集 S 既有上界,又有下界时,称 S 为有界集。
a1 b1 a b a b , b1 S ,则记 a2 , b2 = 1 1 , b1 否则记 a2 , b2 = a1 , 1 1 ;...;对 2 2 2 an 1 bn 1 an 1 bn 1 a b an1 , bn1 二等分为 , bn 1 ,若 n 1 n 1 , bn 1 S , an 1 , 、 2 2 2
则记 a2 , b2 =
a1 b1 a b , b1 否则记 a2 , b2 = a1 , 1 1 ;...;对 an 1 , bn 1 二等分为 2 2
an 1 bn 1 an 1 bn 1 a b , bn 1 ,若 n 1 n 1 非 s 的上界,则记 、 an 1 , 2 2 2 an 1 bn 1 a b an , bn = , bn 1 否则记 an , bn = an 1 , n 1 n 1 ;...,得到一列闭区间 2 2
上界,则记 a2 , b2 =
实数完备性的六大基本定理的相互证明
1 确界原理非空有上(下)界数集,必有上(下)确界。
2 单调有界原理 任何单调有界数列必有极限。
3 区间套定理 若]},{[n n b a 是一个区间套, 则存在唯一一点ξ,使得 ,2,1],,[=∈n b a n n ξ。
4 Heine-Borel 有限覆盖定理 设],[b a 是一个闭区间,H 为],[b a 上的一个开覆盖,则在H 中存在有限个开区间,它构成],[b a 上的一个覆盖。
5 Weierstrass 聚点定理(Bolzano 致密性定理有界无穷数列必有收敛子列。
) 直线上的有解无限点集至少有一个聚点。
6 Cauchy 收敛准则数列}{n a 收敛⇔对任给的正数ε,总存在某一个自然数N ,使得N n m >∀,时,都有ε<-||n m a a 。
一.确界原理1.确界原理证明单调有界定理证 不妨设{ a n }为有上界的递增数列.由确界原理,数列{ a n }有上确界,记a = sup{ a n }.下面证明a 就是{ a n } 的极限. 事实上,任给ε> 0, 按上确界的定 义,存在数列{ a n }中某一项a N ,使得a - ε> a N .又由{ a n }的递增性,当n ≥ N时有a - ε < a N ≤ a n .另一方面,由于a 是{ a n }的一个上界,故对一切a n 都有a n ≤ a < a + ε.所以当 n ≥ N 时有a - ε < a n < a + ε,这就证得a n = a.同理可证有下界的递减数列必有极限,且其极限即为它的下确界.2.确界原理证明区间套定理 证明:1设 [an,bn] 是一个闭区间套,即满足: 1)∀n,[an+1,bn+1]⊂[an,bn];2)bn-an =我们证明,存在唯一的实数ξ,使得ξ∈[an,bn],(n =1,2,⋯)存在性:令S={an},显然,S非空且有上界(任一bn都是其上界).据确界原理,S有上确界,设sup S =ξ.现在,我们证明ζ属于每个闭区间[an,bn],(n=1,2,⋯)显然an ≤ξ,(n =1,2,⋯)所以,我们只需证明对一切自然数n,都有ξ≤bn. 事实上,因为对一切自然数n,bn都是S 的上界,而上确界是上界中最小者,因此必有 ξ≤bn,故我们证明了存在一实数ξ,使得ξ∈[an,bn],(n =1,2,⋯)唯一性: 假设还有另外一点R ∈'ξ且],[n n b a ∈'ξ,则||||n n b a -≤'-ξξ,0→ 即ξξ'=。
实数完备性的等价命题及证明
一、问题提出确界存在定理(定理1.1)揭示了实数的连续性和实数的完备性. 与之等价的还有五大命题,这就是以下的定理1.2至定理1.6.定理1.2 (单调有界定理)任何单调有界数列必定收敛.定理1.3 (区间套定理)设为一区间套:.则存在唯一一点定理1.4 (有限覆盖定理) 设是闭区间的一个无限开覆盖,即中每一点都含于中至少一个开区间内.则在中必存在有限个开区间,它们构成的一个有限开覆盖.定理1.5 (聚点定理) 直线上的任一有界无限点集至少有一个聚点,即在的任意小邻域内都含有中无限多个点(本身可以属于,也可以不属于).定理1.6 (柯西准则) 数列收敛的充要条件是:,只要恒有.(后者又称为柯西(Cauchy)条件,满足柯西条件的数列又称为柯西列,或基本列.)这些定理构成极限理论的基础.我们不仅要正确理解这六大定理的含义,更重要的还要学会怎样用它们去证明别的命题.下面通过证明它们之间的等价性,使大家熟悉使用这些理论工具.下图中有三种不同的箭头,其含义如下::(1)~(3) 基本要求类:(4)~(7) 阅读参考类:(8)~(10) 习题作业类下面来完成(1)~(7)的证明.二、等价命题证明(1)(用确界定理证明单调有界定理)(2)(用单调有界定理证明区间套定理)(3)(用区间套定理证明确界原理)*(4)(用区间套定理证明有限覆盖定理)*(5)(用有限覆盖定理证明聚点定理)*(6)(用聚点定理证明柯西准则)*(7)(用柯西准则证明单调有界定理)(1)(用确界定理证明单调有界定理)〔证毕〕(返回)(2)(用单调有界定理证明区间套定理)设区间套.若另有使,则因.[证毕][推论]设为一区间套,.则当时,恒有.用区间套定理证明其他命题时,最后常会用到这个推论.(返回)(3) (用区间套定理证明确界原理)证明思想:构造一个区间套,使其公共点即为数集的上确界.设, 有上界.取;,再令如此无限进行下去,得一区间套.可证:因恒为的上界,且,故,必有,这说明是的上界;又因,故,而都不是的上界,因此更不是的上界.所以成立.[证毕](返回)*(4)(用区间套定理证明有限覆盖定理)设为闭区间的一个无限开覆盖.反证法假设:“不能用中有限个开区间来覆盖”.对采用逐次二等分法构造区间套,的选择法则:取“不能用中有限个开区间来覆盖”的那一半.由区间套定理,.导出矛盾:使记由[推论],当足够大时,这表示用中一个开区间就能覆盖,与其选择法则相违背.所以必能用中有限个开区间来覆盖.[证毕][说明]当改为时,或者不是开覆盖时,有限覆盖定理的结论不一定成立.(返回)*(5)(用有限覆盖定理证明聚点定理)设为实轴上的有界无限点集,并设.由反证法假设来构造的一个无限开覆盖:若有聚点,则.现反设中任一点都不是的聚点,即在内至多只有.这样,就是的一个无限开覆盖.用有限覆盖定理导出矛盾:据定理9,存在为的一个有限开覆盖(同时也覆盖了).由假设,内至多只有所属个邻域内至多只有属于(即只覆盖了中有限个点).这与覆盖了全部中无限多个点相矛盾.所以,有界无限点集必定至少有一个聚点.[证毕][推论(致密性定理)]有界数列必有收敛子列.即若为有界数列,则使有.子列的极限称为原数列的一个极限点,或称聚点.(返回)*(6)(用聚点定理证明柯西准则)柯西准则的必要性容易由数列收敛的定义直接证得,这里只证其充分性.已知条件:当时.欲证收敛..首先证有界.对于当时,有令,则有..由致密性定理,存在收敛子列,设..最后证,由条件,当时,有.于是当(同时有)时,就有.[证毕](返回)*(7)(用柯西准则证明单调有界原理) 设为一递增且有上界M的数列.用反证法(借助柯西准则)可以证明:倘若无极限,则可找到一个子列以为广义极限,从而与有上界相矛盾.现在来构造这样的.对于单调数列,柯西条件可改述为:“当时,满足”.这是因为它同时保证了对一切,恒有.倘若不收敛,由上述柯西条件的否定陈述:,对一切,,使.依次取把它们相加,得到.故当时,可使,矛盾.所以单调有界数列必定有极限. [ 证毕 ]在以上六个等价命题中,最便于推广至中点集的,当属聚点定理与有限覆盖定理.为加深对聚点概念的认识,下例所讨论的问题是很有意义的.[例]证明“是点集的聚点”的以下三个定义互相等价:(i) 内含有中无限多个点(原始定义);(ii) 在内含有中至少一个点;(iii) ,时,使.证:(i)(ii) 显然成立.(ii)(iii) 由(ii),取,;再取;……一般取;……由的取法,保证,,.(iii)(i)时,必有,且因各项互不相同,故内含有中无限多个点.[证毕]。
实数完备性基本定理的相互证明
实数完备性基本定理的相互证明实数完备性基本定理是数学分析课程中的重要定理之一,它刻画了实数的重要性质。
本文将从两个角度介绍实数完备性基本定理的证明,即从实数的有序性和上确界性质出发进行证明,相互补充,帮助读者更好地理解该定理。
一、从实数的有序性进行证明实数完备性基本定理可以通过比较序列与实数性质的关系来证明。
首先引入柯西序列的概念。
柯西序列是指一列实数序列,其满足对于任意正实数ε,存在正整数N,当n,m≥N时,|an-am|<ε。
柯西序列的定义即表明了序列中的元素越来越接近,它与实数的有序性相对应。
接下来,我们需要证明实数集合所有的柯西序列都是收敛的。
假设{an}是一个柯西序列,为了证明该序列的收敛性,我们需要构造出一个实数α,使得该序列收敛于α。
为此,我们可以构造一个新的序列{bn},其中bn=sup{am: m≥n}。
首先,根据实数的上确界性质,该集合非空且有上界,因此sup存在。
其次,易知bn递增且有界(因为其满足an≤bn),所以该序列收敛于某一个实数α。
接下来,我们证明an收敛于α。
根据柯西序列的定义,对于任意给定的ε>0,存在正整数N,使得当m,n≥N时,有|am-an|<ε。
那么对于给定的ε>0,根据序列{bn}的收敛性,存在正整数M,使得当n≥M时,有|bn-α|<ε/2,同时根据序列{bn}的递增性质,有bn≥an。
于是可以得到:|an-α|=|an-bn+bn-α|≤|an-bn|+|bn-α|<ε/2+ε/2=ε这表明对于任意给定的ε>0,总存在正整数N=M,使得当n≥N 时,有|an-α|<ε。
因此,an收敛于α,柯西序列收敛于实数α。
这样,我们就证明了任意柯西序列都是收敛的,即实数集合中的柯西序列都有收敛性。
由此可得实数集合是完备的。
二、从实数的上确界性质进行证明实数完备性基本定理也可以通过实数的上确界性质进行证明。
实数的上确界性质是指,非空有上界的实数集合必有上确界。
实数完备性基本定理相互证明
实数完备性基本定理的相互证明(30个)一.确界原理1.确界原理证明单调有界定理证 不妨设{}n a 为有上界的单调递增数列.由确界原理,数列{}n a 有上确界,令{}n a sup a =,下面证明:lim n n a a →∞=.对任意的0ε>,由上确界的定义,存在数列{}n a 中某一项N a ,使得:N a a ε->. 由于{}n a 单调递增,故对任意的n N >,有:n N a a a ε-<<.另一方面,由于a 是{}n a 的一个上界,故对任意的正整数n 都有:n a a a ε≤<+. 所以任意的n N >,有:n a a a εε-<<+,即:n a a ε-<.由极限的定义,lim n n a a →∞=.同理可证单调递减有下界的数列必有极限,且其极限即为它的下确界.2.确界原理证明区间套定理证明:设[]{},n n a b 是一个闭区间套. 令数集{}n S a =.由于任一n b 都是数列{}n a 的上界,由确界原理,数集S 有上确界,设supS ξ=. 下证ξ属于每个闭区间[](),1,2,3,n n a b n =显然,()1,2,3,n a n ξ≤=,故只需证明对任意正整数n ,都有n b ξ≤.事实上,对任意正整数n ,n b 都是S 的上界,而上确界是最小上界,故必有n b ξ≤. 所以存在实数ξ,使得[](),1,2,3,n n a b n ξ∈=下证唯一性,假设还有另外一点ξ',也满足[](),1,2,3,n n a b n ξ'∈=.则()0n n b a n ξξ'-<-→→∞,故有:ξξ'=.唯一性得证.3.确界原理证明有限覆盖定理证明:欲证闭区间[],a b 的任一开覆盖H 都有有限的子覆盖. 令[]{}|,S x a x H a x b =<≤能被中有限个开区间覆盖,显然S 有上界.又H 覆盖闭区间[],a b ,所以,存在一个开区间(),H αβ∈,覆盖住了a .取(),x a β∈,则[],a x 显然能被H 中有限个开区间覆盖(1个),x S ∈,从而S 非空. 由确界原理,令supS ξ=.先证明b ξ=.用反证法,若b ξ≠,则a b ξ<<.由H 覆盖闭区间[],a b ,一定存在开区间()11,H αβ∈,覆盖住了ξ.取12,x x ,使:11211,x x x S αξβ<<<<∈ ,则[]1,a x 能被H 中有限个开区间覆盖,把()11,αβ加进去,就得到[]2,a x 也能被H 中有限个开区间覆盖,即2x S ∈,这与supS ξ=矛盾,故b ξ=.最后证明b S ∈.设开区间()22,H αβ∈,覆盖住了b .由b supS =,故存在y 使得:2y b α<≤且y S ∈.则[],a y 能被H 中有限个开区间覆盖,把()22,αβ加进去,就得到[],a b 也能被H 中有限个开区间覆盖. 4.确界原理证明聚点定理证明:设S 有界无限点集,则由确界原理令inf S ξ=.若ξ是S 的一个聚点,则命题已经成立,下面设ξ不是S 的聚点.令 ){}|,T x x S ξ=⎡⎣中只包含中有限个元素.因为ξ不是S 的聚点,所以存在00ε>,使得()()000;,U ξεξεξε=-+只包含S 中有限个数,故0T ξε+∈,从而T 非空.又S 有界,所以S 的所有上界就是T 的上界,故T 有上确界,令sup T η=. 下面证明η是S 的一个聚点.对任意的0ε>,S ηε+∉,故),ξηε+⎡⎣包含S 中无穷多个元素.由上确界的定义,存在(],ληεη∈-,使得S λ∈,故),ξλ⎡⎣中只包含S 中有限多个元素.从而我们得知)(),;U ληεηε+⊂⎡⎣中包含了S 中无穷多个元素,由聚点的定义,η是S 的一个聚点.5.确界原理证明Cauchy 收敛准则 证明:必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<.令数集{}{}|,n n S x x x x x n =≥∀中只有有限项小于或,明显数列{}n x 的下界都属于S ,并且{}n x 的上界就是S 的上界.由确界存在定理,令sup S ξ=.对条件给定的0ε>和N ,S ξε+∉,故(),ξε-∞+包含{}n x 中无穷多项.由上确界的定义,存在(],λξεξ∈-,使得S λ∈,故(),λ-∞中只包含S 中有限多个元素.从而我们得知)()(),;,U ληεηεηεηε+⊂=-+⎡⎣中包含了S 中无穷多个元素,设()(),1,2,3,k n x U k ξε∈=则对任意正整数n N >,总存在某个k n N >,故有:2k k n n n n x x x x ξξεεε-≤-+-≤+=.从而lim n n x ξ→∞=.二.单调有界定理6.单调有界定理证明确界定理证明:我们不妨证明非空有上界的数集S必有上确界.设{}|T r r S =为数集的有理数上界.明显T 是一个可数集,所以假设:{}12,,,,n T r r r =.令{}1min n i i nx r ≤≤=.则得单调递减有下界的数列,由单调有界定理得,令lim n n x ξ→∞= 先证ξ是上界.任取s S ∈,有n n s r x ≤≤,由极限的保序性,s ξ≤.其次对于任意的0ε>,取一个有理数(),r ξεξ∈-,它明显不是S 的上界,否则lim n n x r ξξ→∞=≤<产生矛盾!故存在s S ∈,使得s ξε>-,我们证明了ξ是数集S 上确界.7.单调有界定理证明区间套定理若[]{},n n a b 是一个区间套,则{}n a 为单调递增有上界的数列,由单调有界定理, 令lim n n a ξ→∞=,并且容易得到()1,2,3,n a n ξ≤=.同理,单调递减有下界的数列{}n b 也有极限,并按区间套的条件有:()lim lim 0n n n n n n b a b a ξξ→∞→∞=+-=+=⎡⎤⎣⎦,并且容易得到()1,2,3,n b n ξ≥=.所以[](),1,2,3,n n a b n ξ∈=下证唯一性,假设还有另外一点ξ',也满足[](),1,2,3,n n a b n ξ'∈=.则()0n n b a n ξξ'-<-→→∞,故有:ξξ'=.唯一性得证.8.单调有界定理证明有限覆盖定理设[]{}|,,T r a r H r r b =∈≤可以被的开区间有限开覆盖,且.容易得到T 中包含无穷多个元素,并且T 是一个可数集,所以假设:{}12,,,,n T r r r =.令{}1max n i i nx r ≤≤=.则得单调递增有上界的数列,由单调有界定理得,令lim n n x ξ→∞=.先证明b ξ=.用反证法,若b ξ≠,则a b ξ<<.由H 覆盖闭区间[],a b ,一定存在开区间()11,H αβ∈,覆盖住了ξ.取,i j x r y =,使:11i j x r y αξβ<=<<< ,则[]1,a x 能被H 中有限个开区间覆盖,把()11,αβ加进去,就得到[],a y 也能被H 中有限个开区间覆盖,即y S ∈,这与supS ξ=矛盾,故b ξ=.最后证明b S ∈.设开区间()22,H αβ∈,覆盖住了b .由b supS =,故存在k l x r =使得:2k l x r b α<=≤.则[],l a r 能被H 中有限个开区间覆盖,把()22,αβ加进去,就得到[],a b 也能被H 中有限个开区间覆盖.9.单调有界定理证明聚点定理证明:设S 是一有界无限点集,在S 中选取一个单调{}n a ,下证数列{}n a 有聚点.(1)如果在{}n a 的任意一项之后,总存在最大的项,设1a 后的最大项是1n a ,1n a 后的最大项是2n a ,且显然()2121n n a a n n ≤>; 一般地,将k n a 后的最大项记为1k n a +,则有:()11,2,3,k k n n a a k +≤=.这样,就得到了{}n a 的一个单调递减子列{}k n a .(2)如果(1)不成立 则从某一项开始,任何一项都不是最大的,不妨设从第一项起,每一项都不是最大项.于是,取11n a a =,因1n a 不是最大项,所以必存在另一项()2121n n a a n n >>又因为2n a 也不是最大项,所以又有:()3232n n a a n n >> ,这样一直做下去,就得到了{}n a 的一个单调递增子列{}k n a .综上所述,总可以在S 中可以选取一个单调数列{}k n a ,利用单调有界定理,{}k n a 收敛,极限就是S 的一个聚点.10.单调有界定理证明Cauchy 收敛准则 证明:必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<.先证明柯西数列是有界的.取01ε=,故存在某个正整数0N ,对一切n ,有011n N x x +-<,即011n N a a +≤+.故{}n x 有界.参考9的做法,可知数列{}n a 有一个单调子列{}k n a ,由单调有界定理,{}k n a 收敛,令lim k n k x ξ→∞=.则对任意正整数n N >,总存在某个()k k n n N >,使得k n x ξε-<,故有:2k k n n n n x x x x ξξεεε-≤-+-≤+=..从而lim n n x ξ→∞=.三.区间套定理11.区间套定理证明确界原理证明:仅证明非空有上界的数集S 必有上确界取一个闭区间[],a b ,使得[],a b 包含S 中的元素,并且b 为S 的上界. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.若2a b +为数集S 的上界,则取[]11,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11,,2a b a b b +⎡⎤=⎢⎥⎣⎦.再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.若112a b +为数集S 的上界,则取[]11221,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11221,,2a b a b b +⎡⎤=⎢⎥⎣⎦.不断进行下去,这样得到了一个闭区间套[]{},n n a b . 由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =并且每个闭区间[],n n a b 都包含S 中的元素,并且右端点n b 为S 的上界.由于对任意s S ∈,有n s b ≤,所有由极限的保序性,lim n n s b ξ→∞≤=,从而ξ是数集S 的上界.最后,对于任意0ε>,存在n ,使得0n n b a ε<-<.由闭区间套的选取,[],n n a b 包含了S 中某个元素s ,从而有n n s a b εξε≥>->-.故ξ是数集S 的上确界. 12. 区间套定理证明单调有界定理设{}n x 是单调有界数列,不妨设其为单调递增且有上界取一个闭区间[],a b ,使得[],a b 包含{}n x 中的项,并且b 为{}n x 的上界. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.若2a b +为{}n x 的上界,则取[]11,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11,,2a b a b b +⎡⎤=⎢⎥⎣⎦. 再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.若112a b +为{}n x 的上界,则取[]11221,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11221,,2a b a b b +⎡⎤=⎢⎥⎣⎦.不断进行下去,这样得到了一个闭区间套[]{},n n a b . 由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =并且每个闭区间[],n n a b 都包含{}n x 中的项,并且右端点n b 为{}n x 的上界.下面证明lim n n x ξ→∞=.对任意的0ε>,存在n ,使得0n n b a ε<-<.由闭区间套的选取,[],n n a b 包含了{}n x 中某一项N x ,从而有N n n x a b εξε≥>->-.由于{}n x 单调递增,故对任意的n N >,有:N n x x ξε-<<. 又n n n x b a εξε<<+<+,故有n x ξεξε-<<+,即n x ξε-<.若闭区间[],a b 可以被H 中的开区间无限开覆盖.下面证明闭区间[],a b 可以被H 有限开覆盖.用反证法,若闭区间[],a b 不能被H 有限开覆盖. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b . 由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =.显然[],a b ξ∈,考虑H 中覆盖ξ的开区间(),αβ,取{}0min ,δξαβξ<<--.由于lim lim n n n n a b ξ→∞→∞==,所以存在N ,对一切正整数n N >,有,n n a b ξξδ--<,故此时[]()(),;,n n a b U ξδαβ⊂⊂.从而[](),n n a b n N >可以被H 中的一个开区间(),αβ覆盖,产生矛盾!故假设不成立,即闭区间[],a b 可以被H 有限开覆盖. 14. 区间套定理证明聚点定理证明:已知点集S 是有界无限点集.设[],S a b ⊂. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了点集S 中无穷多个元素,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了点集S 中无穷多个元素,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,每个闭区间包含了点集S 中无穷多个元素.由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =.下证ξ是点集S 的一个聚点.因为lim lim n n n n a b ξ→∞→∞==,故对任意的0ε>,必定存在一个N ,对一切正整数n N >,有,n n a b ξξε--<,从而[]()(),;n n a b U n N ξε⊂>.又每个闭区间[],n n a b 包含了点集S 中无穷多个元素,故();U ξε包含了点集S 中无穷多个元素.由聚点的定义,ξ是点集S 的一个聚点.必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<.先证明柯西数列是有界的.取01ε=,故存在某个正整数0N ,对一切n ,有011n N x x +-<,即011n N a a +≤+.故{}n x 有界.取一个闭区间[],a b ,使得[],a b 包含所有{}n x 中的项. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了{}n x 中无穷多项,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了{}n x 中无穷多项,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,并且每个闭区间[],n n a b 都包含{}n x 中无穷多项.由区间套定理的得存在ξ属于所有的闭区间[](),1,2,3,n n a b n =现在取一个子列{}k n x ,满足[](),1,2,3,k n k k x a b k ∈=.因为lim lim n n n n a b ξ→∞→∞==和夹逼定理,lim kn k x ξ→∞=.则对任意正整数n N >,总存在某个()k k n n N >,使得k n x ξε-<,故有:2k k n n n n x x x x ξξεεε-≤-+-≤+=..从而lim n n x ξ→∞=.四.有限覆盖定理16.有限覆盖定理证明确界原理证明:不妨设S 为非空有上界的数集,我们证明S 有上确界. 设b 为S 的一个上界,下面用反证法来证明S 一定存在上确界.假设S 不存在上确界,取a S ∈.对任一[],x a b ∈,依下述方法确定一个相应的邻域(开区间)()();,x x x x U U x x x δδδ==-+.(1)若x 不是S 的上界,则至少存在一点x S '∈,使x x '>,这时取x x x δ'=-.(2)若x 是S 的上界,由假设S 不存在上确界,故有0x δ>,使得](,x x x δδ- 中不包含S 中的点.此时取(),x x x U x x δδ=-+,可知它也不包含S 中的点.于是我们得到了[],a b 的一个开覆盖:()[]{},|,x x x H U x x x a b δδ==-+∈ 根据有限覆盖定理,[],a b 可以被H 中有限个开区间{}1inx i U =覆盖.很明显(1)的开区间右端点属于S ,(2)的开区间中不包含S 中的点.显然a 所属的开区间是属于(1)的,b 所属的开区间是属于(2)的,所以至少有一个(1)中的开区间与某个(2)中的开区间相交,这是不可能的.17.有限覆盖定理证明单调有界定理证明:设{}n x 是单调有界数列,不妨设其为单调递增且有上界.任取b 为{}n x 的一个上界以及{}n x 中某项t x ,构造出闭区间[],t x b ,对任意的[],t x x b ∈,依下述方法确定一个相应的邻域(开区间)()();,x x x x U U x x x δδδ==-+.(1) 若x 不是{}n x 的上界,则{}n x 中至少存在一项i x ,使i x x >,这时取x x x δ'=-.(2) 若x 是{}n x 的上界,由假设{}n x 发散,故不会收敛到x .即有存在某个00ε>,对任何正整数N ,存在n N >,使得()()000;,n x U x x x εεε∉=-+.由于{}n x 递增,有上界x ,所以{}n x 中的所有项均不落在()()000;,U x x x εεε=-+中.此时取0x δε=.于是我们得到了[],t x b 的一个开覆盖:()[]{},|,x x x t H U x x x x b δδ==-+∈. 根据有限覆盖定理,[],t x b 可以被H 中有限个开区间{}1inx i U =覆盖.很明显(1)的开区间右端点属于{}n x ,(2)的开区间中不包含{}n x 中的项.显然t x 所属的开区间是属于(1)的,b 所属的开区间是属于(2)的,所以至少有一个(1)中的开区间与某个(2)中的开区间相交,这是不可能的.18. 有限覆盖定理证明区间套定理 证明:用反证法.假设[]{}(),1,2,3,nna b n =没有公共点,则对任意一点[]11,x a b ∈,它都不会是[]{}(),1,2,3,nna b n =的公共点,从而存在正整数xn,使得,x x n n x a b ⎡⎤∉⎣⎦.故总存在一个开区间(),x x x U x x δδ=-+,使得:(),,xnx x n nx x a b δδ⎡⎤-+⋂=∅⎣⎦,于是我们得到了[]11,a b 的一个开覆盖:()[]{}11,|,x x x H U x x x a b δδ==-+∈.根据有限覆盖定理,[]11,a b 可以被H 中有限个开区间{}1ikx i U =覆盖.注意到闭区间套之间的包含关系,则所有{}1ikx i U =一定和某个最小的闭区间001,,i i k n n n n i a b a b =⎡⎤⎡⎤=⎣⎦⎣⎦无交.从而:[]{}0000001111,,,,i ik k n n x n n x n n i i a b a b U a b Ua b ==⎧⎫⎡⎤⎡⎤⎡⎤⋂⊂⋂=⋂=∅⎨⎬⎣⎦⎣⎦⎣⎦⎩⎭.产生矛盾!19. 有限覆盖定理证明聚点定理证明:设点集S 是有界无限点集.设[],S a b ⊂.用反证法,假设S 没有聚点.利用聚点定义,对任意的[],x a b ∈,存在一个领域(),x x x U x x δδ=-+,使得x U 中只包含点集S 中有限个点.这样得到了[],a b 的一个开覆盖:()[]{},|,x x x H U x x x a b δδ==-+∈.根据有限覆盖定理,[],a b 可以被H 中有限个开区间{}1inx i U =覆盖. 由于每个x U 中只包含点集S 中有限个点,所以[]1,i n x i a b U =⊂也只包含了S 中有限个点,这与S 是无限点集相矛盾!故假设不成立,即S 有聚点.20. 有限覆盖定理证明Cauchy 收敛准则 证明:必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:(使用反证法)现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<. 先证明柯西数列是有界的.取01ε=,故存在某个正整数0N ,对一切n ,有011n N x x +-<,即011n N a a +≤+.故{}n x 有界.假设{}[],n x a b ⊂.若{}n x 发散,则对任意的[],x a b ∈,可以找到一个(),x x x U x x δδ=-+,使得{}n x 中只有有限项落在()0;U x ε中.否则对任何0δ>,(),x x δδ-+中均包含{}n x 中无限项,则可以证明{}n x 收敛. 这样得到了[],a b 的一个开覆盖:()[]{},|,x x x H U x x x a b δδ==-+∈.根据有限覆盖定理,[],a b 可以被H 中有限个开区间{}1inx i U =覆盖. 所以[]1,i n x i a b U =⊂也只包含了{}n x 中的有限项,矛盾!故假设不成立,{}n x 收敛.五.聚点定理21.聚点定理证明确界原理证明:仅证明非空有上界的数集S 必有上确界.取一个闭区间[],a b ,使得[],a b 包含S 中的元素,并且b 为S 的上界. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.若2a b +为数集S 的上界,则取[]11,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11,,2a b a b b +⎡⎤=⎢⎥⎣⎦. 再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.若112a b +为数集S 的上界,则取[]11221,,2a b a b a +⎡⎤=⎢⎥⎣⎦,否则取[]11221,,2a b a b b +⎡⎤=⎢⎥⎣⎦.不断进行下去,这样得到了一个闭区间套[]{},n n a b . 由于{}n b 明显有界,所有它有聚点ξ.对任意0,s S ε>∈,设()();,k b U ξεξεξε∈=-+,则k s b ξε≤<+.由ε的任意性,s ξ≤,故ξ是S 的一个上界.其次,对任意0ε>,取()();,k a U ξεξεξε∈=-+,设s S ∈包含于闭区间[],k k a b ,则k s a ξε≥>-.从而我们证明了ξ是S 的一个上确界. 22.聚点定理证明单调有界定理证明:设{}n x 是单调有界数列,则它一定存在聚点ξ.下证:lim n n x ξ→∞=.对任意的0ε>,由聚点的定义,()(),,U ξεξεξε=-+中包含{}n x 中的无穷多项,设{}()(),,kn x U ξεξεξε⊂=-+.则取1N n =,对一切正整数1n N n >=,假设kn n <.利用{}nx 是单调的,nx介于1n x 与k n x 之间,所以由()1,,k n n x x U ξε∈,可知(),n x U ξε∈,从而由极限的定义,lim n n x ξ→∞=23.聚点定理证明区间套定理证明:设{}{}n n S a b =⋃,则S 是有界无限点集 由聚点定理得数集S 聚点ξ.若存在一个某个正整数0n ,使得00,n n a b ξ⎡⎤∉⎣⎦,不妨假设00n n a b ξ<<.取00n b εξ=-,则对一切0n n >,有00n n n a b b ξε<≤=-.于是()()000;,U ξεξεξε=-+中只包含S 中有限个点,这与ξ是数集S 的聚点矛盾!故[](),1,2,3,n n a b n ξ∈=下证唯一性,假设还有另外一点ξ',也满足[](),1,2,3,n n a b n ξ'∈=.则()0n n b a n ξξ'-<-→→∞,故有:ξξ'=.唯一性得证.24.聚点定理证明有限覆盖定理证明:若闭区间[],a b 可以被H 中的开区间无限开覆盖.下面证明闭区间[],a b 可以被H 有限开覆盖.用反证法,若闭区间[],a b 不能被H 有限开覆盖. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,并且[](),1,2,3n n a b =均不能被H 有限开覆盖显然,{}n a 是有界的,故它存在聚点ξ.明显[],a b ξ∈.考虑H 覆盖中覆盖住ξ的开区间(),αβ.取{}min ,εξαβξ<--,则在()();,U ξεξεξε=-+中包含了{}n a 中的无穷多项,设{}()();,k n a U ξεξεξε⊂=-+.又()02n n n b ab a n --=→→+∞ 于是存在某个0k n ,使得0k k n n b a βξε-<--故0n a ξεα>->;()00n n b a βξεξεβξεβ<+--<++--=. 故[]00,,n n a b αβ⎡⎤⊂⎣⎦.这与[](),1,2,3n n a b =均不能被H 有限开覆盖矛盾!故假设不成立,即闭区间[],a b 可以被H 有限开覆盖.25.聚点定理证明Cauchy 收敛准则 证明:必要性:若lim n n x x →∞=,则对任意的0ε>,存在正整数N ,对一切n N >,有2n x x ε-<.于是对一切,m n N >,有22m n m n x x x x x x εεε-≤-+-<+=.充分性:现假设{}n x 满足对任意的0ε>,存在N ,对一切正整数,n m N >,有n m x x ε-<.先证明柯西数列是有界的.取01ε=,故存在某个正整数0N ,对一切n ,有011n N x x +-<,即011n N a a +≤+.故{}n x 有界.故它存在聚点,设为ξ.对条件中的0ε>,由聚点的定义,假设{}()();,k n x U ξεξεξε⊂=-+ 则对任意正整数n N >,总存在某个()k k n n N >,使得k n x ξε-<,故有:2k k n n n n x x x x ξξεεε-≤-+-≤+=..从而lim n n x ξ→∞=.六.Cauchy 收敛准则26. Cauchy 收敛准则证明确界原理证明: 设S 为非空有上界数集.由实数的阿基米德性,对任何正数α,存在整数k α ,使得k ααλα=为S 的上界,而()1k ααλαα-=-不是S 的上界, 即存在S α'∈使得()1k ααα'>- 分别取()11,2,3,n nα==,则对每一个正整数n ,存在相应的n λ,使得n λ为S 的上界,而1n nλ-不是S 的上界,故存在S α'∈,使得1n nαλ'>-又对正整数m ,m λ是S 的上界,故有m λα'≥.所以1m n n λαλ'≥>-,即有1m n m λλ-<.同理有1m n nλλ-<,于是得到11min ,m n m n λλ⎧⎫-<⎨⎬⎩⎭. 于是,对任意的0ε>,存在正整数N ,使得当,m n N >时有m n λλε-<.由柯西收敛准则,数列{}n λ收敛.记lim n n λλ→∞=现在证明λ就是S 的上确界.首先,对任何S α∈和正整数n ,有n αλ≤,有极限的保序性,lim n n αλλ→∞≤=,故λ是S 的上界其次,对于任意的0δ>,存在充分的的正整数n ,使得12n δ<并且2n δλλ>-. 由于1n n λ-不是S 的上界,所以存在S α'∈,并且1n nαλ'>-. 于是122n n δδαλλλδ'>->--=-.故λ就是S 的上确界. 27. Cauchy 收敛准则证明单调有界定理证明:设{}n x 是单调有界数列,不妨假设{}n x 单调递增有上界.若{}n x 发散,则又柯西收敛准则,存在00ε>,对一切正整数N ,存在m n N >>,使得0m n m n x x x x ε-=-≥. 于是容易得到{}n x 的子列{}k n x ,使得10k k n n x x ε+-≥.进而()101k n n x x k ε>+- 故()k n x k →+∞→∞,这与{}n x 是有界数列矛盾!所有假设不成立,即{}n x 收敛. 28. Cauchy 收敛准则证明区间套定理证明:设[]{},n n a b 为闭区间套.因为lim 0n n n a b →∞-=,所以对任意的0ε>,存在正整数N ,对一切n N >,有n n n n a b b a ε-=-<从而对任意的m n N >>,m n m n n n a a a a b a ε-=-<-<;m n n m n n b b b b b a ε-=-<-<,由柯西收敛准则,{}{},n n a b 均收敛,而且是同一极限,设lim lim n n n n a b ξ→∞→∞==.由于{}n a 单调递增,{}n b 单调递减,由极限的保序性, 所以[](),1,2,3,n n a b n ξ∈=下证唯一性,假设还有另外一点ξ',也满足[](),1,2,3,n n a b n ξ'∈=.则()0n n b a n ξξ'-<-→→∞,故有:ξξ'=.唯一性得证.29.Cauchy 收敛准则证明有限覆盖定理证明:若闭区间[],a b 可以被H 中的开区间无限开覆盖.下面证明闭区间[],a b 可以被H 有限开覆盖.用反证法,若闭区间[],a b 不能被H 有限开覆盖. 将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间不能被H 有限开覆盖,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,并且[](),1,2,3n n a b =均不能被H 有限开覆盖.因为lim lim02n n nn n b aa b →∞→∞--==,所以对任意的0ε>,存在正整数N ,对一切n N >,有n n n n a b b a ε-=-<从而对任意的m n N >>,m n m n n n a a a a b a ε-=-<-<;m n n m n n b b b b b a ε-=-<-<,由柯西收敛准则,{}{},n n a b 均收敛,而且是同一极限,设lim lim n n n n a b ξ→∞→∞==.由于{}n a 单调递增,{}n b 单调递减,由极限的保序性, 所以[](),1,2,3,n n a b n ξ∈=.考虑H 覆盖中覆盖住ξ的开区间(),αβ.取{}min ,εξαβξ<--,则存在正整数N ,对一切n N >,,n n a b ξξε--<.即有[]()(),;,n n a b U ξεαβ⊂⊂.这与[](),1,2,3n n a b =均不能被H 有限开覆盖矛盾!故假设不成立,即闭区间[],a b 可以被H 有限开覆盖.30. Cauchy 收敛准则证明聚点定理证明:已知点集S 是有界无限点集.设[],S a b ⊂.将闭区间[],a b 等分为两个闭区间,2a b a +⎡⎤⎢⎥⎣⎦与,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了点集S 中无穷多个元素,设它为[]11,a b ;再将闭区间[]11,a b 等分为两个闭区间111,2a b a +⎡⎤⎢⎥⎣⎦与111,2a b b +⎡⎤⎢⎥⎣⎦.其中必有一个区间包含了点集S 中无穷多个元素,设它为[]22,a b .不断进行下去,这样得到了一个闭区间套[]{},n n a b ,每个闭区间包含了点集S 中无穷多个元素.因为lim lim02n n nn n b aa b →∞→∞--==,所以对任意的0ε>,存在正整数N ,对一切n N >,有n n n n a b b a ε-=-<从而对任意的m n N >>,m n m n n n a a a a b a ε-=-<-<;m n n m n n b b b b b a ε-=-<-<,由柯西收敛准则,{}{},n n a b 均收敛,而且是同一极限,设lim lim n n n n a b ξ→∞→∞==.下证ξ是S 的一个聚点.对任意的0ε>,存在正整数N ,对一切n N >,,n n a b ξξε--<.即有[]()(),;,n n a b U ξεξεξε⊂=-+.故()();,U ξεξεξε=-+中包含了S 中无穷多个元素,由聚点的定义,ξ是S 的一个聚点.。
实数完备性基本定理的相互证明(30个)
证 设 S 是直线上的有界无限点集,则由确界原理有 sup S, inf S 。若, 中 有一点不是 S 的孤立点,则显然就是 S 的一个聚点。
否则,令 E : {x R S 中仅有有限个数小于 x}。显然 E 非空且有上界。令 sup E , 则由 E 的构造方法可知, 0 必有 E ,即 S 中有无限个数小于 大于 。 所以 ( , ) 中含有 S 的无限个数,故 是 S 的聚点。
(3) 由单调有界定理得,ζ= xn且rn ≤xn ≤ζ,n =1,2,⋯ ;
(4) 因xn ∈[a,b],n =1,2,⋯,由(3)得ζ∈[a,b],故ζ必在H 中的某 个开区间(α1,β1)中 再由(3),一定有rN ∈{rn},使α1<rN ≤ζ 又由 ①[a,rn]能被H 中有限个开区间覆盖 故只需把(α1,β1)加进去 [a,ζ] 能被H 中有限个开区间覆盖
| ξ- ξ′|≤ 故有ξ′= ξ.
(bn-an)=0
8.单调有界定理证明有限覆盖定理,
即闭区间[a,b]的任一开覆盖H 都有有限的子覆盖 证: (1)设有理数r∈(a,b],使闭区间[a,r]能被H 中有限个开区间覆盖 把[a, b]上的这种有理数的全体排成一个数列{rn},因为存在一个开区间(α,β)∈H 使 rn∈(α,β),在(α,β)∩[a,b]内含有无穷多个有理数,所以{rn}是存 在的; (2)将数列{rn}单调化,取xn =max{r1,r2,⋯ ,rn},则数列{xn}单调 递增有上界;
(2)在[a, ]或[ ,b]中取得 ∈{ }且满足条件(1)并使
,然后就有
不断地进行(1),(2)得到一单调递增的子列 因为 ∈{ },而{ }是一个单调有界数列,由单调有界定理知 收敛,
实数完备性的六大基本定理的相互证明共个
实数完备性的六大基本定理的相互证明共个实数完备性的六大基本定理是实分析中的重要结果,其中包括单调有界原理、上确界原理、下确界原理、戴德金(Dedekind)分割原理、稳定原理和柯西(Cauchy)收敛准则。
这些定理互相独立,但可以相互推导和证明。
下面我将按照给定的字数要求,大致叙述这些定理之间的证明关系。
1.单调有界原理→上确界原理首先我们证明单调有界原理蕴含上确界原理。
假设存在一个非空有上界的实数集合A,我们可以定义一个从A到R (实数集)的单调递增序列。
考虑一个函数f:N→A,其中N是自然数集合。
我们可以通过以下方法生成这个序列:1.对于每个n∈N,令An={a∈A,a≤f(n)};2.由于A有上界,所以An也有上界;3.根据单调有界原理,An存在上确界。
令f(n)为An的上确界。
现在我们可以看出,这个序列f(n)是一个单调递增的序列,并且对于任意a∈A,存在一个自然数n使得a≤f(n)。
因此f(n)就是A的上确界。
2.上确界原理→下确界原理接下来我们证明上确界原理蕴含下确界原理。
假设存在一个非空有下界的实数集合B,我们可以定义一个从B到R (实数集)的单调递减序列。
考虑一个函数g:N→B,其中N是自然数集合。
我们可以通过以下方法生成这个序列:1.对于每个n∈N,令Bn={b∈B,g(n)≤b};2.由于B有下界,所以Bn也有下界;3.根据上确界原理,Bn存在下确界。
令g(n)为Bn的下确界。
现在我们可以看出,这个序列g(n)是一个单调递减的序列,并且对于任意b∈B,存在一个自然数n使得g(n)≤b。
因此g(n)就是B的下确界。
3.戴德金分割原理→单调有界原理接下来我们证明戴德金分割原理蕴含单调有界原理。
假设存在一个非空无上界的实数集合C,我们可以定义一个从C到R (实数集)的单调递增序列。
考虑一个函数h:N→C,其中N是自然数集合。
我们可以通过以下方法生成这个序列:1.对于每个n∈N,令Cn={c∈C,h(n)≤c};2.C没有上界,因此Cn也没有上界;3.根据戴德金分割原理,Cn的上确界不存在。
实数完备性的等价条件
内蒙古电大学刊 2003 年第 4 期 ( 总第 56 期)
a ,所以当 n > n0 时 ,有| xn - a| <ε,即 lim xn = a
n →∞
)。 则存在唯一数 x0 ∈[ an ,bn ] ( n = 1 ,2 , … 1. 5 Heiene — Borel 有限覆盖定理 有界闭集的任何开覆盖必有有限子覆盖 。 1. 6 Weierstrass 聚点原理 任何有界的无穷数集都有聚点 。 1. 7 Bolzano - Weierstrass 定理 有界数列必有收敛子列 。 1. 8 Cauchy 收敛准则 数列{xn } 收敛的充要条件是对任意给定的ε > 0 ,存在 n0 ∈ N ,使 m 、 n > n0 时 ,| xm - xn | <ε
证 设{xn } 是有界无穷数列 。若 { xn } 是由有限 个实数重复出现而构成的数列 , 则至少有一个数 C 要重复出现无穷多次 。设 C 重复出现的项为 n1 ,n2 , …,则 lim xnk = C ,即{xnk } 是{xn } 的一个收敛子列 。
k →∞
参考文献
1. 吉林大学数学系 . 数学分析 . 人民教育出版
n →∞
2 证明上述八个断语是等价的
2. 1 Dedekind 分割原理 ] 上确界存在原理 证 只要证明 : 若非空数集 D 有上界 ,则 D 必有 唯一的上确界 。 1° 若 D 有最大值 M ,则 M 就是 D 的上确界 。 2° 设 D 为无限集且无最大值 。作实数集 R′ 的 分割 ( X , Y) ,共中 Y 为 D 的一切上界所组成之集 ,X
实数完备性定理的等价性证明及其应用
实数完备性定理的等价性证明及其应用实数理论是数学分析的基础理论之一,微分学、积分学理论的建立与发展都以实数理论为基础. 在实数系内,作为公理,确界原理成立.确界原理描述了实数集的连续性,单调有界定理、区间套定理、有限覆盖定理、聚点定理、柯西收敛准则,与确界原理之间是等价的.六个定理在数学形式上不同,但是它们都是描述了实数集的连续性.它们之间的等价性称为实数完备性定理的等价性.本文给出实数完备性6个定理的另一种循环证明及部分应用.为学生学习这部分内容提供帮助.1 预备知识实数完备性其本定理定理1(确界原理)[1](7)P 设S 为非空数集,若S 有上界,则S 必有上确界;若S 有下界,则S 必有下确界.定理2(柯西收敛准则)[1](38)P 数列{}n a 收敛的充要条件是:对任给的0ε>,存在正整数N ,使得当,n m N >时有||n m a a ε-<.定理3(单调有界定理)[1](35)P 在实数系中,有界的单调数列必有极限.定理4(有限覆盖定理)[1](165)P 设H 为闭区间[,]a b 的一个(无限)开覆盖,则从H 中可选出有限个开区间来覆盖[,]a b .定理5(聚点定理)[1](164)P 实轴上的任何有界无限点集S 至少有一个聚点.定理6(区间套定理)[1](161)P 若{[,]}n n a b 是一个区间套,则在实数系中存在唯一的一点ξ,使得[,],1,2,n n a b n ξ∈=L 即,1,2,n n a b n ξ≤≤=L .2 实数完备性定理的等价性证明2.1 用确界定理证明柯西收敛准则证明 设{}n a 是柯西数列,即0ε∀>,∃正整数N ,,n m N ∀>,有||n m a a ε-<.取1m N =+,1ε=,因此11||||||1n N n N a a a a ++-≤-<,故而1||||1n N a a +<+.设121max{||,||,,||,||1}N N M a a a a +=+L 可见||n a M <,即{}n a 必有界,由确界定理知inf{}n a 存在,记为a .1)若min{}n a a ≠,则0ε∀>,N ∃,使N a a a ε<<+.设12k ε=,存在k N n =(1k k n n ->)使12kn ka a a <<+.令k →∞,得k n a a →. 所以对于0ε∀>,K ∃,当k K >时有k n a a ε-<.取1max{,}N N K =,当1,k n N >时2k n n n n n a a a a a a ε-≤-+-<,所以lim n n a a →∞=.2)若min{}n a a =,作集合{|{},}n P x a x M x M =-<<中有有限项小于,P 显然为非空有界集合,故sup P 存在,记为sup b P =.由P 的性质,0ε∀>,必然有b P ε+∉,所以{}n a 中有无限项小于b ε+.,N ε∀∃,使n b a b ε-<<.设12k ε=,存在k N n =(1k k n n ->)使12k n k b a b -<<.令k →∞,得k n a b →.所以对于0ε∀>,K ∃,当k K >时有k n a b ε-<. 取1max{,}N N K =,{}n a 是柯西数列,当1,k n N >时,便有||||||2k n n n n n a b a a a b ε-≤-+-<,所以lim n n a b →∞=.2.2 用柯西收敛准则证明单调有界定理证明 设{}n a 递增且有上界M 的数列.若{}n a 不收敛,必为非柯西收敛数列,即0ε∃>,N ∀,n N ∃>,所以n N a a ε-≥.取11=N ,必11N n >∃使ε≥-11a a n 即ε+≥11a a n . 取12n N =,必22N n >∃使21n n a a ε-≥即21n n a a ε≥+.L L L如此继续下去,一般地取1k k N n -=,必k k n N ∃>使1k k n n a a ε--≥.把上述不等式相加得1k n a a k ε-≥即1k n a k a ε≥+.当1M a k ε->时,可使k n a M >.这与M是{}n a 的上界矛盾,所以{}n a 收敛.2.3 用单调有界定理证明有限覆盖定理 证明 设H 是闭区间[,]a b 的一个开覆盖.若H 不存在[,]a b 的有限开覆盖,把[,]a b 一分为二,至少有一个闭区间不能被H 有限开覆盖(若否则[,]a b 能被H 有限开覆盖,矛盾)取出记为11[,]a b ,满足11[,][,]a b a b ⊂且111()2b a b a -=-,把11[,]a b 一分为二,至少有一个闭区间不能被H 有限开覆盖取出记为22[,]a b ,满足2211[,][,][,]a b a b a b ⊂⊂且2211211()()22b a b a b a -=-=-,如此继续下去得到闭区间列{[,]}n n a b 满足下面两条:(1)11[,][,]n n n n a b a b --⊂且1()2n n n b a b a -=-(1,2,n =L )(2)每个闭区间[,]n n a b 都不能被H 有限覆盖.因为{}n a 递增且有上界,由单调有界定理可知,ξ∃ ,使lim n n a ξ→∞=,又因为0n n b a -→(n →∞)于是lim lim()lim n n n n n n n b b a a ξ→∞→∞→∞=-+=,即lim lim n n n n a b ξ→∞→∞==.0ε∀>,,N n N ∃∀>,使得n a ξεξε-<<+,n b ξεξε-<<+,从而[,](,)n n a b ξεξε⊂-+即开区间(,)ξεξε-+覆盖了闭区间[,]n n a b ,这与[,]n n a b 的作法矛盾,于是有限覆盖定理成立.2.4 用有限覆盖定理证明聚点定理证明 设{}S x =是有界无限点集,必存在a 、b 使a x b <<.若S 不存在聚点,则在闭区间[,]a b 中任一点x 都不会是S 的聚点,从而x 的x δ邻域(,)x U x δ至多只含S 的有限个点,让x 取遍[,]a b ,使得开覆盖{(,)|[,]}x U x x a b H δ∈=.由有限覆盖定理知H 必存在有限子覆盖~12{,,,}[,]k H U U U a b S =⊃⊃L .因为每个(1,2,)i U i k =L 只含S 的有限个点,~H 只含S 的有限个点,这与~H S ⊃且S 是无限集矛盾,所以S 至少有一个聚点.2.5 用聚点定理证明区间套定理证明 设{[,]}n n a b 是一个闭区间列,121n n a a a b b ≤≤≤≤≤≤L L L .因为数列{}n a 有界 ,记有界无限点集{|}n E a n N +=∈,根据聚点定理,E 至少有一个聚点ξ.根据聚点定义,取1ε=,1(,1)n a U ξ∃∈. 取12ε=,21(,)2n a U ξ∈,要求12n n <. L L取1k ε=,1(,)k n a U k ξ∈,要求1k k n n -<. L L如此无限继续下去,构造了数列{}n a 的子数列{}k n a .因为k N +∀∈,有1k n a kξ-<.当k →∞时,有10k→,所以lim k n k a ξ→∞=,即子列{}k n a 收敛于ξ.又因为{}n a 单调递增,必然有1k k n n n a a a +≤≤.当k →∞时,n →∞.由迫敛性可以知道lim n n a ξ→∞=.又由于()n n n n b b a a =-+,n →∞,所以lim n n b ξ→∞=.又因为n k >时,有k n n k a a b b ≤≤≤,及{}n a 与{}n b 的单调性保证[,],1,2,n n a b n ξ∈=L ,即,1,2,n n a b n ξ≤≤=L .最后证明ξ是唯一的.设'ξ也满足',1,2,n n a b n ξ≤≤=L ,则'||,1,2,n n b a n ξξ-≤-=L .由区间套的条件得'||lim()0n n n b a ξξ→∞-≤-=,故有'ξξ=.2.6 用区间套定理证明确界定理证明 设M 为集合S 的上界,即x S ∀∈,有x M ≤.假设S 无最大值,即M S ∉,对于0x S ∀∈,将0[,]x M 二等分,若右半区间含有S 中的点,则右半区间记为11[,]a b ,否则就记左半区间为11[,]a b .将11[,]a b 再二等分,用同样的方法选作22[,]a b .如此继续下去,便得到闭区间套{[,]}n n a b ,使得n b 总是S 的上界,n a 总不是S 的上界.na 为单调递增的,nb 为单调递减的,当n →∞时,01()02n n nb a M x -=-→.根据区间套定理,可知存在唯一公共点[,],1,2,n n a b n ξ∈=L .于是有lim lim n n n n a b ξ→∞→∞==.因为n b 总是S 的上界,即x S ∀∈,有n x b ≤.令n →∞时,得x ξ≤.又由于lim n n a ξ→∞=,即0,,,N n N ε>∃∀>有n a ξεξε-<<+.而n a 总不是S 的上界,于是一定存在1x S ∈使1n a x <,从而1x ξε-<,于是得sup S ξ=.同理可以证若S 为非空下界数集,则S 必存在下确界.3 实数完备性定理的应用区间套定理只是着眼于一点,凡属于整体到局部的问题常用此定理,但应用此定理时常常采用反证法.有限覆盖定理着眼于闭区间的整体,把每点近旁的局部性质推广到整个闭区间,从而证得闭区间上应满足的性质.例1 若函数()f x 定义在区间(,)a b 内,(,)x a b ∀∈,存在邻域(,)x x x x δδ-+使()f x 在(,)x x x x δδ-+内单调增加,则函数()f x 在(,)a b 内也单调增加.证法一(反证法,用区间套定理) 假设函数()f x 在(,)a b 内不是单调增加的,即11,(,)x y a b ∃∈,且11x y <,有11()()f x f y >.将11[,]x y 二等分,分别为111[,]2x y x +与111[,]2x yy +. 当111()()2x y f x f +>时,令11122[,][,]2x yx x y +=有22()()f x f y >,或者111()()2x y f f y +>时令11122[,][,]2x yy x y +=有22()()f x f y >.再将22[,]x y 二等分,记为222[,]2x y x +与222[,]2x y y +.当222()()2x y f x f +>时,令22233[,][,]2x y x x y +=有33()()f x f y >,或者222()()2x y f f y +>时令22233[,][,]2x y y x y +=有33()()f x f y >.如此继续下去,得闭区间列{[,]}n n x y 且1122[,][,][,]n n x y x y x y ⊃⊃⊃⊃L L ;111lim()lim02n n n n n y x y x -→∞→∞--==,且()(),1,2,n n f x f y n >=L . 根据区间套定理,存在(,)a b α∈,使[,],1,2,n n x y n α∈=L .已知存在邻域(,)αααδαδ-+,函数()f x 在(,)αααδαδ-+内单调增加.当0n 充分大时.有00[,](,)n n x y αααδαδ⊂-+而00()()n n f x f y >.这与函数()f x 在(,)αααδαδ-+内单调递增矛盾.于是()f x 在(,)a b 内必是单调递增.证法二(用有限覆盖定理) ,(,)c d a b ∀∈,c d <,求证()()f c f d <.[,]x c d ∀∈存在x 的邻域(,)(,)x x x U x x x δδδ=-+,使()f x 在(,)x U x δ内单调增加,所有(,)x U x δ,[,]x c d ∀∈覆盖了闭区间[,]c d .由有限覆盖定理,在这些邻域内可取有限个邻域1212(,),(,),,(,)n x x n x U x U x U x δδδL 且(12n x x x <<<L )覆盖[,]c d 且去掉任一个都不能覆盖[,]c d .()f x 在每个邻域(,)i i x U x δ(1,2,,i n =L )内单调增加.取11(,)(,)i i i i x i x y U x U x δδ++∈⋂.由(,)i i x U x δ的定义知1122()()()()()()()n f c f x f y f x f y f x f d <<<<<<<L ,由,c d 的任意性知函数()f x 在(,)a b 内也单调增加.例2 设f 是n 维欧氏空间中连通区域D 内定义的函数,对于D 内每一点,都有一个邻域,使得f 在该邻域内等于常数,证明f 在D 内等于常数.[2](116)P证明 设1x 与2x 是D 内任意两点,因为D 是n 维欧氏空间中连通区域,因此有在D 连接1x 与2x的折线L .可以证明组成折线L 的每一条线段的两个端点处的函数值相等,因此可知12()()f x f x =.设这两个端点是1x 与2x ,连接1x 与2x 的线段L 为D 的闭集,L 上的每一点x 都有一个属于D 的邻域(,)x U x δ,在该邻域内f 等于常数,所有的(,)2xU x δ,x L ∈覆盖了闭集L ,由有限覆盖定理,在这些开邻域内可取有限个开邻域1212(,),(,),,(,)222nxxxn U x U x U x δδδL 覆盖L .f 在每一个邻域(,)2ixi U x δ(1,2,,i n =L )内等于常数.取12min{,,,}222nxx xδδδδ=L .把L 等分m 份,使每一小段的长度小于δ,分点为1122,,,m x a a a x ==L ,由于1121,(,)2xx a U x δ∈,所以12()()f x f a =,又由2a L ∈则存在一个i ,1i n ≤≤,使2(,)2ixi a U x δ∈且有3(,)2ixi a U x δ∈,于是23()()f a f a =.如此继续下去可得,1232()()()()()m f x f a f a f a f x =====L ,即f 在D 内等于常数. 例3 举例说明有限覆盖定理的结论在有理数集Q 中不成立.[3](38)P解 闭区间[1,2]中所有有理数的集合记为[1,2]r .需要构造[1,2]r 的一个开覆盖,使它的任何有限覆盖都不能盖住[1,2]r .[1,2]r x ∀∈,可取到正有理数x r (,)x x x r x r -+,这样就得到了[1,2]r 的一个开覆盖{}O α.任意的取{}O α的一个有限开覆盖,设为1111(,),,(,)n n x x n x n x x r x r x r x r -+-+L .由于这些,且其2n 个端点都是有理数.故若设这2n 最靠近的为r ,则在rn 个开区间外.这表明{}O α的任一有限开覆盖都不能盖住[1,2]r .例4 设函数f 在(,)-∞+∞上满足李普希兹条件:12,(,)x x ∀∈-∞+∞,1212()()f x f x L x x -≤-,其中01L <<,求证:存在唯一的0(,)x ∈-∞+∞,使00()f x x =(这种0x 称为f 的不动点).[4](101)P证明 1(,)x ∀∈-∞+∞,按照1()n n x f x -=(1,2,n =L )构造的数列{}n x 满足柯西收敛准则的条件.由条件知:111()()n n n n n n x x f x f x L x x +---=-≤- 211221n n n L x x L x x ---≤-≤≤-L (1,2,n =L )又m n ∀>231112121()m m n m n m m m m n n x x x x x x x x x x L L L ------+-≤-+-++-≤-+++L L1211n L x x L-≤--.而1lim 0n n L-→∞=故{}n x 满足满足柯西收敛准则的条件.因而收敛,设0lim n n x x →∞=,再由1()n n x f x -=及f 在点0x 连续得: 00()f x x =.最后证唯一性.反证法,若10x x ≠也是f 的不动点, 则101010100()()x x f x f x L x x x x <-=-≤-<- 矛盾.。
实数完备性基本定理的相互证明(30个)
2)
bn-an =
我们证明,存在唯一的实数ξ,使得ξ∈[an,bn],(n =1,2,⋯) 存在性:令S={an},显然,S非空且有上界(任一bn都是其上界).据确界原理,S
有上确界,设supS =ξ.现在,我们证明ζ属于每个闭区间[an,bn],(n=1,2, ⋯)显然 an ≤ξ,(n =1,2,⋯) 所以,我们只需证明对一切自然数n,都有ξ≤bn. 事实上,因为对一切自然数n,bn都是S 的上界,而上确界是上界中最小者,因此必有 ξ≤bn ,故我们证明了存在一实数ξ,使得ξ∈[an,bn],(n =1,2,⋯)
时有a - ε < aN ≤ an. 另一方面,由于a 是{ an}的一个上界,故对一切an 都有an ≤ a < a + ε.所以当 n≥ N 时有
a - ε < an < a + ε,
这就证得 an = a.同理可证有下界的递减数列必有极限,且其极限即为它的下确界.ຫໍສະໝຸດ 2.确界原理证明区间套定理
证明:1 设 [an,bn] 是一个闭区间套,即满足: 1) ∀n,[an+1,bn+1]⊂[an,bn];
实数完备性基本定理的相互证明(30 个)
摘要:这 6 个定理虽然出发的角度不同,但描写的都是实数连续性这同一件事,它们之间是相互
等价的,即任取其中两个定理,它们可以相互证明。它们在证明过程中相互联系。对同一个定理的证明, 虽然不同的定理作为工具会使证明有简繁之分,有的用的是类似的证明方法,有的出发点与站的角度不同, 但最后却都能殊途同归。而有时使用同一个定理,也可能有不同的方法。即使方法相同,还可以有不同的 细节。作为工具,它们又各具特点。而这些都是值得我们去注意与发现。
唯一性: 假设还有另外一点 R 且 [an , bn ] ,则| || an bn | 0,
数学学论文毕业论文实数完备性基本定理等价性的证明
实数完备性基本定理等价性的证明摘要 本文通过循环证明对实数完备性基本定理的等价性作出了证明. 关键词 实数完备性基本定理 等价性 循环证明§1 引在这一节,主要对本文所用到的定义,定理及推论作以介绍. 定义 设闭区间列[]{}n n b a ,具有如下性质:(i )[][]11,,++⊂n n n n b a b a , ,2,1=n ; (ii )()n n n a b -∞→lim =0,则称[]{}n n b a ,为闭区间套,或简称区间套.确界原理 设 S 为非空数集.若 S 有上界,则 S 必有上确界;若 S 有下界,则 S 必有下确界.单调有界定理 在实数系中,有界的单调数列必有极限.区间套定理 若[]{}n n b a ,是一个闭区间套,则在实数中存在唯一的一点 ξ,使得[],,2,1,, =∈n b a n n ξ即.,2,1, =≤≤n b a n ξ推论 若[],,2,1,, =∈n b a n n ξ 是区间套[]{}n n b a ,所确定的点,则对任给的ε> 0,存在N> 0,使得当n>N 时有[]()εξ;, ⊂n n b a .有限覆盖定理 设H 为闭区间[]b a , 的一个(无限)开覆盖,则从H 中可选出有限个开区间来覆盖 []b a ,.聚点定理 实数轴上任一有限无界点集 S 至少有一个聚点.柯西收敛准则 数列{}n a 收敛的充要条件是:对任给的ε>0 ,存在正整数N ,使得当n,m>N 时有 n n b a -〈ε.§2 六大基本定理等价性的证明本节就是对六大基本定理等价性的证明.首先列出证明过程的基本框架:确界原理 ⇒ 单调有界定理 ⇒ 区间套定理⇑ ⇓柯西收敛准则 ⇐ 聚点定理 ⇐有限覆盖定理下面就是这个循环证明的过程.1 由确界原理证明单调有界定理证 不妨设{}n a 为 有上界的递增数列. 由确界原理,数列{}n a 有上确界.记 a=sup {}n a . 下面证明 a 就是{}n a 的极限 . 事实上,任给ε 〉0 ,按上确界的定义,存在数列 {}n a 中某一项N a ,使得a-ε〈 N a . 又由{}n a 的递增性,当n ≥N 时有a-ε <N a n a ≤.另一方面,由于a 是{}n a 的一个上界,故对一切n a , 都有n a ≤a<a+ε. 所以当 n ≥N 时有a-ε<n a <a+ε,这就证得∞→n lim n a =a. 同理可证有下界的递减数列必有极限,且其极限即为它的下确界.2 由单调有界定理证明区间套定理证 由区间套的定义,各闭区间的端点满足如下不等式:,1221b b b a a a n n ≤≤≤≤≤≤≤≤即{}n a 为递增有界数列,依单调有界定理,{}n a 有极限ξ ,且有,,2,1, =≤n a n ξ (1)同理,递减有界数列{}n b 也有极限,并按区间套的条件(ii )有ξ==∞→∞→n n n n a b l i m l i m (2)且 n b ξ≤,.,2,1 =n (3)联合(1)及(3)即得.n a ≤ξn b ≤,.,2,1 =n (4)最后证明满足(4)的ξ 是唯一的 ,设数ξ' 也满足, n a ξ'≤,,2,1, =≤n b n 则由(4)式有-≤'-n b ξξ n a ,.,2,1 =n 由区间套的条件(ii )得(),0lim =-≤'-∞→n n n a b ξξ故有 ='ξ ξ.3 由区间套定理证明有限覆盖定理证 用反证法 假设定理的结论不成立,即不能用H 中有限个开区间来覆盖[]b a , .将[]b a , 等分为两个子区间,则其中至少有一个子区间不能用H 中有限个开区间来覆盖. 记这个子区间为[]11,b a ,则[]11,b a []b a ,⊂ ,且()a b a b -=-2111 . 再将[]11,b a 等分为两个子区间,同样,其中至少有一个子区间不能用H 中有限个开区间来覆盖. 记这个子区间为[]22,b a ,则[]22,b a ⊂ []11,b a ,且()a b a b -=-22221. 重复上述步骤并不断进行下去,则得到一个闭区间列[]{}n n b a , ,它满足[][],,2,1,,,11 =⊃++n b a b a n n n n .()(),021∞→→-=-n a b a b n n n 即[]{}n n b a , 是区间套,且其中每一个闭区间都不能用H 中有限个开区间来覆盖.由区间套定理,存在唯一的一点∈ξ[]n n b a , ,n=1,2,…. 由于H 是[]b a , 的一个开覆盖,故存在开区间()∈βα,H ,使()βαξ,∈. 于是,由区间套定理推论,当n 充分大时有[]n n b a ,()βα,⊂ .这表明[]n n b a , 只须用H 中的一个开区间()βα, 就能覆盖,与挑选[]n n b a , 时的假设“不能用H 中有限个开区间来覆盖”相矛盾. 从而证得必存在属于H 的有限个开区间能覆盖[]b a , .4 由有限覆盖定理证明聚点定理证 设A 为有界无限点集 .那么存在正数M>0 ,使得 A []M M ,-⊂ .假设[]M M ,- 中任意点都不是A 的聚点,则对任意一点x ∈[]M M ,-, 必存在相应的()x δ>0 使得在()δ,x ⋃ 中至多有 A 的有限个点. 记()[]{}M M x x H ,,-∈⋃=δ,则H 为A 的一个开覆盖 .由有限覆盖定理,在H 中可以找到有限个开区间覆盖[]M M ,-. 记为()[]{} ,2,1,,,=-∈⋃='i M M x x H i i i δ ,从而更能覆盖A .因H '内至多含有A 中有限个点,从而 A 为有限点集,与假设“ A 是有界无限点集”矛盾 . 故区间 []M M ,- 中至少有一个集合 A 的聚点,即集合A 至少有一个聚点.5 由聚点定理证明柯西收敛准则 证 先证条件的必要性:设a x n → ,则对任意给定的 ε>0, 有一正整数N ,当k.>N 时,有 2ε<-a x k从而当m, n>N 时,有εεε=+<-+-≤-22m n m n x a a x x x其次,证明条件的充分性:设数列{}n a 满足条件:对任给正数ε ,总存在某一个自然数N ,使得当m, n>N 时,都有ε<-n m a a . 取1=ε ,则存在自然数1N ,当n>1N 时,有 111<-+N n a a , 从而111+<+N n a a , 令M=max {}1,,,,12111++N N a a a a , 则对一切 ,,2,1 =n 有M a n ≤ , 即 {}n a 有界.下证{}n a 有收敛子列 .若E={} ,2,1=n a n 是有限集,则 {}n a 必有一常子列;若E 为无限集,则由聚点定理, E 有一个聚点 A. 由聚点定义可证,存在{}k n a ,使A a k n k =∞→lim .总之,{}n a 有收敛子列 .设 A a k n k =∞→lim ,则对任给正数ε ,存在N ,当k, m,n>N 时,有2ε<-m n a a , 2ε<-A a k n .所以当 n>N (任取 k>N ,使 n n k > )时,有 εεε=+<-+-≤-22A a a a A a k k n n n n .故 A a n n =∞→lim .6 用数列的柯西收敛准则证明确界原理证 设S 为原理非空有上界数集 . 由实数的阿基米德性,对任何正数α,存在整数αk ,使得αλααk = 为S 的上界,而 ()ααλαα1-=-k 不是S 的上界,即存在 ∈'αS ,使得()ααα1->'k .分别取 ,2,1,1==n n α , 则对每一个正整数n ,存在相应的n λ ,使得n λ为S 的上界,而nn 1-λ 不是 S 的上界,故存在S a ∈',使得nn 1->'λα . (5)又对正整数 m, m λ是S 的上界,故有 a m '≥λ 结合(5)式得nm n 1<-λλ ;同理有mn m 1<-λλ . 从而得⎪⎭⎫⎝⎛<-n m n m 1,1m a x λλ .于是,对任给的0.>ε,存在N>0 ,使得当 m ,n >N 时有ελλ<-n m .由柯西收敛准则,数列{}n λ 收敛 .记..lim λλ=∞→n n (6)现在证明λ就是S 的上确界 .首先,对任何a ∈S 和正整数n 有a n λ≤,由(6)式得a λ≤,即λ是的S 一个上界 .其次, 对任何δ>0 ,由()∞→→n n01及(6)式, 对充分大的n 同时有 2,21δλλδ-><n n . 又因n n 1-λ 不是S 的上界, 故存在S a ∈', 使得na n 1->'λ. 结合上式得 δλδδλ-=-->'22a .这说明λ为S 的上确界 .同理可证:若S 为非空有下界数集,则必存在下确界 .参考文献[1] 华东师范大学数学系 编 《数学分析》 高等教育出版社 2001年6月第3版 35P 168161-P[2] 复旦大学数学系陈传璋等编《数学分析》高等教育出版社1983年7月第2版[3] 杨熙鹏邵子逊刘颖植主编《数学分析习题解析》陕西师范大学出版社[4] 钱吉林等主编《数学分析题解精粹》崇文书局2003年8月第1版The Proof on the Equivalent Relations in the Foundamental Theoremsof Completeness of Real NumbersAbstract In this paper , we prove to the equivalent relations in the foundamental theorems of the completeness of real numbers by cyclic proof .Key words completeness of real numbers foundamental theorem equivalent relation cyclic proof。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
易证。
因此,有。
由于 bn 都为 S 的上界,所以也为 S 的上界。
从而可知,。
即,故为 S 的上确界。
(38 定理定理 2(Cauchy 收敛准则单调有界定理证不妨设 {xn } 为单增有上界数列。
假设 {x n } 无极限,Cauchy 收敛准则可知,
但是。
由 N 的任意性,不难得到 {x n } 的一个严格单增的子列 {xn k } ,满足。
由于时,有,故 {x n } 收敛。
所以当。
这与 {x n } 为有界数列矛盾, (39 定理定理 3(Cauchy 收敛准则区间套定理证设 {[ a n , bn ]} 是 Cantor 区间套。
则由
可知,时,有。
由于{a n } 单调递增,{bn } 中的每一个元素都为 {a n } 的上界。
故,则有。
故由 Cauchy 收敛准则可知 {a n } 收敛,记其极限为。
由(3.1 易证。
由 {a n } , {bn } 的单调性可知有
n , bn ] 。
(40 定理定理 4(Cauchy 收敛准则-Borel 有限覆盖定理证(反证法假设闭区间 [ a, b] 有一个开覆盖不能用它的任有限个开区间覆盖。
定义性质 P :不能用中有限个开区间覆盖。
仿(9的证明,利用二等分法容易构造出满足性质 P 的区间套 {[ a n , bn ]} 。
仿(39的证明可知,
,从而,,有 [a n , bn ]
,这与 [a n , bn ] 具有性质 P 矛盾。
这就证明了 Heine–Borel 有限复盖定理。
(41 定理定理 5(Cauchy 收敛准则聚点原理证设 S 为直线上有界点集,则使得 S 。
定义性质 P : 至少含有 S 中的无限多个点。
利用二等分法容易构造出具有性质 P 的区间套 {[ a n ,
bn ]} 满足(3.1 。
由性质 P 任意挑选 S 中不同的点构成的数列 {x n } 使得
n , bn ] 。
,由(3.1和极限定义知,由定义知 {x n } 是 Cauchy 列。
由
有。
收敛准则知,使得。
从而可知即为 S 的一个聚点。
定理 7 定理 6(Cauchy 收敛准则致密性定理证设 {x n } 为有界无限点集。
则由(10,(11的证明,从 {x n } 中可抽出一单调有界子列。
对该子列重复(38的证明,可以得知该子列收敛,故 {x n } 必存在一个数列子列。
4. 定理 8 与前 7 个定理的互证 (43 定理定理 8(确界原理准则 11
证设是 R 的一个划分,则 A 为非空有上界数集,为非空有下界数集,则由确界原理可知。
若则 A 有最大元,否则,则由上确界的定义可知,是 A 所有上界中最小的,即为的最小元。
(44 定理定理 8(单调有界定理准则证设是 R 的一个划分,因为非空,故且,构造区间 [ a, b] 。
定义性质 P : 存在一点属于 A ,但区间的右端点属于。
仿(9的证明,利用二等分法容易构造出满足性质 P 的区间套 {[ a n , bn ]} 且满足(3.1。
所以 {an } 为单增有上界数列,所以由有单调有界原理可知
为单减有下界的数列。
使得,。
由(3.1易知,。
又由 {a n } 和 {bn } 的单调性可知
都有。
不难证明是 A 的一个上界,且是的一个下界。
若,则显然为 A 的最大元,否则,则同理为的最小元. (45 定理定理 8(Cantor 区间套定理准则证仿上题的证明,构造出区间套 {[ a n , bn ]} ,其中。
则由区间套定理可知,存在唯一的实数,且。
由 {a n } 和 {bn } 的单
调性不难证明是 A 的一个上界,且是的一个下界,若
A ,则显然为 A 的最大元,否则,则同理为的最小元。
(46 定理定理 8(Hein-Borel 有限覆盖定理准则证(反证法因为
非空,所以,构造区间 [ a, b] 。
假设 A 无最大元且无最小元,则,必存在 U ( ,使得,或 U 如若不然,即,使得
,且,则由于,不难证明 x0 或为 A 的最大元或为的最小元。
从而得 [a, b] 的一个开覆盖(3.2记为。
由 Heine-Borel 有限覆盖定理可知存在的一个有限子覆盖(3.3记为。
因此必有一个,不妨设为,包含 b 。
因为 b 不属于 A ,故
定义为性质 P 。
从而与相交的中的邻域也具有性质 P 。
依次类推下去,将有包含 a 的中的邻域也应具有性质 P ,这与矛盾,故或A 有最大元或。
(47 定理定理 8(Weierstrass 聚点原理准则证仿 (44 的证明,构造出区间套 {[ a n , bn ]} ,其中。
由 Weierstrass 聚点原理可知, {a n } 和 {bn } 都至少存在一个聚点分别记为。
容易证得,则显然。
若,则由 bn 的取法可知,为 A 的最大元; 若,则由 an 的取法可知,为
的最小元。
(48 定理定理 8(Bolzano 致密性定理准则证仿(44 的证明,构造出区间套 {[ a n , bn ]} ,其中。
由 Bolzano 致密性定理可知, {a n } 和 {bn } 各自至少存在一个收敛子列。
又由于 {a n } 和 {bn } 单调,容易证明 {a n } 和 {bn } 收敛。
再由(3.1可知,且和{bn } 收敛于同一点,则不难证明或为 A 的最大元,或为的最小元。
(49 定理定理 8(Cauchy 收敛准则准则证仿(44 的证明,构造出区间套 {[ a n , bn ]} ,其中。
仿(44 的证明可知, {a n } 和 {bn } 收敛于同一点,且。
,则由 {an } , {bn } 的单调性 12
及,由柯西收敛准则易证 {an } ,{bn } 收敛于同一点,仿(47 的证明可知或为 A 的最大元,或为的最小元。
(50 定理
定理 1(Dedekind 准则确界原理证明:设 S 为有上界集合。
若
为 S 的上界,那么容易知道,。
否则,记 S 的上界集为,令
R \ 。
显然,且容易知道,构成 R 的一个分划。
由 Dedekind 准则和所定义的分化可知,必有最小元 c 。
若,使得都有,则。
因为 c 是的最小元,所以
矛盾。
故,,使得,即 c 为 S 的上确界。
(51 定理定理 2(Dedekind 准则单调有界原理证不妨设 {x n } 为单调递增有上界数列,记 {x n } 的所有上界为且,则不难证明
构成 R 的一个分划,由 Dedekind 准则和所定义的分化可知,必有最小元。
仿(44 的证明可知,含有数列 {x n } 中的数。
由单调性易得知外最多有数列 {x n } 中的有限项,因此我们证明了。
(52 定理定理 3(Dedekind 准则区间套定理证记 {a n } 的上界集为,令,不难验证为 R 的一个分划,则由Dedekind 准则可知,或者 A 有最大元,或者有最小元。
不妨设 A 有最大元,则因为,所以bn ,又因为故
,从而有。
(53 定理定理 4(Dedekind 准则
Heine-Borel 有限覆盖定理证 ( 反证法假设闭区间 [ a, b] 有一个开覆盖不能用它的任有限个开区间覆盖。
定义性质 P :不能用中有限个开区间覆盖。
仿(9的证明,利用二等分法容易构造出满足性质 P 的区间套 {[ a n , bn ]} 。
仿(52的证明可知,n ] 。
从而由(3.1可知,,,有,这与 [a n , bn ] 具有性质 P 矛盾。
这就证明了 Heine–Borel 有限复盖定理。
(54 定理定理 5(Dedekind 准则聚点原理证设 S 为直线上有界无限点集,则,使得。
定义性质 P : 含有 S 中的无限个点。
仿(9的证明,利用二等分法容易构造出满足性质 P 的区间套 {[ a n , bn ]} 。
仿(52的证明可知,。
从而由 (3.1 可知,,有 [a n ,。
由 [a n , bn ] 具有性质 P 及聚点的定义可知,即为 S 的一个聚点。
(55 定理定理 6(Dedekind 准则致密性定理证设 {x n } 为有界无穷点集。
仿(11的证明,可知 {x n } 存在一个单调子列。
仿(51 的证明,可知这子列收敛。
这就证明了 Bolzano 致密性定理。
(56 定理定理 7(Dedekind 准则收敛准则证明:设 {x n } 满足,有。
不难证明 {x n } 有界。
仿(54 证明的不难证明,使得中含有 {x n } 的无限多项,即 13。
从而有。
故。
14。