简谐运动 振动图像

合集下载

教科版高中物理选择性必修第一册第二章第1节简谐运动及其图像

教科版高中物理选择性必修第一册第二章第1节简谐运动及其图像
(2n 1) (n=0,1,2,3,...)
说明:一切复杂的振动都不是简谐振动,但它们 都可以看作是若干个振幅和频率不同的简谐振动 的合成。因而它们的振动曲线是正弦或余弦曲线 的合成。
课堂练习
1.
x/m
写出振动方程 x=10sin(2π t)cm .
2.某一弹簧振子的振动图象如图所示,则由图象 判断下列说法正确的是( A)B
五、简谐运动的图像
方案一:在水平弹簧振子的小球上安置一支记 录用的笔,在下面放一条白纸带,当小球振动时, 沿垂直于振动方向匀速拉动纸带,笔就在带上画 出一条振动图线。(动画模拟)
方案二:(演示)做一个盛沙的锥摆,让其摆 动,同时在下边拉动一块木板,则摆中漏下的 沙子就显示出振动的图象。
方案三:频闪照片(介绍)
x=0时,F回=0 、a=0; x=±A时,F回和a达最大值.
说明:
1、简谐运动的图像是质点做简谐运动时,质点的位 移随时间变化的图象. 2、简谐运动的图像是正弦曲线还是余弦曲线,这决
定于t=0时刻的选择。即图像形状与计时起点有关.
3、从图中可得振幅A 、周期T 、任意时刻的位移x; 注:相邻两个振动情况完全相同的位置之间的时间 为一个周期T . 4振动图象不是运动轨迹.
两个摆长、周期与振幅都相同的单摆,它们振动步调总一 致时,我们就说它们的相位相同,振动同相.
当它们的位移总相反时,我们可以从振动表达式推知它们 的相位一定相差π,就说它们的相位相反,振动反相.
两个单摆的振动步调不相同,就是因为它们具有相位差.
所以用来描述简谐运动的物理量有:周期、频率、相位与 相位差.
几种常见图形的表达式
x Asin(t)
x Asin(t )
2
x Asin(t )

简谐运动图象和公式教科ppt课件

简谐运动图象和公式教科ppt课件
6
一、简谐运动的图像
(3)从振动图象中分析有关物理量
从简谐运动的图像我们可以了解到物体在振动时的许多物 理量。比如,参看下图的振动图像可确定:
7
1.振幅A:图像的峰值。 2.周期T:相邻两个位移为正的最大值或负的最
大值之间的时间间。 3.任一时刻t的位移x:对应于图像上某一点的
坐标(t,x)。
8
22
课堂练习 1、右图中是甲乙两弹簧振子的振动图象,两
振动振幅之比为( 2∶1 ), 频率之比为( 1∶1 ),
甲和乙的相差为( )
2
23
练习:
已知:A=3cm,T=8s,规定向右方向为正 方向,从平衡位置O(向B)开始计时, 试:大致画出它的振动图像?
24
从平衡位置O(向B)开始计时
从B 开始计时
1、振动图象(如图)
2、x-t图线是一 条质点做简谐
运动时,位移
随时间变化的
图象,不是轨
迹。
3、振动图象是 正弦曲线还是 余弦曲线,这 决定于t=0 时刻的选择。
4
一、简谐运动的图像
(2)简谐运动图象描述的振动物理量
1、直接描述量: ①振幅A;②周期T;③任意时刻的位移x。
5
一、简谐运动的图像
2、间接描述量 ①频率f=1/T ② x-t图线上任一点的切线的斜率等于v。
选修3-4 第一章 机械振动 §1.3 简谐运动的图象和公式
1
温故知新——简谐运动的描述
1、如何反映简谐运动的强弱和振动快慢? 振幅(A) 周期和频率 2、单摆的周期与哪些因素有关?
与单摆的质量和振幅无关,与摆长有关
想一想还可怎么描述简谐运动? 2
3
一、简谐运动的图像

简谐运动的描述ppt课件

简谐运动的描述ppt课件
2.2
简谐运动的描述
目录
CONTENTS
1
简谐运动的表达式
2
描述简谐运动的物理量
3
简谐运动的周期性和对称性
4
简谐运动振幅与路程的关系
有些物体的振动可以近似为简谐运
动,做简谐运动的物体在一个位置附近
不断地重复同样的运动。如何描述简谐
运动的这种独特性呢?
知识回顾:
简谐运动的位移图像是一条正弦曲线。
全振动的特点:①位移和速度都会到初状态 ②路程等于4A
②周期:做简谐运动的物体完成一次全振动所需要的时间,用T表示,
单位:s.
③ 频率:单位时间内完成全振动的次数,用f表示,单位:Hz.
周期T与频率f的关系是T=
知道即可:弹簧振子的周期由哪些因素决定?
周期公式: T 2
m
k
弹簧振子周期(固有周期)和频率由振动系统本身的因素决定(振子的质量m和弹
②若△ = 2 − 1<0,振动2的相位比1落后△ 。
4.同相与反相:
(1)同相:相位差为零



△ = 2( = 0,1,2, … )


(2)反相:相位差为
△ = (2 + 1)( = 0,1,2, … )

A与B同相
A与C反相
A与D异相
相位差90°
=( + )
一、简谐运动的表达式
相位
x A sin(t )
振幅
圆频率
初相位
二、描述简谐运动的物理量
=( + )
1.振幅:(1)定义:振动物体离开平衡位置的最大距离。
振幅
O
振幅
(2)物理意义:振幅是描述振动强弱的物理量。

简谐运动的图象和公式

简谐运动的图象和公式
O
• 图像绘制方法 1、描点法
第一个1/2周期: t 时间t(s) 0 第二个1/2周期: 7t 时间t(s) 6t
0
0
2t
0
3t
0
4t
0
5t
0
6t
0
位移x(cm) 20.0
-17.8
-10.1
0.1
10.3
17.7
20.0
0
8t
0
9t
0
10t
0
11t
0
12t
0
位移 x(cm)
20.0
17.7
10.3
以x代表质点对于平衡位置的位移,t代表时间,则
x A sint
(1)公式中的A 代表什么? A叫简谐运动的振幅。表示简谐运动的强弱。 (2)ω叫做什么?它和T、f之间有什么关系?
叫圆频率。表示简谐运动的快慢。 它与频率的关系: =2f
(3)公式中的相位用什么来表示?
“ t+” 叫简谐运动的相位。表示简谐运动所处的状态。
二、简谐运动的图象作用:
1.物理意义:简谐运动的振动图象表示某个振动物体 相对平衡位置的位移随时间变化的规律。 注意:振动图象不是振子运动的轨迹。 2. 从简谐运动的振动图象可以知道振动物体的运动情 况。 (1)从图象可以知道振幅。 (2)从图象可以知道周期(频率)。(曲线相邻两最 大值之间的时间间隔) (3)从图象可以知道任一时刻物体对平衡位置的位移, 从而确定此时刻物体的位置。 (4)从图象可以确定任一时刻物体的速度大小和方向, 以及某一段时间速度大小变化情况。
x
·
t = 0 A
x
参考圆
简谐运动的位移公式:
x A cos( t )

物理人教版(2019)选择性必修第一册2.1简谐运动(共15张ppt)

物理人教版(2019)选择性必修第一册2.1简谐运动(共15张ppt)
且与初速度方向在同一直线:匀变速直线运动 a恒定:
且与初速度方向不在同一直线:抛体运动
a大小不变、方向改变:匀速圆周运动 a变化:
a大小、方向均改变:机械振动
一、机械振动
1.定义:物体或物体的一部分在一个位置附近的往复运动叫做机械振动,
简称振动。
平衡位置
2.平衡位置:振子原来静止时的位置。(合力为0)
三、弹簧振子的位移——时间图像
1.振子的位移:从平衡位置指向小球所在位置的有向线段
x1
x2 弹簧振子
注意:振子位移和机械运 动的位移定义上的区别
三、弹簧振子的位移——时间图像
2.弹簧振子的位移——时间图像: ①建立坐标系: 以小球的平衡位置为坐标原点0 沿着弹簧振子的振动方向建立纵轴 垂直于弹簧振子振动方向建立横轴
②标出各时刻小球球心的位置坐标;
③用曲线把各点连接起来。
以上实验中画出的小球运动的x—t图象很像正弦曲线,是
不是这样呢?如何验证?
方法一:正弦函数代入法 方法二:计算机函数图像耦合法
思考:简谐运动的
位移-时间(x-t)图 像是不是质点的轨迹?
四、简谐振动
1.定义:如果物体的位移与时间的关系遵从正弦函数的规律,即它的振动图 像(x-t图像)是一条正弦曲线,这样的振动是一种简谐运动。 简谐运动是最基本的振动。
2.运动性质:非匀变速运动 3.图象意义:表示一个振子不同时刻所在的位置或者一个振子位移随时间的
变化规律。
4.从Байду номын сангаас像获取信息
四、简谐振动
①任意时刻质点的位移的大小和方向; ②任意时刻质点的振动方向; ③任意时刻质点的速度、加速度、位移的变化情况;
思考:图像的斜率代表什 么含义?

高三物理_简谐运动及图像_知识点解析、解题方法、考点突破、例题分析、达标测试

高三物理_简谐运动及图像_知识点解析、解题方法、考点突破、例题分析、达标测试

【解题方法指导】简谐振动是高中物理中比较复杂的运动,具有往复性和周期性。

答案往往不惟一,知识点比较复杂,零散。

例1. 有关简谐振动的证明:前面提到过,简谐振动的证明方法还有一种方法,即图象法,下面设计两道例题加以证明。

①弹簧振子:题设,如图所示,水平方向的弹簧振子模型,设想振子下面安装一支喷墨笔,在其下面平放一长木板,建立如图的坐标系,让木板伴随弹簧振子运动,设速度为v。

问题:证明弹簧振子为简谐运动。

证明:木板的运动方向,因速度恒定,所以所走位移与时间成正比t=s/vV,这样就把“时间的痕迹”留在运动方向上了。

x方向:为各个时刻该质点的位移,从图像中可以看出,其图像是波浪线,所以证明它是简谐运动。

②单摆(可仿照上例自己做)例2. 有关图像的意义及其变化一般来讲,描述物体的运动规律主要有以下规范:第一:要描述物体的位置随时间的变化规律。

第二:要描述物体的状态(速度)随时间的变化规律。

在方法上,主要有两种方法:一种是公式法,一种是图像法。

一般资料上显示,用图像的方法描述,简单、直观、明朗,但我们的经验是学生对图像的认识是很困难的,下面分别就位置、速度及其周期性等几方面进行分析,给出一般做法。

在右面的位移—时间图像中:(1)质点在各时刻的位置(如A点为正向最大,C点为负向最大)图像在表达位移(x)和速度(v)等矢量时,各有不同的做法,比如:在S—t图像中,读取某一时刻的位置,只需读出纵坐标即可,连同符号就可以找到质点在该时刻的具体位置。

(2)各时刻质点的运动方向:在表达速度时则不同,现在提供两种方法:一是根据s —t图像,利用我们前面提到的“互余关系”画出它的速度—时间图像,这样就可以直接从纵坐标上读取了。

二是在s—t图象中获取速度的信息:其大小要看某一时刻图像上点的切线的斜率的大小,其方向可以运用“延时法”进行判断。

在本例题中,我们分别把图像中的E、B、F、D 等点,将时间向后延续少许,看它们是远离了横轴还是靠近了横轴,从而判断它们的运动方向。

单摆简谐运动的图像PPT课件

单摆简谐运动的图像PPT课件

能力·思维· 方法
【例3】将某一在北京准确的摆钟,移到南 极长城站,它是走快了还是慢了?若此钟在 北京和南极的周期分别为T北、T南,一昼夜 相差多少?应如何调整?
能力·思维·
方法
【解析】单摆周期公式T= 2
l ,由于北京和南极
g
的重力加速度g北、g南不相等,且g北<g南,因此
周期关系为:T北>T南.
(5)单摆的等时性:在小振幅摆动时,单摆的 振动周期跟振幅和振子的质量都没关系.
要点·疑点· 考点
2.简谐运动图像
(1)物理意义:表示振动物体的位移随时间变化 的规律.注意振动图像不是质点的运动轨迹.
(2)特点:简谐运动的图像是正弦(或余弦)曲线 .
要点·疑点·
考点
(3)作图:以横轴表示时间,纵轴表示位移.如 图7-2-2所示.
能力·思维·
方法
【例1】如图7-2-4所示,一块涂有 碳黑的玻璃板,质量为2kg,在拉 力F的作用下,由静止开始竖直向 上做匀变速运动,一个装有水平振 针的振动频率为5Hz的固定电动音 叉在玻璃板上画出了图示曲线,量 得OA=1cm,OB=4cm,OC=9cm,求外 力的大小.(g=10m/s2)
说明在南极振动一次时间变短了,所以在南极摆 钟变慢了.
设此钟每摆动一次指示时间为t0s,在南极比在 北京每天快(即示数少)△ts.
能力·思维· 方法
则在北京(24×60×60/T北)t0=24×60×60①
在南极(24×60×60/T南)t0=24×60×60-△t②
由①②两式解得△t=24×60×60(T北-T南)/T南.
为使该钟摆在南极走时准确,必须将摆长加长.
摆钟是单摆做简谐运动的一个典型应用,其快慢 不同是由摆钟的周期变化引起的,分析时应注意:

简谐运动的图像和公式课件

简谐运动的图像和公式课件
π π π (2)x=10sin( t+ ) cm,初相位 φ= . 2 2 2
答案 (1)5 2 cm -5 2 cm
π π (2)x=10sin2t+2
π cm 2
一、简谐运动的图像
(1)白纸不动时,甲同学画出的轨迹是怎样的? (2)乙同学匀速向右拖动白纸时,甲同学画出的轨迹又是怎 样的? 答案 (1)是一条垂直于OO′的直线.
返回
(2)轨迹如图,类似于正弦曲线.
一、简谐运动的图像
2.绘制简谐运动的x-t图像
如图2所示,使漏斗在竖直平面内做小角度摆动, 并垂直于摆动平面匀速拉动薄板,则细沙在薄板 上形成曲线.若以振子的平衡位置为坐标原点,沿 着振动方向建立x轴,垂直于振动方向建立t轴,
5.相位差
φ2),则相位差为Δφ= 当Δφ= 当Δφ= 0 π =
若两个简谐运动的表达式为x1=A1sin (ωt+φ1),x2=A2sin (ωt+ . 时,两振动质点振动步调一致. (ωt+φ2)-(ωt+φ1) φ2-φ1 时,两振动质点振动步调完全相反.
典例精析 一、对简谐运动的图像的理解
T
x=Asin
2π t+φ或 x=Asin (2πft+φ). T
二、简谐运动的表达式及相位差
返回
4.ωt+φ代表了做简谐运动的质点在 t时刻处在一个运动周期中的
哪个状态,所以ωt+φ代表简谐运动的相位;其中φ是t=0时的相 位,称为初相位或初相.相位是一个角度,单位是 或 弧度 度 .
4
1
中正确的是( )
2
3
4
1.(对简谐运动的图像的理解)关于简谐运动的图像,下列说法 BCD A.表示质点振动的轨迹,是正弦或余弦曲线 B.由图像可判断任一时刻质点相对平衡位置的位移方向 C.表示质点的位移随时间变化的规律 D.由图像可判断任一时刻质点的速度方向 解析 振动图像表示质点的位移随时间的变化规律,不是运 动轨迹,A错,C对; 由图像可以判断某时刻质点的位移和速度方向,B、D正确.

2.1 简谐运动(教学课件)

2.1 简谐运动(教学课件)

新课引入
四、课堂小结
机械振动
目标一:
弹簧振子
简谐
运动
目标二:简
谐运动及其
图像
弹簧振子
理想化模型
平衡位置
原来静止时的位置
振子的
位移
相对于平衡位置的位移
特征:正弦曲线
x-t图像
意义:反映位移随时间变化的规律
分析:速度、位移、加速度等
点关于O点对称,则有:
(1)时间的对称:tOB=tBO=tOA=tAO,tOD=tDO=tOC=tCO,tDB=tBD=tAC=tCA
(2)速度的对称:
①物体连续两次经过同一点(如D点)的速度大小相等,方向相反;
②物体经过关于O点对称的两点(如C与D两点)的速度大小相等,方向可能相同,也可能相反.
(3)位移和加速度的对称:
3.受力特点:
每当物体离开平衡位置时,物体总会受到一个指向平衡位置的力,该力的作用效
果是使物体回到平衡位置,作用力是变力。
机械振动
其他例子
思ቤተ መጻሕፍቲ ባይዱ与讨论
往复运动一定就是机械振动是否正确?
①乒乓球在地面上的上下的运动
②体育课上同学进行25米折返跑
新课讲授
二、弹簧振子





按振动方向分类
水平弹簧
振子

振子的运动轨迹是一条直线。
新课引入
三、简谐运动
思考与讨论:
从以上获得的弹簧振子的 x - t 图像可以看出,小球的位移与时间的关系似乎可以用
正弦(余弦)函数来表示。
那么我们如何确定弹簧振子中小球的位移与时间的关系是否遵从正弦函数规律呢?
方法一 正弦函数代入法:

课件3:2.1 简谐运动

课件3:2.1 简谐运动

位移 x(cm)
20.0
17.7
10.3
0.1
-10.1 -17.8 -20.0
横坐标:振动时间t 纵坐标:振子相对于平衡位置的位移
3.描图记录法
在弹簧振子的小球上安装一枝绘图笔,让一条纸带 在与小球振动方向__垂__直__的__方__向__上___匀__速__运__动__,笔 在纸带上画出的就是小球的振动图像.
体验:一同学__匀__速__拉__动___一张白纸,另一同学沿 与纸运动方向相__垂__直__方__向___用笔往复画线段,观 察得到的图像.
这种记录振动的方法在实际中有很多应用.医院里的 心电图及地震仪中绘制的地震曲线等,都是用类似 的方法记录振动情况的.
心电图
绘制地震曲线的装置
上图中画出的小球运动的x—t图像很像正弦曲线, 是不是这样呢?
4、一质点做简谐运动,在t1和t2两个时刻加速度相同,
则在这两个时刻,下列物理量一定相同的是 ( AD )
A、 位移
B、 速度
C、 动量
D、 回复力
5、关于弹簧振子做简谐运动时的能量,下列说法 正确的有 (ABC )
A、等于在平衡位置时振子的动能 B、等于在最大位移时弹簧的弹性势能 C、等于任意时刻振子动能与弹簧弹性势能之和 D、位移越大振动能量也越大
四、简谐运动
1.定义:如果质点的位移与时间的关系遵从_正__弦__函 数的规律,即它的振动图像(x-t图像)是一条_正__弦__ 曲 线,这样的振动叫做简谐运动. 2.特点:简谐运动是_最__简__单__、__最__基__本__的振动,其振 动过程关于__平__衡__位__置__对称,是一种_周__期__性__的_往__复__ 运动. 3.简谐运动的典例:(1)弹簧振子 (2)单摆

第三节简谐运动的图像

第三节简谐运动的图像

第三节简谐运动的图像第三节简谐运动的图像知识要点:⼀、简谐运动的图像1、坐标轴:横轴表⽰时间,纵轴表⽰位移。

具体作法:以平衡位置为坐标原点,以横轴表⽰,以纵轴表⽰质点对平衡位置的位移,根据实验数据在坐标平⾯上画出各个点,并⽤平滑曲线将各点连接起来,即得到简谐运动的位移——时间图像。

(通常称之为振动图像)2、简谐运动图像的特点:理论和实验都证明,所有简谐运动的振动图像都是正弦或余弦曲线。

3、简谐运动图像的物理意义:表⽰做简谐运动的质点的位移随时间变化的规律,即位移——时间函数图像。

注意:切不可将振动图像误解为物体的运动轨迹。

处理振动图像问题时,⼀定要把图像还原为质点的实际振动过程分析。

⼆、从简谐运动图像可获取的信息1、任⼀时刻振动质点离开平衡位置的位移:纵坐标值。

2、振幅A:图像中纵坐标的最⼤值。

3、周期T:两相邻的位移和速度始终完全相同的两状态间的时间间隔。

4、任⼀时刻的速度⼤⼩及⽅向:图线上该时刻对应的斜率⼤⼩反映速度⼤⼩,斜率正、负反映速度⽅向。

斜率⼤时速度⼤,斜率为正时速度为正,斜率为负值时速度为负。

5、任⼀时刻加速度(回复⼒)⽅向:与位移⽅向相反,总是指向平衡位置,即时间轴。

6、某⼀段时间内位移、回复⼒、加速度、速度、动能及势能的变化情况:当振动质点向平衡位置⽅向运动时,速度、动能均增⼤,⽽位移、回复⼒、加速度、势能均减⼩,否则相反。

典型例题:例1、如图9-15所⽰为某质点简谐运动的振动图像,根据图像回答:⑴振幅、周期;⑵具有正向最⼤速度的时刻;⑶具有正向最⼤加速度的时刻;⑷在3~4s内,质点的运动情况;⑸1~4s内质点通过的路程。

解析:⑴由图像可知振幅A=10cm,周期T=4s。

⑵物体在平衡位置时有最⼤速度,顺着时间轴向后看,看它下⼀时刻的位移,就知道它向哪个⽅向运动,故可知t=0,4s,8s,…4ns(n为⾮负整数)时,具有正向最⼤速度。

⑶物体在最⼤位移处时具有最⼤加速度,由于加速度与位⽅向相反,故只胡当质点位为负时,加速度⽅为正,故可知t=3s,7s,11s,…(4n+3)s(n为⾮负整数)时,具有正向最⼤加速度。

2024高考物理一轮复习-- 机械振动专题(一)--简谐运动的规律和图像

2024高考物理一轮复习-- 机械振动专题(一)--简谐运动的规律和图像

简谐运动的规律和图像一、简谐运动的基本规律1.简谐运动的特征2.注意:(1)弹簧振子(或单摆)在一个周期内的路程一定是4A,半个周期内路程一定是2A,四分之一周期内的路程不一定是A。

(2)弹簧振子周期和频率由振动系统本身的因素决定(振子的质量m和弹簧的劲度系数k ),与振幅无关。

二、简谐运动的图像1.简谐运动的数学表达式:x=A sin(ωt+φ)2.根据简谐运动图象可获取的信息(1)振幅A、周期T(或频率f)和初相位φ(如图所示).(2)某时刻振动质点离开平衡位置的位移.(3)某时刻质点速度的大小和方向:曲线上各点切线的斜率的大小和正负分别表示各时刻质点的速度的大小和速度的方向,速度的方向也可根据下一时刻物体的位移的变化来确定.(4)某时刻质点的回复力、加速度的方向:回复力总是指向平衡位置,回复力和加速度的方向相同,在图象上总是指向t轴.(5)某段时间内质点的位移、回复力、加速度、速度、动能和势能的变化情况.3.简谐运动图象问题的两种分析方法法一图象-运动结合法解此类题时,首先要理解x -t 图象的意义,其次要把x -t 图象与质点的实际振动过程联系起来.图象上的一个点表示振动中的一个状态(位置、振动方向等),图象上的一段曲线对应振动的一个过程,关键是判断好平衡位置、最大位移及振动方向.法二 直观结论法简谐运动的图象表示振动质点的位移随时间变化的规律,即位移-时间的函数关系图象,不是物体的运动轨迹.三、针对练习1、一个小物块拴在一个轻弹簧上,并将弹簧和小物块竖直悬挂处于静止状态,以此时小物块所处位置为坐标原点O ,以竖直向下为正方向建立Ox 轴,如图所示。

先将小物块竖直向上托起使弹簧处于原长,然后将小物块由静止释放并开始计时,经过s 10π,小物块向下运动20cm 第一次到达最低点,已知小物块在竖直方向做简谐运动,重力加速度210m /s g =,忽略小物块受到的阻力,下列说法正确的是( )A .小物块的振动方程为0.1sin 102x t π⎛⎫=+ ⎪⎝⎭(m ) B .小物块的最大加速度为2gC 2m /sD .小物块在0~1330s π的时间内所经过的路程为85cm2、(多选)某弹簧振子在水平方向上做简谐运动,其位移x 随时间变化的关系式为x =A sin ωt ,如图所示,则( )A .弹簧在第1 s 末与第5 s 末的长度相同B .简谐运动的频率为18Hz C .第3 s 末,弹簧振子的位移大小为22A D .第3 s 末至第5 s 末,弹簧振子的速度方向不变3、(多选)如图甲所示,悬挂在竖直方向上的弹簧振子,在C 、D 两点之间做简谐运动,O 点为平衡位置。

简谐运动的六种图象

简谐运动的六种图象

简谐运动的六种图象北京顺义区杨镇第一中学范福瑛简谐运动在时间和空间上具有运动的周期性,本文以水平方向弹簧振子的简谐运动为情境,用图象法描述其位移、速度、加速度及能量随时间和空间变化的规律,从不同角度认识简谐运动的特征.运动情境:如图1,弹簧振子在光滑的水平面B、C之间做简谐运动,振动周期为T,振幅为A,弹簧的劲度系数为K。

以振子经过平衡位置O向右运动的时刻为计时起点和初始位置,取向右为正方向。

分析弹簧振子运动的位移、速度、加速度、动能、弹性势能随时间或位置变化的关系图象。

1.位移-时间关系式,图象是正弦曲线,如图22.速度-时间关系式,图象是余弦曲线,如图33.加速度-时间关系式,图象是正弦曲线,如图4 4.加速度-位移关系式,图象是直线,如图55.速度-位移关系式,图象是椭圆,如图6,整理化简得6.能量-位移关系弹簧和振子组成的系统能量(机械能)守恒,总能量不随位移变化,如图7直线c弹性势能,图象是抛物线的一部分,如图7曲线b振子动能,图象是开口向下的抛物线的一部分,如图7曲线a图象是数形结合的产物,以上根据简谐运动的位移、速度、加速度、动能、弹性势能与时间或位移之间的关系式,得到对应的图象,从不同角度直观、全面显示了简谐运动的规律,同时体现了数与形的和谐完美统一。

2011-12-20 人教网【基础知识精讲】1.振动图像简谐运动的位移——时间图像叫做振动图像,也叫振动曲线.(1)物理意义:简谐运动的图像表示运动物体的位移随时间变化的规律,而不是运动质点的运动轨迹.(2)特点:只有简谐运动的图像才是正弦(或余弦)曲线.2.振动图像的作图方法用横轴表示时间,纵轴表示位移,根据实际数据定出坐标的单位及单位长度,根据振动质点各个时刻的位移大小和方向指出一系列的点,再用平滑的曲线连接这些点,就可得到周期性变化的正弦(或余弦)曲线.3.振动图像的运用(1)可直观地读出振幅A、周期T以及各时刻的位移x.(2)判断任一时刻振动物体的速度方向和加速度方向(3)判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.【重点难点解析】本节重点是理解振动图像的物理意义,难点是根据图像分析物体的运动情况.一切复杂的振动都不是简谐运动.但它们都可以看做是若干个振幅和频率不同的简谐运动的合运动.所有简谐运动图像都是正弦或余弦曲线,余弦曲线是计时起点从最大位移开始,正弦曲线是计时起点从平衡位置开始,即二者计时起点相差.我们要通过振动图像熟知质点做简谐运动的全过程中,各物理量大小、方向变化规律.例1一质点作简谐运动,其位移x与时间t的关系曲线如下图所示,由图可知,在t=4S时,质点的( )A.速度为正最大值,加速度为零B.速度为负最大值,加速度为零C.速度为零,加速度为正最大值D.速度为零,加速度为负最大值解析:(1)根据简谐运动特例弹簧振子在一次全振动过程中的位移、回复力、速度、加速度的变化求解.由图线可知,t=4s时,振动质点运动到正最大位移处,故质点速度为零,可排除A、B选项.质点运动到正最大位移处时,回复力最大,且方向与位移相反,故加速度为负最大值,故选项D正确.(2)利用图线斜率求解.该图线为位移、时间图像,其曲线上各点切线的斜率表示速度矢量.在t=4s时,曲线上该点切线的斜率为零,故该点速度大小为零,可排除A、B项.由简谐运动的动力学方程可得a=-x,当位移最大时,加速度最大,且方向与位移方向相反,故选项D正确.说明本题主要考查简谐运动过程中的位移,回复力,速度和加速度的变化情况.运用斜率求解的意义可进一步推得质点在任意瞬间的速度大小,方向.t=1s、3s时质点在平衡位置,曲线此时斜率最大,速度最大,但1s时斜率为负,说明质点正通过平衡位置向负方向运动,3s时斜率为正,表过质点通过平衡向正方向运动.例2如下图所示是某弹簧振子的振动图像,试由图像判断下列说法中哪些是正确的.( )A.振幅为3m,周期为8sB.4s末振子速度为负,加速度为零C.第14s末振子加速度为正,速度最大D.4s末和8s末时振子的速度相同解析:由图像可知振幅A=3cm,周期T=8s,故选项A错.4s末图线恰与横轴相交,位移为零,则加速度为零.过这一点作图线的切线,切线与横轴的夹角大于90°(或根据下一时刻位移为负),所以振子的速度为负.故选项B正确.根据振动图像的周期性,可推知第14s末质点处于负的最大位移处(也可以把图线按原来的形状向后延伸至第14s末),因此质点的加速度为正的最大值,但速度为零,故选项C 错误.第4s末和第8s末质点处在相邻的两个平衡位置,则速度方向显然相反(或根据切线斜率判断),所以选项D错误.选B.说明根据简谐运动图像分析简谐运动情况,关键是要知道图像直接表示出哪些物理量,间接表示了哪些物理量,分析间接表示的物理量的物理依据是什么.【难题巧解点拨】简谐运动图像能够反映简谐运动的运动规律,因此将简谐运动图像跟具体的运运过程联系起来不失为讨论简谐运动的一种好方法.(1)从简谐运动图像可直接读出不同时刻t的位移值,从而知道位移x随时间t的变化情况.(2)在简谐运动图像中,用作曲线上某点切线的办法可确定各时刻质点的速度大小和方向,切线与x轴正方向的夹角小于90°时,速度方向与选定的正方向相同,且夹角越大表明此时质点的速度越大.当切线与x轴正方向的夹角大于90°时,速度方向与选定的正方向相反,且夹角越大表明此时质点的速度越小.也可以根据位移情况来判断速度的大小,因为质点离平衡位置越近,质点的速度就越大,而最大位移处,质点的速度为零.(3)由于简谐运动的加速度与位移成正比,方向相反,故可以根据图像上各时刻的位移变化情况确定质点加速度的变化情况.同样,只要知道了位移和速度的变化情况,也就不难判断出质点在不同时刻的动能和势能的变化情况.根据简谐运动图像分析其运动情况,方法直观有效.简谐运动的周期性是指相隔一个周期或周期的整数倍时,这两个时刻质点的振动情况完全相同,即质点的位移和速度大小和方向(以至于回复力、加速度等)都总是相同的.同相的两个时刻之差等于周期的整数倍,这两个时刻的振动情况完全相同;但是位移相同的两个时刻,不一定是同相的,振子通过某一位置时,它们的位移相同,但它们的速度方向可能相同,也可能相反.如果时间相隔半个周期的奇数倍时,这两个时刻的振动反“相”,其振动位移和速度大小相等,方向相反.例甲、乙两人先后观察同一弹簧振子在竖直方向上下振动的情况.(1)甲开始观察时,振子正好在平衡位置并向下运动.试画出甲观察到的弹簧振子的振动图像.已知经过1s后,振子第一次回到平衡位置.振子振幅为5cm(设平衡位置上方为正方向,时间轴上每格代表0.5s).(2)乙在甲观察3.5s后,开始观察并记录时间.试画出乙观察到的弹簧振子的振动图像.解析:由题意知,振子的振动周期T=2s,振幅A=5cm.根据正方向的规定,甲观察时,振子从平衡位置向-y方向运动,经t=0.5s,达到负方向最大位移,用描点法得到甲观察到的振子图像如图(甲)所示.因为t=3.5s=1T,根据振动的重复性,这时振子的状态跟经过t′=T的状态相同,所以乙开始观察时,振子正好处于正向最大位移处,其振动图像如图(乙)所示.【课本难题解答】167页(3)题:a.处在平衡位置左侧最大位移处;b.4S;c.10cm,d.200N,400m/s2【命题趋势分析】本节主要考查学生运用图像来表达给出的条件,然后去回答问题的能力,命题一般以选择、填空形式出现.【典型热点考题】例1如下图所示为一单摆(单摆周期公式T=2π)及其振动图像由图回答:(1)单摆的振幅为,频率为,摆长为,一周期内位移x(F回,a,E p)最大的时刻为.(2)若摆球从E指向G为正方向,α为最大摆角,则图像中O、A、B、C点分别对应单摆中点.一周期内加速度为正且减小,并与速度同方向的时间范围是,势能增加且速度为正的时间范围是.解析:(1)由图像可知:A=3cm,T=2s,振动频率f==0.5Hz,摆长l==1(m),位移为最大值时刻为0.5s末和1.5s末.(2)图像中O点位移为零,O到A过程位移为正,且增大,A处最大,历时周期,即摆球是从E点起振并向G方向运动的.所以O对应E,A对应G,A到B的过程分析方法相同,因而O、A、B、C分别对应E、G、E、F点.摆动中F、E间加速度为正且向E过程中减小,在图像中为C到D过程,时间范围1.5s~2.0s.从E向两侧运动势能增加,从E向G的过程速度为正,在图像中为从O到A,时间范围是0~0.5s.例2下图(甲)是演示简谐振动图像的装置,当盛沙漏斗下面的薄木板N被匀速地拉,摆动着的漏斗中漏出的沙在板上形成的曲线显示出摆的位移随时间变化的关系.板上的直线OO′代表时间轴.下图(乙)是两个摆中的沙在自各木板上形成的曲线.若板N1和板N2的速度υ1和υ2的关系为υ2=2υ1,则板N1、N2上曲线所代表的振动的周期T1和T2的关系为( )A.T2=T1B.T2=2T1C.T2=4T1 D .T2=T1解析:因N2板和N1板匀速拉过的距离相同,故两板运动时间之比==2. ①在这段距离为N1板上方的摆只完成一个全振动,N2板上方的摆已完成两个全振动,即t1=T1和t2=2T2. ②将②式代入①式,得T2=T1.可知选项D正确.【同步达纲练习】1.一质点做简谐运动的振动图像如下图所示,由图可知t=4s时质点( )A.速度为正的最大值,加速度为零B.速度为零,加速度为负的最大值C.位移为正的最大值,动能为最小D.位移为正的最大值,动能为最大2.如下图中,若质点在A对应的时刻,则其速度υ、加速度a的大小的变化情况为( )A.υ变大,a变大B.υ变小,a变小C.υ变大,a变小D.υ变小,a变大3.某质点做简谐运动其图像如下图所示,质点在t=3.5s时,速度υ、加速度α的方向应为( )A.υ为正,a为负B.υ为负,a为正C.υ、a都为正D.υ、a都为负4.如下图所示的简谐运动图像中,在t1和t2时刻,运动质点相同的量为( )A.加速度B.位移C.速度D.回复力5.如下图所示为质点P在0~4s内的振动图像,下列说法中正确的是( )A.再过1s,该质点的位移是正的最大B.再过1s,该质点的速度方向向上C.再过1s,该质点的加速度方向向上D.再过1s,该质点的加速度最大6.一质点作简谐运动的图像如下图所示,则该质点( )A.在0至0.01s内,速度与加速度同方向B.在0.01至0.02s内,速度与回复力同方向C.在0.025s末,速度为正,加速度为负D.在0.04s末,速度为零,回复力最大7.如下图所示,简谐运动的周期等于s,振幅m,加速度为正的最大时刻是,负的最大时刻是,速度为正的最大时刻是,负的最大时刻是,0.1s末与0.2s 末的加速度大小分别是a1与a2,则大小是a1,0.1s末与0.2s末其速度大小分别υ1与υ2,则其大小是υ1υ2.8.下图(A)是一弹簧振子,O为平衡位置,BC为两个极端位置,取向右为正方向,图(B)是它的振动图线,则:(1)它的振幅是cm,周期是s,频率是Hz.(2)t=0时由图(B)可知,振子正处在图(A)中的位置,运动方向是(填“左”或“右”),再经过s,振子才第一次回到平衡位置.(3)当t=0.6s时,位移是cm,此时振子正处于图(A)中的位置.(4)t由0.2s至0.4s时,振子的速度变(填“大”或“小”,下同),加速度变,所受回复力变,此时速度方向为(填“正”或“负”,下同),加速度方向为,回复力方向为.【素质优化训练】9.如下图所示,下述说法中正确的是( )A.第2s末加速度为正最大,速度为0B.第3s末加速度为0,速度为正最大C.第4s内加速度不断增大D.第4s内速度不断增大10.一个做简谐振动的质点的振动图像如下图所示,在t1、t2、t3、t4各时刻中,该质点所受的回复力的即时功率为零的是( )A.t4B.t3C.t2D.t111.如下图所示为一单摆做间谐运动的图像,在0.1~0.2s这段时间内( )A.物体的回复力逐渐减小B.物体的速度逐渐减小C.物体的位移逐渐减小D.物体的势能逐渐减小12.一个弹簧振子在A、B间做简谐运动,O为平衡位置,如下图a所示,以某一时刻作计时起点(t为0),经周期,振子具有正方向增大的加速度,那么在下图b所示的几个振动图像中,正确反映振子振动情况(以向右为正方向)的是( )13.弹簧振子做简谐运动的图线如下图所示,在t1至t2这段时间内( )A.振子的速度方向和加速度方向都不变B.振子的速度方向和加速度方向都改变C.振子的速度方向改变,加速度方向不变D.振子的速度方向不变,加速度方向改变14.如下左图所示为一弹簧振子的简谐运动图线,头0.1s内振子的平均速度和每秒钟通过的路程为( )A.4m/s,4mB.0.4m/s,4cmC.0.4m/s,0.4mD.4m/s,0.4m15.如上右图所示是某弹簧振子在水平面内做简谐运动的位移-时间图像,则振动系统在( )A.t1和t3时刻具有相同的动能和动量B.t1和t3时刻具有相同的势能和不同的动量C.t1和t5时刻具有相同的加速度D.t2和t5时刻振子所受回复力大小之比为2∶116.从如下图所示的振动图像中,可以判定弹簧振子在t= s 时,具有正向最大加速度;t= s时,具有负方向最大速度;在时间从s至s内,振子所受回复力在-x方向并不断增大;在时间从s至s内振子的速度在+x方向上并不断增大.17.如下图所示为两个弹簧振子的振动图像,它们振幅之比A A∶A B= ;周期之比T A∶T B= .若已知两振子质量之比m A∶m B=2∶3,劲度系数之比k A∶k B=3∶2,则它们的最大加速度之比为.最大速度之比.18.一水平弹簧振子的小球的质量m=5kg,弹簧的劲度系数50N/m,振子的振动图线如下图所示.在t=1.25s时小球的加速度的大小为,方向;在t=2.75s时小球的加速度大小为,速度的方向为.19.如下图所示,一块涂有碳黑的玻璃板,质量为2kg,在拉力F的作用下,由静止开始竖直向上做匀变速运动,一个装有水平振针的振动频率为5Hz的固定电动音叉在玻璃板上画出了图示曲线,量得OA=1.5cm,BC=3.5cm.求:自玻璃板开始运动,经过多长时间才开始接通电动音叉的电源?接通电源时玻璃板的速度是多大?【知识探究学习】沙摆是一种经常用来描绘振动图像的简易演示实验装置.同学们弄清如下问题对深入细致地理解沙摆实验很有帮助.(1)水平拉动的玻璃板起到了怎样的怎用?答:使不同时刻落下的沙子不会重叠,区别出各时刻沙摆的位置,起到了相当于用时间扫描的作用.(2)为什么要匀速拉动玻璃板?答:因为沙摆实验显示的是纵轴表示位移、横轴表示时间的单摆振动较图像,玻璃板的中轴线就是表示时间的横轴.而时间轴应是均匀的,所以玻璃板必须匀速拉动.(3)玻璃板静止时沙子落下形成沙堆的形状是怎样的?答:应为中间凹两端高的沙堆如图1-A,不能为图1-B的形状.原因是沙摆过最低点的速度最快,所以中间漏下的沙子最少.(4)玻璃板抽动速度的大小对图像的形状有什么影响?答:玻璃板的速度越大,图像中OB段的长度也越大,其中=υ(式中υ为玻璃板抽动的速度,T为沙摆的周期).因图2-A比图2-B中的抽动速度大;所以OB的长度前者也比后者大,但不能说成周期变大.另外图像的振幅不受玻璃板抽动速度的影响.(5)由这个实验能否求出拉动玻璃板的速度?答:能够利用式子υ=/T求出,这时需要测出沙摆的周期和的长度,并多测几组数据,求出其平均值.(6)玻璃板的速度恒定,形成的图像是否为正弦(或余弦)曲线?答:严格的说不是.因为随着沙子的漏下,沙摆的周期越来越大,一个周期里玻璃板的位移越来越大,图像出现变形.沙子全部漏出后,沙摆的周期又保持不变,但这时没有图像了.当然如果沙粒很细,漏孔又很小,而且沙摆线摆动的角度很小(小于5°),那么开始的一段图像,可近似看成是正弦(或余弦)曲线.参考答案【同步达纲练习】1.B、C2.C3.A4.C5.A、D6.A、D7.5;0.1;1.5s末;0.5s末;0与2s末;1s末;<;>8.(1)2;0.8;1.25 (2)0;右;1.4;-2;C;大;小;小;负;负;负【素质优化训练】9.A、B、C 10.D 11.A、C、D 12.D 13.D 14.C 15.B、D16.0.4;0.2;0.6;0.8;0.4;0.617.2∶1;2∶3;9∶2;3∶118.6m/s2;向上;0;向下19.0.1s;0.1m/s。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5
t/s 0.6 0 -5b0.ຫໍສະໝຸດ t/s0.20.4
课堂例题7
• 一质点做简谐运动的振动图像如图所示,质 点在哪两段时间内的速度与加速度方向相同 ( D ) x/cm A. 0~0.6s和0.3~0.6s; 5 B. 0.6~0.9s和0.9~1.2s; 0.9 0 0.3 1.2 t/s C. 0~0.3s和0.9~1.2s; -5 D. 0.3~0.6s和0.9~1.2s。
t/s 1.0
课堂例题6
• 如图所示为水平放置的两个弹簧振子a和b的振动图 象。已知两个振子质量比为2:3,弹簧的劲度系数 为3:2,求: (1)两个弹簧振子a和b的振幅之比; (2)两个弹簧振子a和b的周期之比; *(3)两个弹簧振子a和b的最大加速度之比。 x/cm x/cm 10
0 -10 a
• 弹簧弹力的大小与振子偏离平衡位置的位 移(弹簧形变)成正比,方向与振子偏离 平衡位置的位移方向相反——胡克定律 • F=-kx(负号表示?k表示? • 回复力与振子位移方向相反 • k是一个常数,对弹簧振子来说,就是弹簧 的劲度系数)
一、简谐运动
• 凡是在大小与振子偏离平衡位置的位 移成正比,方向始终指向平衡位置的 回复力作用下的振动,都是简谐运动。 • 简谐运动是最简单、最基本的振动。 • (Q:拍皮球?家校来回?)
x/cm
5 0 -5 0.2 0.4 t/s 10
x/cm
0.2 t/s 0.6
0
-10
0.4
A=5cm=0.05m
T=0.4s
A=10cm=0.1m
T=0.4s
课堂例题2
• 在图上标出质点在不同时刻 受到的弹力方向和速度的方向
x F v
C
O
B
x
t
t
课堂例题3
• 某质点做简谐振动的图像如 图所示,则下列说法中正确 x/cm 的是( BC ) A. 0~0.2s内质点的加速度逐 10 渐增大; B. 0.2~0.4s内质点的加速度逐 0 0.2 0.6 渐增大; -10 C. 0.4~0.6s内质点的速度逐渐 增大; D. 0.6~0.8s内质点的速度逐渐 增大。
思考题
• 练习册P10/第10题 • 一弹簧振子做机械振动,若从平衡位置O开始 计时,经过0.3s时,振子第一次经过P点,又 经过了0.2s,振子第二次经过P点,则: • (1)该振子的振动周期为多少? • (2)从振子第二次经过P点算起,该振子第 三次经过P点所需的时间为多少?
什么原因使弹簧振子做简谐运动呢?
二、振动图像: 将振子用平滑的曲线连接起来
C O B x x 简谐振动的振动图像
表示振子在不同时刻 的振动情况 t
O
t
弹簧振子的振动图像
C O B x x
A?T? 平衡 位置?
A O A
当振子运动到时间轴上 时候,振子这时候回到 平衡位置,受力平衡。
平衡位置 t
T
t
课堂例题1
• 分别写出下列振动图像的振幅和周期。
分析:速度与加速度同向意味着加速运动!
上节复习2
• 振幅是描述物体振动强弱的物理量。 • 物体在振动过程中,离开平衡位置的最大 距离叫做振动的振幅。用A表示,单位m。 • 振幅是标量。振幅越大,振动越强烈。 • 对于给定的振动,振幅是不变的。而振子 的位移是随着时间的变化是时刻变化的。
上节复习3
• 周期和频率都是描述振动快慢的物理量。 • 周期表示物体完成一次全振动所需的时间。 而频率表示物体单位时间内完成的全振动的 次数。频率单位是Hz,读作赫兹。 1 • 周期与频率的关系 f 。 T • 周期的大小(频率的大小)与振幅的大小无 关!频率越高,音调越高!
相关文档
最新文档