中考总复习专题训练《三角形》试卷及答案

合集下载

中考数学总复习《三角形的综合题》练习题及答案

中考数学总复习《三角形的综合题》练习题及答案

中考数学总复习《三角形的综合题》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图,在平面直角坐标系中直线y=−x与双曲线y=kx交于A、B两点,P是以点C(2,2)为圆心,半径长1的圆上一动点,连结AP,Q为AP的中点.若线段OQ长度的最大值为2,则k的值为()A.−12B.−32C.−2D.−142.如图,已知AB∥CD,点E在线段AD上(不与点A,点D重合),连接CE.若∠C=20°,∠AEC=50°,则∠A=()A.10°B.20°C.30°D.40°3.如图,在Rt△ABC中AD是∠BAC的平分线,DE⊥AB垂足为E.若BC=8cm,BD=5cm则DE的长为()A.2√3cm B.3cm C.4cm D.5cm4.如图,矩形纸片ABCD中AD=8cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=10cm,则AB的长为()A.12cm B.14cm C.16cm D.18cm5.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠1=25°,则∠2的度数为()A.20°B.25°C.30°D.15°6.如图,锐角∠ABC的两条高BD,CE相交于点O,且CE=BD,若∠CBD=20°,则∠A的度数为()A.20°B.40°C.60°D.70°7.下列长度的三条线段与长度为5的线段能组成四边形的是()A.1,1,1B.1,1,8C.1,2,2D.2,2,28.如图,在∠ABC中AB=AC,BE=CD,BD=CF,若∠A=40°,则∠EDF等于()A.40°B.50°C.60°D.70°9.若点O是等腰∠ABC的外心,且∠BOC=60°,底边BC=2,则∠ABC的面积为() A.2+√3B.2√3C.2+√3或2-√3D.4+2√3或2-√3310.如图,等边ΔABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5°C.30°D.45°11.如图,在△ABC中∠A=30°,∠ABC=100°,观察尺规作图的痕迹,则∠BFC的度数为()A.130°B.120°C.110°D.100°12.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=5厘米,EF=6厘米,圆形容器的壁厚是()A.5厘米B.6厘米C.2厘米D.12厘米二、填空题13.如图,要测量河两岸相对的两点A、B的距离,在AB的垂线段BF上取两点C、D,使BC=CD,过D作BF的垂线DE,与AC的延长线交于点E,若测得DE的长为20米,则河宽AB长为米.14.如图1,点P从△ABC的项点A出发,以每秒2个单位长度的速度沿A→B→C→A的方向匀速运动到点A.图2是点P运动时线段AP的长度y随时间t(s)变化的关系图象,其中点M为曲线部分的最低点,则△ABC的面积是.15.如图,在正方形ABCD中AC为对角线,E为AC上一点,连接EB,ED,BE的延长线交AD于点F,∠BED=120∘,则∠EFD的度数为.16.如图,△ABC中∠A=40°,D、E是AC边上的点,把△ABD沿BD对折得到△A′BD,再把△BCE沿BE对折得到△BC′E,若C′恰好落在BD上,且此时∠C′EB=80°,则∠ABC=.17.如图,测量三角形中线段AB的长度为cm.判断大小关系:AB+AC BC(填“ >”,“ =”或“ <”).18.如图,已知AB是∠O的弦,AB=8,C是∠O上的一个动点,且∠ACB=45°.若M,N分别是AB,BC的中点,则线段MN长度的最大值是三、综合题19.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a,b,c分别为∠ABC三边的长.(1)如果x=﹣1是方程的根,试判断∠ABC的形状,并说明理由;(2)如果∠ABC是等边三角形,试求这个一元二次方程的根.20.如图,在Rt∠OAB中∠OAB=90°,OA=AB=6,将∠OAB绕点O沿逆时针方向旋转90°得到∠OA1B1.(1)线段OA1的长是,∠AOB1的度数是;(2)连接AA1,求证:四边形OAA1B1是平行四边形.21.已知一次函数y=2x−2的图像为l1,函数y=12x−1的图像为l2.按要求完成下列问题:(1)求直线l1与y轴交点A的坐标;求直线l2与y轴的交点B的坐标;(2)求一次函数y=2x−2的图象l1与y=12x−1的图象l2的交点P的坐标;(3)求由三点P、A、B围成的三角形的面积.22.在图中利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A′B′C′;(2)图中AC与A′C′的关系怎样?(3)记网格的边长为1,则△A′B′C′的面积为多少?23.如图,在∠ABC中点D在AB上,且CD=CB,E为BD的中点,F为AC的中点,连接EF交CD 于点M,连接AM.(1)求证:EF= 12AC;(2)若EF∠AC,求证:AM+DM=CB.24.如图①,Rt△ABC中∠C=90°,AC=6cm.动点P以acm/s的速度由B出发沿线段BA 向A运动,动点Q以1cm/s的速度由A出发沿射线AC运动.当点Q运动2s时,点P开始运动;P点到达终点时,P、Q一起停止.设点P运动的时间为ts,△APQ的面积为ycm2,y与t的函数关系图像如图②所示.(1)点P运动的速度a=cm/s,AB=cm;(2)当t为何值时,△APQ的面积为12cm2;(3)是否存在t,使得直线PQ将Rt△ABC的周长与面积同时平分?若存在,求出t的值;若不存在,请说明理由.参考答案1.【答案】A2.【答案】C3.【答案】B4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】D9.【答案】C10.【答案】C11.【答案】C12.【答案】D13.【答案】2014.【答案】1215.【答案】105º16.【答案】60°17.【答案】2.0;>18.【答案】4√219.【答案】(1)解:ΔABC是等腰三角形;理由:把x=−1代入方程得a+c−2b+a−c=0,则a=b,所以ΔABC为等腰三角形(2)解:∵ΔABC为等边三角形∴a=b=c∴方程化为x2+x=0解得x1=0,x2=−1.20.【答案】(1)6;135°(2)证明:∵∠OAB绕点O沿逆时针方向旋转90°得到∠OA1B1∴∠AOA1=90°,∠OA1B1=90°,OA1=A1 B1=OA=6∴∠AO A1=∠O A1B1∴OA∠A1B1∵A1B1=OA∴四边形OAA1B1是平行四边形.21.【答案】(1)解:当x =0时,y= -2,即直线l 1与y 轴交点A 的坐标为(0,−2)当x =0时,y= -1,即直线l 2与y 轴交点B 的坐标为(0,−1);(2)解:∵一次函数y =2x −2的图象l 1与y =12x −1的图象l 2相交∴2x −2=12x −1∴x =23∴y =2×23−2=−23∴交点P 的坐标为(23,−23);(3)解:三点P 、A 、B 围成的三角形,如下图,作PD ⊥AB 交y 轴于点DAB =|−1−(−2)|=1△ABP 的高DP 为:23∴S △ABP =12AB ×DP =12×1×23=13即由三点P 、A 、B 围成的三角形的面积:13.22.【答案】(1)解:如图,∠A′B′C′为所作;(2)解:线段AC 与A′C′的位置关系是平行,数量关系是相等 (3)解:∠A′B′C′的面积=12×4×4=8.23.【答案】(1)证明:连接CE∵CD=CB,点E为BD的中点∴CE⊥BD∵点F为AC的中点∴EF=12AC;(2)解:∵点F是AC中点∴AF=FC,又EF⊥AC∴∠AFM=∠CFM,且AF=FC∴ΔAFM≅ΔCFM(SAS)∴AM=CM∵BC=CD=DM+CM=DM+AM.24.【答案】(1)1;10(2)解:当运动时间为t时,AQ=t+2,BP=t,AP=10−t 如图,作PH⊥AC,则△APH∽△ABC∴PH=APAB·BC=4(10−t)5∴S△APQ=12AQ·PH=12(t+2)4(10−t)5=2(t+2)(10−t)5∴△APQ的面积为12cm2时,解方程12=2(t+2)(10−t)5,得t1=4+√6∴当t=4+√6或4−√6时,△APQ的面积为12cm2;(3)解:∵S△ABC=24cm2,C△ABC=6+8+10=24cm∴12S△ABC=12cm2①当0<t≤4时由(2)可知,当t=4−√6时,△APQ的面积为12cm2此时,AQ=4−√6+2=6−√6∴AP+AQ=6+√6+6−√6=12,即AP+AQ=12C△ABC∴t=4−√6时,直线PQ将Rt△ABC的周长与面积同时平分;②当4<t≤10时设PQ与BC交于点N,作PM⊥BC则有:△PBM∽△ABC∴PM AC=BPBA=BMBC,∴PM=3t5,BM=4t5,MC=8−4t5∵PM QC=MNCN,∴MN=3t2−30t25−10t当BN+BP=12时,解方程4t5+3t2−30t25−10t+t=12,得t=5或t=4(舍去)此时,PM=3,BM=4,BP=5∴BN=4+3=7∴当4<t≤10时,不存在t使得直线PQ将Rt△ABC的周长与面积同时平分;∴综上,当t=4−√6时,直线PQ将Rt△ABC的周长与面积同时平分;当4<t≤10时,不存在t使得直线PQ将Rt△ABC的周长与面积同时平分.第11页共11页。

中考《三角形认识》复习练习题及答案

中考《三角形认识》复习练习题及答案

中考数学复习专题练习认识三角形一、选择题:1、一定在△ABC内部的线段是()A.锐角三角形的三条高、三条角平分线、三条中线B.钝角三角形的三条高、三条中线、一条角平分线C.任意三角形的一条中线、二条角平分线、三条高D.直角三角形的三条高、三条角平分线、三条中线2、有5根小木棒,长度分别为2cm、3cm、4cm、5cm、6cm,任意取其中的3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为()A.5个 B.6个 C.7个 D.8个3、如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.3 B.4 C.6 D.54、如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )A.15° B.25° C.30° D.10°5、如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A.20° B.25° C.30° D.40°6、一个多边形少加了一个内角时,它的度数和是1310°,则这个内角的度数为()A.120° B.130° C.140° D.150°7、已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为()A.20°或100° B.120° C.20°或120° D.36°8、一个正多边形的每个内角都等于140°,那么它是正()边形A.正六边形 B.正七边形 C.正八边形 D.正九边形9、如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米 B.150米 C.160米 D.240米10、如图,已知点D是△ABC的重心,连接BD并延长,交AC于点E,若AE=4,则AC的长度为()A.6 B.8 C.10 D.1211、.光线a照射到平面镜CD上,然后在平面镜AB和CD之间来回反射,光线的反射角等于入射角.若已知∠1=52°,∠3=70°,则∠2是( )A.52° B.61° C.65° D.70°12、如图,在四边形ABCD中,E、F分别是AB、AD的中点.若EF=2,BC=5,CD=3,则tanC等于()A. B. C. D.二、填空题:13、a、b、c为三角形的三条边,则= .14、如图,△ABC的两条高线AD、BE交于点F,∠BAD=45°,∠C=60°,则∠BFD的度数为15、如果将长度为a﹣2,a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,a取值范围是.16、一个三角形的两边长为8和10,若另一边为a,当a为最短边时,a的取值范围是;当a为最长边时,a的取值范围是 .17、已知△ABC 的三边长 a、b、c,化简│a+b-c│-│b-a-c│的结果是 .18、将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是.19、如图,∠2+∠3+∠4=320°,则∠1= .20、如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G= .21、如图,将∠BAC沿DE向∠BAC内折叠,使AD与A′D重合,A′E与AE重合,若∠A=30°,则∠1+∠2= .22、如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为.23、如图,已知矩形ABCD,一条直线将该矩形ABCD分割成两个多边形,若这两个多边形的内角和分别为M和N,则M+N= _.24、如图,一个面积为50平方厘米正方形与另一个小正方形并排放在一下起,则△ABC面积是平方厘米.三、简答题:25、如图,在△ABC中,AB=AC,AC边上的中线把三角形的周长分为24cm和30cm两部分,求三角形各边的长.26、如图,AD为△ABC的中线,BE为△ABD的中线,(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;(2)作出△BED的BD边上的高;(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?27、(1)如图,在△ABC中,∠B=40°,∠C=80°,AD⊥BC于D,且AE平分∠BAC,求∠EAD的度数.(2)上题中若∠B=40°,∠C=80°改为∠C>∠B,其他条件不变,请你求出∠EAD与∠B、∠C之间的数列关系?并说明理由.28、如图,∠O=30°,任意裁剪的直角三角形纸板两条直角边所在直线与∠O的两边分别交于D、E两点.(1)如图1,若直角顶点C在∠O的边上,则∠ADO+∠OEB= 度;(2)如图2,若直角顶点C在∠O内部,求出∠ADO+∠OEB的度数;(3)如图3,如果直角顶点C在∠O外部,求出∠ADO+∠OEB的度数.29、如图(甲),D是△ABC的边BC的延长线上一点.∠ABC、∠ACD的平分线相交于P1.(1)若∠ABC=80°,∠ACB=40°,则∠P1的度数为;(2)若∠A=α,则∠P1的度数为;(用含α的代数式表示)(3)如图(乙),∠A=α,∠ABC、∠ACD的平分线相交于P1,∠P1BC、∠P1CD的平分线相交于P2,∠P2BC、∠P2CD的平分线相交于P3依此类推,则∠Pn的度数为(用n与α的代数式表示)30、阅读下列材料:某同学遇到这样一个问题:如图1,在△ABC中,AB=AC,BD是△ABC的高.P是BC边上一点,PM,PN分别与直线AB,AC垂直,垂足分别为点M,N.求证:.他发现,连接AP,有,即.由AB=AC,可得.他又画出了当点P在CB的延长线上,且上面问题中其他条件不变时的图形,如图2所示.他猜想此时BD,PM,PN之间的数量关系是:.请回答:(1)请补全以下该同学证明猜想的过程;证明:连接AP.∵,∴.∵AB=AC,∴.(2)参考该同学思考问题的方法,解决下列问题:在△ABC中,AB=AC=BC,BD是△ABC的高.P是△ABC所在平面上一点,PM,PN,PQ分别与直线AB,AC,BC垂直,垂足分别为点M,N,Q.①如图3,若点P在△ABC 的内部,则BD,PM,PN,PQ之间的数量关系是:;②若点P在如图4所示位置,利用图4探究得出此时BD,PM,PN,PQ之间数量关系是:.31、已知锐角△ABC中,CD、BE分别是AB、AC边上的高,M是线段BC的中点,连接DM、EM.(1)若DE=3,BC=8,求△DME的周长;(2)若∠A=60°,求证:∠DME=60°;(3)若BC2=2DE2,求∠A的度数.参考答案1、A.2、C.3、A.4、A.5、D.6、B.7、C.8、D.9、B.10、B.11、B.12、B.13、答案为:2a.14、答案为:60° 15、答案为:a>5.16、答案为:2<a≤8,10≤a<18.17、答案为:2b-2c. 18、答案为:75°.19、答案为:40°.20、答案为:180°.21、答案为:60°.22、答案为:40°.23、答案为:360°或540°或720°.24、答案为25.25、解:设AB=AC=2,则AD=CD=,(1)当AB+AD=30,BC+CD=24时,有2=30,∴ =10,2 =20,BC=24-10=14.三边长分别为:20 cm,20 cm,14 cm.(2)当AB+AD=24,BC+CD=30时,有=24,∴ =8,,BC=30-8=22.三边长分别为:16 cm,16 cm,22 cm.26、解:(1)∵∠BED是△ABE的一个外角,∴∠BED=∠ABE+∠BAD=15°+35°=50°。

中考数学总复习《三角形与全等三角形》专项测试卷(带有答案)

中考数学总复习《三角形与全等三角形》专项测试卷(带有答案)

中考数学总复习《三角形与全等三角形》专项测试卷(带有答案)时间:45分钟满分:100分学校:___________班级:___________姓名:___________考号:___________ 1.(2023·长沙)下列长度的三条线段,能组成三角形的是( )A.1,3,4 B.2,2,7C.4,5,7 D.3,3,62.(2023·凉山州)如图,点E,点F在BC上,BE=CF,∠B=∠C,添加一个条件,不能证明△ABF≌△DCE的是( )第2题图A.∠A=∠D B.∠AFB=∠DECC.AB=DC D.AF=DE3.(2023·济宁)如图,在正方形方格中,每个小正方形的边长都是一个单位长度,点A,B,C,D,E均在小正方形方格的顶点上,线段AB,CD相交于点F,若∠CFB=α,则∠ABE等于( )第3题图A.180°-α B.180°-2αC.90°+α D.90°+2α4.(2023·巴中)如图,在Rt△ABC中,AB=6 cm,BC=8 cm,点D,E分别为AC,BC中点,连接AE,BD,相交于点F,点G在CD上,且DG∶GC=1∶2,则四边形DFEG的面积为( )第4题图A.2 cm2B.4 cm2C.6 cm2D.8 cm25.(2023·浙江)如图,点P是△ABC的重心,点D是边AC的中点,PE∥AC交BC于点E,DF∥BC交EP于点F.若四边形CDFE的面积为6,则△ABC的面积为( )第5题图A.12 B.14 C.18 D.246.一个三角形的两边长分别是3和3,则第三边长可以是.(只填一个即可) 7.(2023·丽水)如图,在△ABC中,AC的垂直平分线交BC于点D,交AC于点E,∠B=∠ADB.若AB=4,则DC的长是.第7题图8.(2022·南京)在平面直角坐标系中,正方形ABCD如图所示,点A的坐标(-1,0),点D的坐标是(-2,4),则点C的坐标是.第8题图9.(2023·遂宁)如图,以△ABC的边AB,AC为腰分别向外作等腰直角△ABE,△ACD,连接ED,BD,EC,过点A的直线l分别交线段DE,BC于点M,N.以下说法:①当AB=AC=BC时,∠AED=30°②EC=BD ③若AB=3,AC=4,BC=6,则DE=2 3 ④当直线l⊥BC时,点M为线段DE的中点.正确的有.(填序号)第9题图10.(2023·苏州)如图,在△ABC中,AB=AC,AD为△ABC的角平分线.以点A 为圆心,AD长为半径画弧,与AB,AC分别交于点E,F,连接DE,DF.第10题图(1)求证:△ADE≌△ADF;(2)若∠BAC=80°,求∠BDE的度数.11.(2023·大连)如图,在△ABC和△ADE中,延长BC交DE于点F,BC=DE,AC=AE,∠ACF+∠AED=180°.求证:AB=AD.第11题图12.(2023·聊城)如图,在四边形ABCD中,点E是BC边上一点,且BE=CD,∠B=∠AED=∠C.第12题图(1)求证:∠EAD=∠EDA;(2)若∠C=60°,DE=4,求△AED的面积.参考答案1.(2023·长沙)下列长度的三条线段,能组成三角形的是( C)A.1,3,4 B.2,2,7C.4,5,7 D.3,3,62.(2023·凉山州)如图,点E,点F在BC上,BE=CF,∠B=∠C,添加一个条件,不能证明△ABF≌△DCE的是( D)第2题图A.∠A=∠D B.∠AFB=∠DECC.AB=DC D.AF=DE3.(2023·济宁)如图,在正方形方格中,每个小正方形的边长都是一个单位长度,点A,B,C,D,E均在小正方形方格的顶点上,线段AB,CD相交于点F,若∠CFB=α,则∠ABE等于( C)第3题图A.180°-α B.180°-2αC.90°+α D.90°+2α4.(2023·巴中)如图,在Rt△ABC中,AB=6 cm,BC=8 cm,点D,E分别为AC,BC中点,连接AE,BD,相交于点F,点G在CD上,且DG∶GC=1∶2,则四边形DFEG的面积为( B)第4题图A.2 cm2B.4 cm2C.6 cm2D.8 cm25.(2023·浙江)如图,点P是△ABC的重心,点D是边AC的中点,PE∥AC交BC于点E,DF∥BC交EP于点F.若四边形CDFE的面积为6,则△ABC的面积为( C)第5题图A.12 B.14 C.18 D.246.一个三角形的两边长分别是3和3,则第三边长可以是(示例)3.(只填一个即可)7.(2023·丽水)如图,在△ABC中,AC的垂直平分线交BC于点D,交AC于点E,∠B=∠ADB.若AB=4,则DC的长是4.第7题图8.(2022·南京)在平面直角坐标系中,正方形ABCD如图所示,点A的坐标(-1,0),点D的坐标是(-2,4),则点C的坐标是(2,5).第8题图9.(2023·遂宁)如图,以△ABC的边AB,AC为腰分别向外作等腰直角△ABE,△ACD,连接ED,BD,EC,过点A的直线l分别交线段DE,BC于点M,N.以下说法:①当AB=AC=BC时,∠AED=30°②EC=BD ③若AB=3,AC=4,BC=6,则DE=2 3 ④当直线l⊥BC时,点M为线段DE的中点.正确的有①②④.(填序号)第9题图10.(2023·苏州)如图,在△ABC中,AB=AC,AD为△ABC的角平分线.以点A 为圆心,AD长为半径画弧,与AB,AC分别交于点E,F,连接DE,DF.第10题图(1)求证:△ADE≌△ADF;(2)若∠BAC=80°,求∠BDE的度数.解:(1)证明:∵AD是△ABC的角平分线由作图知,AE =AF. 在△ADE 和△ADF 中 ⎩⎪⎨⎪⎧AE =AF ,∠BAD =∠CAD ,AD =AD ,∴△ADE ≌△ADF(SAS);(2)∵∠BAC =80°,AD 为△ABC 的角平分线 ∴∠EAD =12∠BAC =40°由作图知,AE =AD. ∴∠AED =∠ADE∴∠ADE =12×(180°-40°)=70°∵AB =AC ,AD 为△ABC 的角平分线 ∴AD ⊥BC.∴∠BDE =90°-∠ADE =20°.11.(2023·大连)如图,在△ABC 和△ADE 中,延长BC 交DE 于点F ,BC =DE ,AC =AE ,∠ACF +∠AED=180°.求证:AB =AD.第11题图证明:∵∠ACB +∠ACF =∠ACF +∠AED =180°在△ABC 和△ADE 中 ⎩⎪⎨⎪⎧BC =DE ,∠ACB =∠AED ,AC =AE ,∴△ABC ≌△ADE(SAS) ∴AB =AD.12.(2023·聊城)如图,在四边形ABCD 中,点E 是BC 边上一点,且BE =CD ,∠B =∠AED=∠C.第12题图(1)求证:∠EAD=∠EDA;(2)若∠C=60°,DE =4,求△AED 的面积.解:(1)证明:∵∠B =∠AED =∠C ,∠AEC =∠B +∠BAE =∠AED +∠CED ∴∠BAE =∠CED 在△ABE 和△ECD 中 ⎩⎪⎨⎪⎧∠BAE =∠CED ,∠B =∠C ,BE =CD ,∴△ABE ≌△ECD(AAS) ∴AE =ED ∴∠EAD =∠EDA ;(2)∵∠AED =∠C =60°,AE =ED ∴△AED 为等边三角形 ∴AE =AD =ED =4 过A 点作AF ⊥ED 于点F.第12题图∴EF =12ED =2∴AF =AE 2-EF 2=42-22=2 3 ∴S △AED =12ED ·AF =12×4×23=4 3.。

2023年中考数学总复习第四章《三角形》综合测试卷及答案

2023年中考数学总复习第四章《三角形》综合测试卷及答案

2023年中考数学总复习第四章《三角形》综合测试卷一、选择题(每小题3分,共36分)1.将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°(第1题图)(第2题图)2.如图,平行线AB,CD 被直线EF 所截,过点B 作BG⊥EF 于点G,已知∠1=50°,则∠B=()A.20°B.30°C.40°D.50°3.如图,太阳光线与水平线成70°角,窗子高AB=2米,要在窗子外面上方0.2米的点D 处安装水平遮阳板DC,使光线不能直接射入室内,则遮阳板DC 的长度至少是()A.米B.2sin70°米C.米D. 2.2cos70°米(第3题图)(第5题图)4.在Rt△ABC 中,∠C=90°,若斜边AB 是直角边BC 的3倍,则tanB 的值是()A.B.3C.D.5.如图,每个小方格的边长为1,A,B 两点都在小方格的顶点上,点C 也是图中小方格的顶点,并且△ABC 是等腰三角形,那么点C 的个数为()A.1B.2C.3D.46.已知三角形三边长分别为2,x,13,若x 为正整数,则这样的三角形个数为()A.2B.3C.5D.137.如图,在Rt△ABC 中,∠ACB=90°,CD 为AB 边上的高,CE 为AB 边上的中线,AD=2,CE=5,则CD=()A.2B.3C.4D.(第7题图)(第8题图)8.如图,在Rt△ABC 中,∠BAC=90°,∠ABC 的平分线BD 交AC 于点D,DE 是BC 的垂直平分线,点E 是垂足.已知DC=5,AD=2,则图中长为的线段有()A.4条B.3条C.2条D.1条9.如图,在△ABC 外任取一点O,连接AO,BO,CO,并取它们的中点D,E,F,连接DE,EF,DF,得△DEF,则下列说法错误的是()A.△ABC 与△DEF 是位似图形B.△ABC 与△DEF 是相似图形C.△ABC 与△DEF 的周长比为1∶2D.△ABC 与△DEF 的面积比为4∶1(第9题图)(第10题图)10.如图,在数轴上有A,B,C,D 四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D 两点表示的数分别为-5和6,且AC 的中点为E,BD 的中点为M,BC 之间距点B 的距离为BC 的点为N,则该数轴的原点为()A.点EB.点FC.点MD.点N 11.如图,将宽为1cm 的纸条沿BC 折叠,使∠CAB=45°,则折叠后重叠部分的面积为()(第11题图)(第12题图)12.如图,在△ABC 中,∠ABC=∠C,将△ABC 绕点B。

中考数学复习《全等三角形》专题训练-附带有答案

中考数学复习《全等三角形》专题训练-附带有答案

中考数学复习《全等三角形》专题训练-附带有答案一、选择题1.如图,△ABC≌△EFD,且AB=EF,EC=4,CD=3,则AC等于()A.3 B.4 C.7 D.82.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去3.如图,为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=60°,∠ACB= 40°然后在BC的同侧找到点M使∠MBC=60°,∠MCB=40°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是()A.SAS B.AAA C.SSS D.ASA4.如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()A.15°B.30°C.45°D.60°5.如图,BP是∠ABC的平分线,AP⊥BP于P,连接PC,若△ABC的面积为1cm2则△PBC的面积为().A.0.4 cm2B.0.5 cm2C.0.6 cm2D.不能确定6.如图,OP平分∠AOB,PA⊥OA,PB⊥OB垂足分别为A,B,下列结论中不一定成立是()A.PA=PB B.PO平分∠APBC.OA=OB D.AB垂直平分OP7.如图,△ABC中∠ACF、∠EAC的角平分线CP、AP交于点P,延长BA、BC,PM⊥BE,PN⊥BF.则下列结论中正确的个数()①BP平分∠ABC ②∠ABC+2∠APC=180°③∠CAB=2∠CPB④S△PAC=S△MAP+S△NCP.A.1个B.2个C.3个D.4个8.如图,已知∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=6,AC=3,则BE=()A.6 B.3 C.2 D.1.5二、填空题9.如图BA=BE,∠1=∠2要使△ABD≌△EBC还需添加一个条件是.(只需写出一种情况)10.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等的三角形的对数是.11.如图,在Rt△ABC,∠C=90°,E是AB上一点,且BE=BC,DE⊥AB于点E,若AC=8,则AD+DE的值为.12.如图,在△ABC中AB=AC,BF=CD,BD=CE,∠FDE=70°那么∠A的大小等于度.13.如图,在△ABC中,CD平分∠ACB交AB于点D,DE⊥AC交于点E,DF⊥BC于点F,且BC=4,DE=2,则△BCD的面积是.三、解答题14.如图,AD平分∠BAC,∠B=∠C.(1)求证:BD=CD;(2)若∠B=∠BDC=100°,求∠BAD的度数.15.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A=25°,∠D=15°,求∠ACB的度数.16.如图,AB=AC,AD=AE,∠BAC=∠DAE.(1)求证:△ABD≌△ACE;(2)若∠1=25°,∠2=30°,求∠3的度数.17.如图,△ABD、△AEC都是等边三角形,直线CD与直线BE交于点F.(1)求证:CD=BE;(2)求∠CFE的度数.18.如图,在△AOB和△COD中OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°连接AC、BD交于点M,连接OM.求证:(1)∠AMB=36°;(2)MO平分∠AMD.参考答案1.C2.C3.D4.B5.B6.D7.D8.D9.BD =BC 或∠A =∠E 或∠C =∠D (任填一组即可)10.411.812.4013.414.(1)证明:∵AD 平分∠BAC∴∠BAD =∠CAD .在△ABD 和△ACD 中{∠BAD =∠CAD ∠B =∠C AD =AD∴△ABD ≌△ACD(AAS)∴BD =CD .(2)解:由(1)得:△ABD ≌△ACD∴∠C =∠B =100°,∠BAD =∠CAD∵∠BAC +∠B +∠BDC +∠C =360°∴∠BAC =60°∴∠BAD =30°15.(1)证明:∵∠BCE =∠DCA∴∠BCE +∠ACE =∠DCA +∠ECA即∠BCA =∠DCE .在△BCA 和△DCE 中{∠BCA =∠DCE AC =EC ∠A =∠E∴△BCA ≌△DCE (ASA )∴BC =DC ;(2)解:∵△BCA ≌△DCE∴∠B =∠D =15°.∵∠A =25°∴∠ACB =180°−∠A −∠B =140°.16.(1)证明:∵∠BAC =∠DAE∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC∴∠1=∠EAC在△ABD 和△ACE 中{AB =AC ∠1=∠EAC AD =AE∴△ABD ≌△ACE (SAS )(2)解:∵△ABD ≌△ACE∴∠ABD =∠2=30°∵∠1=25°∴∠3=∠1+∠ABD =25°+30°=55°.17.(1)证明:∵△ABD 、△AEC 都是等边三角形∴AD=AB ,AC=AE ,∠DAB=∠DBA=∠ADB=60°,∠CAE=60°∵∠DAB=∠DAC+∠CAB ,∠CAE=∠BAE+∠CAB∴∠DAC=∠BAE在△DAC 和△BAE 中{AD =AB ∠DAC =∠BAE AC =AE∴△DAC ≌△BAE∴CD=BE(2)解:∵△DAC ≌△BAE∴∠ADC=∠ABE∴∠CFE=∠BDF+∠DBF=∠BDF+∠DBA+∠ABF=∠BDF+∠DBA+∠ADC=∠BDA+∠DBA=60°+60°=120°18.(1)解:证明:∵∠AOB=∠COD=36°∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD 在△AOC和△BOD中{OA=OB ∠AOC=∠BOD OC=OD∴△AOC≌△BOD(SAS)∴∠OAC=∠OBD∵∠AEB是△AOE和△BME的外角∴∠AEB=∠AMB+∠OBD=∠AOB+∠OAC∴∠AMB=∠AOB=36°;(2)解:如图所示,作OG⊥AC于G,OH⊥BD于H∴OG是△AOC中AC边上的高,OH是△BOD中BD边上的高由(1)知:△AOC≌△BOD∴OG=OH∴点O在∠AMD的平分线上即MO平分∠AMD.。

中考数学专题复习卷 三角形(含解析)-人教版初中九年级全册数学试题

中考数学专题复习卷 三角形(含解析)-人教版初中九年级全册数学试题

三角形一、选择题1.在直角三角形中,若勾为3,股为4,则弦为()A. 5B. 6C. 7D. 8【答案】A【解析】:∵在直角三角形中,勾为3,股为4,∴弦为故答案为:A.【分析】根据在直角三角形中,勾是最短的直角边,股是长的直角边,弦是斜边,知道勾和股利用勾股定理,即可得出答案。

2.在▱ABCD中,对角线AC,BD相交于点O,AC=8,BD=10,那么BC的取值X围是()A.8<BC<10B.2<BC<18C.1<BC<8D.1<BC<9【答案】D【解析】:如图∵▱ABCD,AC=8,BD=10,∴OB=BD=5,OC=AC=4∴5-4<BC<5+4,即1<BC<9故答案为:D【分析】根据平行四边形的性质求出OB、OC的长,再根据三角形三边关系定理,建立不等式组,求解即可。

3.如图所示,∠A=50°,∠B=20°,∠D=30°,则∠BCD的度数为()A. 80°B. 100°C. 120°D. 140°【答案】B【解析】如图,延长BC交AD于点E,∵∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,∴∠BCD=∠A+∠B+∠D,∵∠A=50°,∠B=20°,∠D=30°,∴∠BCD=50°+20°+30°=100°,故答案为:B.【分析】延长BC交AD 于点E,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,所以∠BCD=∠A+∠B+∠D,由已知可得∠BCD=50°+20°+30°=100°。

4.如图,BE∥AF,点D是AB上一点,且DC⊥BE于点C,若∠A=35°,则∠ADC的度数()A. 105°B. 115°C. 125°D. 135°【答案】C【解析】:∵BE∥AF,∴∠B=∠A=35°.∵DC⊥BE,∴∠DCB=90°,∴∠ADC=90°+35°=125°.故答案为:C.【分析】由平行线的性质可得∠B=∠A=35°,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠ADC=90°+35°=125°。

中考数学备考专题复习 全等三角形(含解析)-人教版初中九年级全册数学试题

中考数学备考专题复习 全等三角形(含解析)-人教版初中九年级全册数学试题

全等三角形一、单选题(共12题;共24分)1、下图中,全等的图形有()A、2组B、3组C、4组D、5组2、使两个直角三角形全等的条件是()A、一锐角对应相等B、两锐角对应相等C、一条边对应相等D、两条直角边对应相等3、下列说法错误的是()A、等腰三角形两腰上的中线相等B、等腰三角形两腰上的高线相等C、等腰三角形的中线与高重合D、等腰三角形底边的中线上任一点到两腰的距离相等4、如图,某同学把一块三角形的玻璃打破成了三块,现在他要到玻璃店去配一块完全一样形状的玻璃,那么最省事的办法是带()去配.A、①B、②C、③D、①和②5、长为1的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x 的取值X围为()A、B、C、D、6、已知等腰三角形一腰上的高线等于腰长的一半,那么这个等腰三角形的一个底角等于()A、15°或75°B、15°C、75°D、150°和30°7、如图,x的值可能为()A、10B、9C、7D、68、如图,△A BC中,AB=AC , EB=EC ,则由“SSS”可以判定()A、△ABD≌△ACDB、△ABE≌△ACEC、△BDE≌△CDED、以上答案都不对9、如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A、4cmB、2cmC、4cm或2cmD、小于或等于4cm,且大于或等于2cm10、(2016•滨州)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A、50°B、51°C、51.5°D、52.5°11、(2016•某某)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A、AC=BDB、∠CAB=∠DBAC、∠C=∠DD、BC=AD12、如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是()A、24°B、25°C、30°D、36°二、填空题(共5题;共6分)13、若△ABC≌△EFG,且∠B=60°,∠FGE-∠E=56°,,则∠A=________度.14、如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“________”.15、如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=________°.16、如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI________全等,如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△A BC 和△GHI________全等.(填“一定”或“不一定”或“一定不”)17、(2016•某某)如图,在边长为4的正方形ABCD 中,P 是BC 边上一动点(不含B 、C 两点),将△ABP 沿直线AP 翻折,点B 落在点E 处;在CD 上有一点M ,使得将△CMP 沿直线MP 翻折后,点C 落在直线PE 上的点F 处,直线PE 交CD 于点N ,连接MA ,NA .则以下结论中正确的有________(写出所有正确结论的序号) ①△CMP∽△BPA;②四边形AMCB 的面积最大值为10;③当P 为BC 中点时,AE 为线段NP 的中垂线; ④线段AM 的最小值为2;⑤当△ABP≌△ADN 时,BP=4﹣4.三、综合题(共6题;共66分)18、如图,分别以Rt△ABC 的直角边AC 及斜边AB 向外作等边△ACD 及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F ,连接DF .(1)试说明AC=EF ;(2)求证:四边形ADFE 是平行四边形.19、已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE=CG ,连接BG 并延长交DE 于F .(1)求证:△BCG≌△DCE;(2)将△DC E 绕点D 顺时针旋转90°得到△DAE′,判断四边形E′BGD 是什么特殊四边形,并说明理由。

中考数学总复习《三角形内角和定理》专题复习练习及答案

中考数学总复习《三角形内角和定理》专题复习练习及答案

初三中考数学复习三角形内角和定理专题复习练习1. 把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为( )A.125° B.120° C.140° D.130°2. 如图所示,∠A,∠1,∠2的大小关系是( )A.∠A>∠1>∠2 B.∠2>∠1>∠A C.∠A>∠2>∠1 D.∠2>∠A>∠1 3. 如图,射线AD,BE,CF构成∠1,∠2,∠3,则∠1+∠2+∠3等于( )A.180° B.360° C.540° D.无法确定4. 如图,a∥b,∠1=50°,∠2=60°,则∠3的度数为( )A.50° B.60° C.70° D.80°5. 如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为( )A.110° B.80° C.70° D.60°6. 下面四个图形中,能判断∠1>∠2的是( )7. 如图,AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数为( )A.53° B.63° C.73° D.83°8. 已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为( )A.30° B.35° C.40° D.45°9. 如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点,将Rt△ABC 沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于( )A.40° B.35° C.30° D.25°10. 如图,a,b,c,d互不平行,对它们截出的一些角的数量关系描述错误的是( )A.∠1+∠5+∠4=180° B.∠4+∠5=∠2C.∠1+∠3+∠6=180° D.∠1+∠6=∠211. 如图所示,AB∥CD,AD与BC交于点E,EF是∠BED的平分线.若∠1=30°,∠2=40°,则∠BEF=____度.12. 如图,已知∠1=100°,∠2=140°,那么∠3=______.13. 如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=____度.14. 当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为_______.15.如图所示,∠A+∠B+∠C+∠D+∠E+∠F等于_______.16.在△ABC 中,∠A∶∠B=2∶1,∠C=60°,则∠A =____°. 17. 如图,求∠A +∠B +∠C +∠D +∠E +∠F 的度数.18. 如果等腰三角形的一个外角为110°,求它的底角.19. 在三角形ABC 中,∠BAE =12∠BAC ,∠C>∠B ,且FD ⊥BC 于D 点.(1)试推出∠EFD ,∠B ,∠C 的关系;(2)当点F 在AE 的延长线上时,其余条件不变,你在题(1)推导的结论还成立吗?请直接写出结论.20. 如图,CE 是△ABC 外角∠ACD 的平分线,CE 与BA 的延长线相交于点E ,求证:∠BAC>∠B.21. 如图所示,在△ABC 中,∠ABC 和∠ACB 的平分线交于点O ,试说明:∠BOC =90°+12∠A.参考答案1---10 DBBCC DBCAD 11. 35 12. 60° 13. 45 14. 30° 15. 360° 16. 8017. 解:在△ABN 中,∠A +∠B +∠1=180°,在△CDP 中,∠C +∠D +∠3=180°,在△EFM 中,∠E +∠F +∠2=180°,∴∠A +∠B +∠1+∠C +∠D +∠E +∠F +∠3+∠2=540°,在△MNP 中,∠5+∠4+∠6=180°,∴∠1+∠2+∠3=180°,∴∠A +∠B +∠C +∠D +∠E +∠F =540°-(∠1+∠2+∠3)=360°18. 解:①当110°是顶角的外角时,则底角为110°×12=55°,②当110°是底角的外角时,则底角为180°-110°=70°,即它的底角是55°或70°19. 解:(1)∠EFD =90°-∠FED =90°-(∠B +∠BAE)=90°-∠B -12∠BAC=90°-∠B -12(180°-∠B -∠C)=90°-∠B -90°+12∠B +12∠C =12(∠C-∠B)(2)在(1)中推导的结论成立,∠EFD =12(∠C -∠B)20. 证明:∵∠BAC>∠ACE ,∠DCE>∠B ,又∠ACE =∠DCE ,∴∠BAC>∠B 21. 证明:∠BOC =180°-(∠OBC +∠OCB)=180°-12(∠ABC +∠ACB)=180°-12(180°-∠A)=90°+12∠A。

中考数学总复习《全等三角形》专项提升练习题(附答案)

中考数学总复习《全等三角形》专项提升练习题(附答案)

中考数学总复习《全等三角形》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列各组中的两个图形属于全等图形的是( )A. B. C. D.2.下列叙述中错误的是( )A.能够重合的图形称为全等图形B.全等图形的形状和大小都相同C.所有正方形都是全等图形D.形状和大小都相同的两个图形是全等图形3.下列四个选项图中,与题图中的图案完全一致的是( )A. B. C. D.4.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是( )A.AD=AEB.DB=AEC.DF=EFD.DB=EC5.如果两个三角形全等,那么下列结论不正确的是( )A.这两个三角形的对应边相等B.这两个三角形都是锐角三角形C.这两个三角形的面积相等D.这两个三角形的周长相等6.已知图中的两个三角形全等,则∠a度数是( )A.72°B.60°C.58°D.50°7.已知下列条件,不能作出唯一三角形的是( )A.两边及其夹角B.两角及其夹边C.三边D.两边及除夹角外的另一个角8.如图,某同学不小心将一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,最省事的办法是( )A.带①去B.带②去C.带③去D.带①和②去9.如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,∠ADC+∠ABC=180°,有下列结论:①CD=CB;②AD+AB=2AE;③∠ACD=∠BCE;④AB-AD=2BE.其中正确的是( )A.②B.①②③C.①②④D.①②③④10.如图,在△ABC中,高AD和BE交于点H,且∠1=∠2=22.5°.下列结论:①∠1=∠3;②BD+DH=AB;③2AH=BH;④若DF⊥BE于点F,则AE﹣FH=DF.其中正确的结论是( )A.①②③B.③④C.①②④D.①②③④二、填空题11.如图,四边形ABCD≌四边形A/B/C/D/,则∠A的大小是________.12.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、4,若这两个三角形全等,则x+y=.13.工人师傅常用角尺平分一个任意角.作法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由此作法得△MOC≌△NOC的依据是.14.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=38°,则∠AEB= .15.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD =BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC ≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是16.在△ABC中,AB=8,AC=10,则BC边上的中线AD的取值范围是 .三、解答题17.如图,线段AC与线段BD相交于点O,连结AB,BC,CD,∠A=∠D,OA=OD.求证:∠1=∠2.18.如图,在△ABC中,AB=AC.分别以点B,C为圆心,BC长为半径在BC下方画弧,设两弧交于点D,与AB,AC的延长线分别交于点E,F,连结AD,BD,CD.求证:AD平分∠BAC.19.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.20.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB的延长线上一点,点E在BC 边上,且BE=BD,连结AE,DE,CD.(1)求证:△ABE≌△CBD.(2)若∠CAE=27°,∠ACB=45°,求∠BDC的度数.21.如图,AD∥BC,∠D=90°.(1)如图1,若∠DAB的平分线与∠CBA的平分线交于点P,试问:点P是线段CD的中点吗?为什么?(2)如图2,如果P是DC的中点,BP平分∠ABC,∠CPB=35°,求∠PAD的度数为多少?22.(1)如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试探究AB,AD,DC之间的等量关系,证明你的结论;(2)如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,证明你的结论.答案1.D.2.C3.A4.B.5.B6.D7.D.8.C9.C10.C.11.答案为:95°.12.答案为:10.13.答案为:SSS.14.答案为:128°.15.答案为:ASA.16.答案为:1<AD <9.17.证明:在△AOB 和△DOC 中∵⎩⎨⎧∠A =∠D ,OA =OD ,∠AOB =∠DOC ,∴△AOB ≌△DOC(ASA)∴AB =DC ,OB =OC.∴OA +OC =OD +OB ,即AC =DB.在△ABC 和△DCB 中∵⎩⎨⎧AC =DB ,AB =DC ,BC =CB ,∴△ABC ≌△DCB(SSS)∴∠1=∠2.18.证明:在△ABD 和△ACD 中∵⎩⎨⎧AB =AC ,BD =CD ,AD =AD ,∴△ABD ≌△ACD(SSS)∴∠BAD =∠CAD即AD 平分∠BAC .19.解:(1)∵AE 和BD 相交于点O∴∠AOD =∠BOE.在△AOD 和△BOE 中∠A =∠B ,∠AOD =∠BOE∴∠BEO =∠2.又∵∠1=∠2∴∠1=∠BEO∴∠AEC =∠BED.在△AEC 和△BED 中⎩⎨⎧∠A =∠B ,AE =BE ,∠AEC =∠BED ,∴△AEC ≌△BED(ASA);(2)∵△AEC ≌△BED∴EC =ED ,∠C =∠BDE.在△EDC 中∵EC =ED ,∠1=42°∴∠C =∠EDC =69°∴∠BDE =∠C =69°.20.证明:(1)∵∠ABC =90°∴∠CBD =90°=∠ABC .在△ABE 和△CBD 中∵⎩⎨⎧AB =CB ,∠ABE =∠CBD ,BE =BD ,∴△ABE ≌△CBD(SAS).(2)∵△ABE ≌△CBD∴∠AEB =∠CDB .∵∠AEB 为△AEC 的一个外角∴∠AEB =∠CAE +∠ACB =27°+45°=72° ∴∠BDC =72°.21.解:点P 是线段CD 的中点. 证明如下:过点P 作PE ⊥AB 于E∵AD ∥BC ,PD ⊥CD 于D∴PC ⊥BC∵∠DAB 的平分线与∠CBA 的平分线交于点P ∴PD =PE ,PC =PE∴PC =PD∴点P 是线段CD 的中点.(2)35°22.解:(1)证明:延长AE 交DC 的延长线于点F∵E 是BC 的中点∴CE =BE∵AB ∥DC∴∠BAE =∠F在△AEB 和△FEC 中∴△AEB≌△FEC∴AB=FC∵AE是∠BAD的平分线∴∠BAE=∠EAD∵AB∥CD∴∠BAE=∠F∴∠EAD=∠F∴AD=DF∴AD=DF=DC+CF=DC+AB(2)如图②,延长AE交DF的延长线于点G∵E是BC的中点∴CE=BE∵AB∥DC∴∠BAE=∠G在△AEB和△GEC中∴△AEB≌△GEC∴AB=GC∵AE是∠BAF的平分线∴∠BAG=∠FAG∵AB∥CD∴∠BAG=∠G∴∠FAG=∠G∴FA=FG∴AB=CG=AF+CF第11 页共11 页。

2024年中考数学复习单元测试卷及答案解析第四章三角形

2024年中考数学复习单元测试卷及答案解析第四章三角形

2024年中考数学复习单元测试卷及答案解析—第四章:三⾓形(考试时间:100分钟试卷满分:120分)⼀.选择题(共10⼩题,满分30分,每⼩题3分)1.下⾯⼏何体中,是圆锥的为()A.B.C.D.【答案】B【分析】观察所给⼏何体,可以直接得出答案.【详解】解:A选项为圆柱,不合题意;B选项为圆锥,符合题意;C选项为三棱锥,不合题意;D选项为球,不合题意;故选B.【点睛】本题考查常见⼏何体的识别,熟练掌握常见⼏何体的特征是解题的关键.圆锥⾯和⼀个截它的平⾯,组成的空间⼏何图形叫圆锥.2.下列图形是正⽅体展开图的个数为()A.1个B.2个C.3个D.4个【答案】C【分析】根据正⽅体的展开图的特征,11种不同情况进⾏判断即可.【详解】解:根据正⽅体的展开图的特征,只有第2个图不是正⽅体的展开图,故四个图中有3个图是正⽅体的展开图.故选:C.【点睛】考查正⽅体的展开图的特征,“⼀线不过四,⽥凹应弃之”应⽤⽐较⼴泛简洁.3.如图,∠AOC=∠BOD=90°,∠AOD=126°,则∠BOC的⼤⼩为()A.36°B.44°C.54°D.63°【答案】C【分析】由∠AOC=∠BOD=90°,∠AOD=126°,可求出∠COD的度数,再根据⾓与⾓之间的关系求解.【详解】∵∠AOC=90°,∠AOD=126°,∴∠COD=∠AOD−∠AOC=36°,∵∠BOD=90°,∴∠BOC=∠BOD−∠COD=90°−36°=54°.故选:C.【点睛】本题考查的知识点是⾓的计算,注意此题的解题技巧:两个直⾓相加和∠AOD相⽐,多加了∠BOC.4.如图,在△ABC中,D、E分别在AB边和AC边上,DE//BC,M为BC边上⼀点(不与B、C重合),连结AM 交DE 于点N ,则( )A .AD AN =AN AEB .BD MN =MN CEC .DN BM =NE MCD .DN MC =NEBM 【答案】C 【分析】根据平⾏线的性质和相似三⾓形的判定可得△ADN ∽△ABM ,△ANE ∽△AMC ,再根据相似三⾓形的性质即可得到答案.【详解】∵DE //BC ,∴△ADN ∽△ABM ,△ANE ∽△AMC ,∴DN BM =AN AM ,AN AM =NE MC ⇒DN BM =NEMC ,故选C.【点睛】本题考查平⾏线的性质、相似三⾓形的判定和性质,解题的关键是熟练掌握平⾏线的性质、相似三⾓形的判定和性质.【新考法】 数学与实际⽣活——利⽤数学知识解决实际问题5.如图是⼩亮绘制的潜望镜原理⽰意图,两个平⾯镜的镜⾯AB 与CD 平⾏,⼊射光线l 与出射光线m 平⾏.若⼊射光线l 与镜⾯AB 的夹⾓∠1=40°10',则∠6的度数为( )A .100°40'B .99°80'C .99°40'D .99°20'【答案】C 【分析】由⼊射光线与镜⾯的夹⾓等于反射光线与镜⾯的夹⾓,可得∠1=∠2,可求出∠5,由l //m 可得∠6=∠5【详解】解:由⼊射光线与镜⾯的夹⾓等于反射光线与镜⾯的夹⾓,可得∠1=∠2,∵∠1=40°10'∴∠2=40°10'∴∠5=180°−∠1−∠2=180°−40°10'−40°10'=99°40'∵l//m∴∠6=∠5=99°40'故选:C【点睛】本题主要考查了平⾏线的性质,熟记两直线平⾏,内错⾓相等是解答本题的关键.【新考法】数学与实际⽣活——利⽤数学知识解决实际问题6.如图是脊柱侧弯的检测⽰意图,在体检时为⽅便测出Cobb⾓∠O的⼤⾯⼩,需将∠O转化为与它相等的⾓,则图中与∠O相等的⾓是()A.∠BEA B.∠DEB C.∠ECA D.∠ADO【答案】B【分析】根据直⾓三⾓形的性质可知:∠O与∠ADO互余,∠DEB与∠ADO互余,根据同⾓的余⾓相等可得结论.【详解】由⽰意图可知:△DOA和△DBE都是直⾓三⾓形,∴∠O+∠ADO=90°,∠DEB+∠ADO=90°,∴∠DEB=∠O,故选:B.【点睛】本题考查直⾓三⾓形的性质的应⽤,掌握直⾓三⾓形的两个锐⾓互余是解题的关键.7.【易错题】若等腰三⾓形的两边长分别是3cm和5cm,则这个等腰三⾓形的周长是()A.8cm B.13cm C.8cm或13cm D.11cm或13cm【答案】D【分析】题⽬给出等腰三⾓形有两条边长为3和5,⽽没有明确腰、底分别是多少,所以要进⾏讨论,还要应⽤三⾓形的三边关系验证能否组成三⾓形.【详解】解:当3是腰时,∵3+3>5,∴3,3,5能组成三⾓形,此时等腰三⾓形的周长为3+3+5=11(cm),当5是腰时,∵3+5>5,5,5,3能够组成三⾓形,此时等腰三⾓形的周长为5+5+3=13(cm),则三⾓形的周长为11cm或13cm.故选:D【点睛】本题考查等腰三⾓形的性质及三⾓形三边关系;已知没有明确腰和底边的题⽬⼀定要想到两种情况,分类进⾏讨论,还应验证各种情况是否能构成三⾓形进⾏解答,这点⾮常重要,也是解题的关键.【⼏何模型】三⾓形折叠模型8.如图,三⾓形纸⽚ABC中,∠BAC=90°,AB=2,AC=3.沿过点A的直线将纸⽚折叠,使点B落在边BC上的点D处;再折叠纸⽚,使点C与点D重合,若折痕与AC的交点为E,则AE的长是()A.136B.56C.76D.65【答案】A【分析】根据题意可得AD = AB = 2,∠B = ∠ADB,CE= DE,∠C=∠CDE,可得∠ADE = 90°,继⽽设AE=x,则CE=DE=3-x,根据勾股定理即可求解.【详解】解:∵沿过点A的直线将纸⽚折叠,使点B落在边BC上的点D处,∴AD = AB = 2,∠B = ∠ADB,∵折叠纸⽚,使点C与点D重合,∴CE= DE,∠C=∠CDE,∵∠BAC = 90°,∴∠B+ ∠C= 90°,∴∠ADB + ∠CDE = 90°,∴∠ADE = 90°,∴AD2 + DE2 = AE2,设AE=x,则CE=DE=3-x,∴22+(3-x)2 =x2,解得x=136即AE=136故选A【点睛】本题考查了折叠的性质,勾股定理,掌握折叠的性质以及勾股定理是解题的关键.【⼏何模型】⼀线三垂直模型9.如图,点A(0,3)、B(1,0),将线段AB平移得到线段DC,若∠ABC=90°,BC=2AB,则点D的坐标是()A.(7,2)B.(7,5)C.(5,6)D.(6,5)【答案】D【分析】先过点C做出x轴垂线段CE,根据相似三⾓形找出点C的坐标,再根据平移的性质计算出对应D点的坐标.【详解】如图过点C作x轴垂线,垂⾜为点E,∵∠ABC=90°∴∠ABO+∠CBE=90°∵∠CBE+BCE=90°∴∠ABO=∠BCE在ΔABO和ΔBCE中,{∠ABO=∠BCE∠AOB=∠BEC=90°,∴ΔABO∽ΔBCE,∴AB BC =AOBE=OBEC=12,则BE=2AO=6 ,EC=2OB=2∵点C是由点B向右平移6个单位,向上平移2个单位得到,∴点D同样是由点A向右平移6个单位,向上平移2个单位得到,∵点A坐标为(0,3),∴点D坐标为(6,5),选项D符合题意,故答案选D【点睛】本题考查了图象的平移、相似三⾓形的判定与性质,利⽤相似三⾓形的判定与性质找出图象左右、上下平移的距离是解题的关键.10.如图①,在矩形ABCD中,H为CD边上的⼀点,点M从点A出发沿折线AH−HC−CB运动到点B停⽌,点N从点A出发沿AB运动到点B停⽌,它们的运动速度都是1cm/s,若点M、N同时开始运动,设运动时间为t s,△AMN的⾯积为S cm2,已知S与t之间函数图象如图②所⽰,则下列结论正确的是()①当0<t≤6时,△AMN是等边三⾓形.②在运动过程中,使得△ADM为等腰三⾓形的点M⼀共有3个.③当0<t≤6时,S2.④当t=9△ADH∽△ABM.⑤当9<t<9+S=−3t+9+A.①③④B.①③⑤C.①②④D.③④⑤【答案】A【分析】由图②可知:当0<t≤6时,点M、N两点经过6秒时,S最⼤,此时点M在点H处,点N在点B处并停⽌不动;由点M、N两点的运动速度为1cm/s,所以可得AH=AB=6cm,利⽤四边形ABCD是矩形可知CD=AB=6cm;当6≤t≤9时,S=N在B处不动,点M在线段HC上运动,运动时间为(9-6)秒,可得HC=3cm,即点H为CD的中点;利⽤以上的信息对每个结论进⾏分析判断后得出结论.【详解】解:由图②可知:点M、N两点经过6秒时,S最⼤,此时点M在点H处,点N在点B处并停⽌不动,如图,①∵点M、N两点的运动速度为1cm/s,∴AH=AB=6cm,∵四边形ABCD是矩形,∴CD=AB=6cm.∵当t=6s时,S=2,×AB×BC=∴12∴BC=∵当6≤t≤9时,S=∴点N在B处不动,点M在线段HC上运动,运动时间为(9-6)秒,∴HC=3cm,即点H为CD的中点.∴BH=6.∴AB=AH=BH=6,∴△ABM为等边三⾓形.∴∠HAB=60°.∵点M、N同时开始运动,速度均为1cm/s,∴AM=AN,∴当0<t≤6时,△AMN为等边三⾓形.故①正确;②如图,当点M在AD的垂直平分线上时,△ADM为等腰三⾓形:此时有两个符合条件的点;当AD=AM时,△ADM为等腰三⾓形,如图:当DA=DM时,△ADM为等腰三⾓形,如图:综上所述,在运动过程中,使得△ADM为等腰三⾓形的点M⼀共有4个.∴②不正确;③过点M作ME⊥AB于点E,如图,由题意:AM =AN =t ,由①知:∠HAB =60°.在Rt △AME 中,∵sin ∠MAE =MEAM ,∴ME =AM ,∴S =12AN ×ME =12×t 2.∴③正确;④当t CM由①知:BC =∴MB =BC -CM =∵AB =6,∴tan ∠MAB =BM AB ∴∠MAB =30°.∵∠HAB =60°,∴∠DAH =90°-60°=30°.∴∠DAH =∠BAM .∵∠D =∠B =90°,∴△ADH ∽△ABM .∴④正确;⑤当9<t <9+M 在边BC 上,如图,此时MB =9+t ,∴S =12×AB ×MB =12×6×=27+3t .∴⑤不正确;综上,结论正确的有:①③④.故选:A .【点睛】本题主要考查了动点问题的函数图象,主要涉及函数图象上点的坐标的实际意义,三⾓形的⾯积,等腰三⾓形的判定,等边三⾓形的判定,相似三⾓形的判定,特殊⾓的三⾓函数值.对于动点问题,依据已知条件画出符合题意的图形并求得相应线段的长度是解题的关键.⼆.填空题(共6⼩题,满分18分,每⼩题3分)11.如图,已知△ABC ≌△DEF ,点B ,E ,C ,F 依次在同⼀条直线上.若BC =8,CE =5,则CF 的长为.【答案】3【分析】利⽤全等三⾓形的性质求解即可.【详解】解:由全等三⾓形的性质得:EF=BC=8,∴CF=EF−CE=8−5=3,故答案为:3.【点睛】本题考查全等三⾓形性质,熟练掌握全等三⾓形的性质是解答的关键.12.⼀个三⾓形的两边长分别是3和5,则第三边长可以是.(只填⼀个即可)【答案】4(答案不唯⼀,⼤于2且⼩于8之间的数均可)【分析】根据三⾓形的三边关系定理:三⾓形两边之和⼤于第三边,三⾓形的两边差⼩于第三边可得5−3<x<5+3,再解即可.【详解】解:设第三边长为x,由题意得:5−3<x<5+3,则2<x<8,故答案可为:4(答案不唯⼀,⼤于2且⼩于8之间的数均可).【点睛】此题主要考查了三⾓形的三边关系:第三边的范围是:⼤于已知的两边的差,⽽⼩于两边的和.13.【原创题】若直三棱柱的上下底⾯为正三⾓形,侧⾯展开图是边长为6的正⽅形,则该直三棱柱的表⾯积为.【答案】36++36【分析】根据题意得出正三⾓形的边长为2,进⽽根据表⾯积等于两个底⾯积加上侧⾯正⽅形的⾯积即可求解.【详解】解:∵侧⾯展开图是边长为6的正⽅形,∴底⾯周长为6,∵底⾯为正三⾓形,∴正三⾓形的边长为2作CD ⊥AB ,∵△ABC 是等边三⾓形,AB =BC =AC =2,∴AD =1,∴在直⾓ΔADC 中,CD∴S △ABC =12×2∴该直三棱柱的表⾯积为6×6+36+故答案为:36+【点睛】本题考查了三棱柱的侧⾯展开图的⾯积,等边三⾓形的性质,正⽅形的性质,熟练掌握以上知识是解题的关键.14.如图,在Rt △ABC 中,∠C =90°,BC <AC .点D ,E 分别在边AB ,BC 上,连接DE ,将△BDE 沿DE 折叠,点B 的对应点为点B '.若点B '刚好落在边AC 上,∠CB 'E =30°,CE =3,则BC 的长为 .【答案】9【分析】根据折叠的性质以及含30度⾓的直⾓三⾓形的性质得出B 'E =BE =2CE =6,即可求解.【详解】解:∵将△BDE 沿DE 折叠,点B 的对应点为点B '.点B '刚好落在边AC 上,在Rt △ABC 中,∠C =90°,BC <AC ,∠CB 'E =30°,CE =3,∴B 'E =BE =2CE =6,∴BC =CE +BE =3+6=9,故答案为:9.【点睛】本题考查了折叠的性质,含30度⾓的直⾓三⾓形的性质,熟练掌握以上知识是解题的关键.【新考法】 数学与规律探究——图形类规律15.在平⾯直⾓坐标系中,点A 1、A 2、A 3、A 4⋯在x 轴的正半轴上,点B 1、B 2、B 3⋯在直线y =x ≥0上,若点A 1的坐标为2,0,且△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4⋯均为等边三⾓形.则点B 2023的纵坐标为 .【答案】2【分析】过点A 1作A 1M ⊥x 轴,交直线y x ≥0于点M ,过点B 1作B 1C ⊥x 轴于点C ,先求出∠A 1OM =30°,再根据等边三⾓形的性质、等腰三⾓形的判定可得A 1B 1=OA 1=2,然后解直⾓三⾓形可得B 1C 的长,即可得点B 1的纵坐标,同样的⽅法分别求出点B 2,B 3,B 4的纵坐标,最后归纳类推出⼀般规律,由此即可得.【详解】解:如图,过点A 1作A 1M ⊥x 轴,交直线y x ≥0于点M ,过点B 1作B 1C ⊥x 轴于点C ,∵A 12,0,∴OA 1=2,当x =2时,y 1M∴tan ∠A 1OM =A 1M A 1O ∴∠A 1OM =30°,∵△A 1B 1A 2是等边三⾓形,∴∠A 2A 1B 1=60°,A 1A 2=A 1B 1,∴∠OB 1A 1=30°=∠A 1OM ,∴A 1B 1=OA 1=2,∴B 1C =A 1B 1⋅sin60°=2B 1的纵坐标为2同理可得:点B 2的纵坐标为22点B 3的纵坐标为23点B 4的纵坐标为24归纳类推得:点B n 的纵坐标为2n 2n −n 为正整数),则点B 2023的纵坐标为22023−2故答案为:2【点睛】本题考查了点坐标的规律探索、等边三⾓形的性质、正⽐例函数的应⽤、解直⾓三⾓形等知识点,正确归纳类推出⼀般规律是解题关键.16.【创新题】如图,在△ABC 中,AB =AC,∠A <90°,点D,E,F 分别在边AB ,BC,CA 上,连接DE,EF,FD ,已知点B 和点F 关于直线DE 对称.设BC AB =k ,若AD =DF ,则CFFA = (结果⽤含k 的代数式表⽰).【答案】k 22−k 2【分析】先根据轴对称的性质和已知条件证明DE ∥AC ,再证△BDE ∽△BAC ,推出EC =12k ⋅AB ,通过证明△ABC ∽△ECF ,推出CF =12k 2⋅AB ,即可求出CF FA的值.【详解】解: ∵点B 和点F 关于直线DE 对称,∴ DB =DF ,∵ AD =DF ,∴ AD =DB .∵ AD =DF ,∴ ∠A =∠DFA ,∵点B 和点F 关于直线DE 对称,∴ ∠BDE =∠FDE ,⼜∵ ∠BDE +∠FDE =∠BDF =∠A +∠DFA ,∴ ∠FDE =∠DFA ,∴ DE ∥AC ,∴ ∠C =∠DEB ,∠DEF =∠EFC ,∵点B 和点F 关于直线DE 对称,∴ ∠DEB =∠DEF ,∴ ∠C =∠EFC ,∵ AB =AC ,∴ ∠C =∠B ,在△ABC 和△ECF 中,∠B =∠C ∠ACB =∠EFC,∴ △ABC ∽△ECF .∵在△ABC 中,DE ∥AC ,∴ ∠BDE =∠A ,∠BED =∠C ,∴ △BDE ∽△BAC ,∴ BE BC =BD BA =12,∴ EC =12BC ,∵ BC AB =k ,∴ BC =k ⋅AB ,EC =12k ⋅AB ,∵ △ABC ∽△ECF .∴ AB EC =BC CF,∴ AB 12k ⋅AB =k⋅AB CF ,解得CF =12k 2⋅AB ,∴CFFA =CFAC−CF=CFAB−CF=12k2⋅ABAB−12k2⋅AB=k22−k2.故答案为:k 22−k2.【点睛】本题考查相似三⾓形的判定与性质,轴对称的性质,平⾏线的判定与性质,等腰三⾓形的性质,三⾓形外⾓的定义和性质等,有⼀定难度,解题的关键是证明△ABC∽△ECF.三.解答题(共9⼩题,满分72分,其中17、18、19题每题6分,20题、21题每题7分,22题8分,23题9分,24题10分,2 17.如图,AB∥CD,直线MN与AB,CD分别交于点E,F,CD上有⼀点G且GE=GF,∠1=122°.求∠2的度数.【答案】64°【分析】根据AB∥CD,可得∠DFE=∠1=122°,从⽽得到∠EFG=58°,再由GE=GF,可得∠FEG=∠EFG=58°,然后根据三⾓形内⾓和定理,即可求解.【详解】解:∵AB∥CD,∠1=122°∴∠DFE=∠1=122°,∴∠EFG=180°−∠DFE=58°,∵GE=GF,∴∠FEG=∠EFG=58°,∴∠2=180°−∠FEG−∠EFG=64°.【点睛】本题主要考查了平⾏线的性质,等腰三⾓形的性质,三⾓形内⾓和定理,熟练掌握平⾏线的性质,等腰三⾓形的性质,三⾓形内⾓和定理是解题的关键.【⼏何模型】射影定理(相似)18.在Rt△ABC中,∠BAC=90°,AD是斜边BC上的⾼.(1)证明:△ABD∽△CBA;(2)若AB=6,BC=10,求BD的长.【答案】(1)见解析(2)BD=185【分析】(1)根据三⾓形⾼的定义得出∠ADB=90°,根据等⾓的余⾓相等,得出∠BAD=∠C,结合公共⾓∠B=∠B,即可得证;(2)根据(1)的结论,利⽤相似三⾓形的性质即可求解.【详解】(1)证明:∵∠BAC=90°,AD是斜边BC上的⾼.∴∠ADB=90°,∠B+∠C=90°∴∠B+∠BAD=90°,∴∠BAD=∠C⼜∵∠B=∠B∴△ABD∽△CBA,(2)∵△ABD∽△CBA∴AB CB =BD AB,⼜AB=6,BC=10∴BD=AB 2CB =3610=185.【点睛】本题考查了相似三⾓形的性质与判定,熟练掌握相似三⾓形的性质与判定是解题的关键.19.△ABC在边长为l的正⽅形⽹格中如图所⽰.①以点C为位似中⼼,作出△ABC的位似图形△A1B1C,使其位似⽐为1:2.且△A1B1C位于点C的异侧,并表⽰出A1的坐标.②作出△ABC绕点C顺时针旋转90°后的图形△A2B2C.③在②的条件下求出点B经过的路径长.【答案】①作图见解析,点A1的坐标为(3,﹣3);②作图见解析;【分析】①延长AC到A1使A1C=2AC,延长BC到B1使B1C=2BC,则△A1B1C满⾜条件;②利⽤⽹格特点和旋转的性质画出A、B的对应点A2、B2,从⽽得到△A2B2C.③先计算出OB的长,然后根据弧长公式计算点B经过的路径长.【详解】解:①如图,△A1B1C为所作,点A1的坐标为(3,﹣3);②如图,△A2B2C为所作;③OB点B经过的路径长.【点睛】本题考查了作图﹣位似变换:画位似图形的⼀般步骤为:确定位似中⼼;分别连接并延长位似中⼼和能代表原图的关键点;③根据位似⽐,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放⼤或缩⼩的图形.也考查了旋转变换.20.如图,在梯形ABCD中AD∥BC,点F,E分别在线段BC,AC上,且∠FAC=∠ADE,AC=AD(1)求证:DE=AF(2)若∠ABC=∠CDE,求证:AF2=BF⋅CE【答案】(1)证明见解析(2)证明见解析【分析】(1)先根据平⾏线的性质可得∠DAE=∠ACF,再根据三⾓形的全等的判定可得△DAE≅△ACF ,然后根据全等的三⾓形的性质即可得证;(2)先根据全等三⾓形的性质可得∠AFC=∠DEA,从⽽可得∠AFB=∠CED,再根据相似三⾓形的判定可得△ABF∼△CDE,然后根据相似三⾓形的性质即可得证.【详解】(1)证明:∵AD∥BC,∴∠DAE=∠ACF,在△DAE和△ACF中,∠DAE=∠ACFAD=CA∠ADE=∠CAF,∴△DAE≅△ACF ASA,∴DE=AF.(2)证明:∵△DAE≅△ACF,∴∠AFC=∠DEA,∴180°−∠AFC=180°−∠DEA,即∠AFB=∠CED,在△ABF和△CDE中,∠AFB=∠CED ∠ABF=∠CDE,∴△ABF∼△CDE,∴AF CE =BF DE,由(1)已证:DE=AF,∴AF CE =BF AF,∴AF2=BF⋅CE.【点睛】本题考查了三⾓形全等的判定与性质、相似三⾓形的判定与性质,熟练掌握相似三⾓形的判定与性质是解题关键.21.综合与实践主题:制作⽆盖正⽅体形纸盒素材:⼀张正⽅形纸板.步骤1:如图1,将正⽅形纸板的边长三等分,画出九个相同的⼩正⽅形,并剪去四个⾓上的⼩正⽅形;步骤2:如图2,把剪好的纸板折成⽆盖正⽅体形纸盒.猜想与证明:(1)直接写出纸板上∠ABC 与纸盒上∠A 1B 1C 1的⼤⼩关系;(2)证明(1)中你发现的结论.【答案】(1)∠ABC =∠A 1B 1C 1(2)证明见解析.【分析】(1)△ABC 和ΔA 1B 1C 1均是等腰直⾓三⾓形,∠ABC =∠A 1B 1C 1=45°;(2)证明△ABC 是等腰直⾓三⾓形即可.【详解】(1)解:∠ABC =∠A 1B 1C 1(2)证明:连接AC ,设⼩正⽅形边长为1,则AC =BC AB ∵AC 2+BC 2=5+5=AB 2,∴△ABC 为等腰直⾓三⾓形,∵A 1C 1=B 1C 1=1,A 1C 1⊥B 1C 1,∴△A 1B 1C 1为等腰直⾓三⾓形,∴∠ABC =∠A 1B 1C 1=45°,故∠ABC =∠A 1B 1C 1【点睛】此题考查了勾股定理及其逆定理的应⽤和等腰三⾓形的性质,熟练掌握其性质是解答此题的关键.22.如图,⼀次函数y =kx +94(k 为常数,k ≠0)的图象与反⽐例函数y =mx (m 为常数,m ≠0)的图象在第⼀象限交于点A 1,n ,与x 轴交于点B −3,0.(1)求⼀次函数和反⽐例函数的解析式.(2)点P 在x 轴上,△ABP 是以AB 为腰的等腰三⾓形,请直接写出点P 的坐标.【答案】(1)⼀次函数的解析式为y =34x +94,反⽐例函数的解析式为y =3x (2)(−8,0)或(2,0)或(5,0)【分析】(1)根据待定系数法,把已知点代⼊再解⽅程即可得出答案;(2)⾸先利⽤勾股定理求出得AB 的长,再分两种情形讨论即可.【详解】(1)解:把点B −3,0代⼊⼀次函数y =kx +94得,−3k +94=0,解得:k =34,故⼀次函数的解析式为y =34x +94,把点A1,n代⼊y=34x+94,得n=34+94=3,∴A(1,3),把点A(1,3)代⼊y=mx,得m=3,故反⽐例函数的解析式为y=3x;(2)解:B−3,0,A(1,3),AB=5,当AB=PB=5时,P(−8,0)或(2,0),当PA=AB时,点P,B关于直线x=1对称,∴P(5,0),综上所述:点P的坐标为(−8,0)或(2,0)或(5,0).【点睛】本题是反⽐例函数综合题,主要考查了函数图象上点的坐标的特征,等腰三⾓形的性质等知识,运⽤分类思想是解题的关键.23.【原创题】如图,△ABC是边长为4的等边三⾓形,点D,E,F分别在边AB,BC,CA上运动,满⾜AD=BE=CF.(1)求证:△ADF≌△BED;(2)设AD的长为x,△DEF的⾯积为y,求y关于x的函数解析式;(3)结合(2)所得的函数,描述△DEF的⾯积随AD的增⼤如何变化.【答案】(1)见详解(2)y2−+(3)当2<x<4时,△DEF的⾯积随AD的增⼤⽽增⼤,当0<x<2时,△DEF的⾯积随AD的增⼤⽽减⼩【分析】(1)由题意易得AF=BD,∠A=∠B=60°,然后根据“SAS”可进⾏求证;=AF=4−x,(2)分别过点C、F作CH⊥AB,FG⊥AB,垂⾜分别为点H、G,根据题意可得S△ABC然后可得FG1)易得△ADF≌△BED≌△CFE,则有S△ADF=S△BED=S△CFE4−x,进⽽问题可求解;(3)由(2)和⼆次函数的性质可进⾏求解.【详解】(1)证明:∵△ABC是边长为4的等边三⾓形,∴∠A=∠B=∠C=60°,AB=BC=AC=4,∵AD=BE=CF,∴AF=BD=CE,在△ADF和△BED中,AF=BD,∠A=∠BAD=BE∴△ADF≌△BED SAS;(2)解:分别过点C、F作CH⊥AB,FG⊥AB,垂⾜分别为点H、G,如图所⽰:在等边△ABC中,∠A=∠B=∠ACB=60°,AB=BC=AC=4,∴CH=AC⋅sin60°=∴S △ABC =12AB ⋅CH =设AD 的长为x ,则AD =BE =CF =x ,AF =4−x ,∴FG =AF ⋅sin60°∴S △ADF =12AD ⋅FG 4−x ,同理(1)可知△ADF ≌△BED ≌△CFE ,∴S △ADF =S △BED =S △CFE 4−x ,∵△DEF 的⾯积为y ,∴y =S △ABC −3S △ADF =4−x =2−+(3)解:由(2)可知:y 2−+∴a 0,对称轴为直线x =2,∴当x >2时,y 随x 的增⼤⽽增⼤,当x <2时,y 随x 的增⼤⽽减⼩;即当2<x <4时,△DEF 的⾯积随AD 的增⼤⽽增⼤,当0<x <2时,△DEF 的⾯积随AD 的增⼤⽽减⼩.【点睛】本题主要考查锐⾓三⾓函数、⼆次函数的综合及等边三⾓形的性质,熟练掌握锐⾓三⾓函数、⼆次函数的综合及等边三⾓形的性质是解题的关键.【⼏何模型】 ⼿拉⼿模型24.如图1,△ABC 是等边三⾓形,点D 在△ABC 的内部,连接AD ,将线段AD 绕点A 按逆时针⽅向旋转60°,得到线段AE ,连接BD ,DE ,CE .(1)判断线段BD 与CE 的数量关系并给出证明;(2)延长ED交直线BC于点F.①如图2,当点F与点B重合时,直接⽤等式表⽰线段AE,BE和CE的数量关系为_______;②如图3,当点F为线段BC中点,且ED=EC时,猜想∠BAD的度数,并说明理由.【答案】(1)BD=CE,理由见解析(2)①BE=AE+CE;②∠BAD=45°,理由见解析【分析】(1)利⽤等边三⾓形的性质和旋转的性质易得到△ABD≌△ACE SAS,再由全等三⾓形的性质求解;(2)①根据线段AD绕点A按逆时针⽅向旋转60°得到AE得到△ADE是等边三⾓形,由等边三⾓形的性质和(1)的结论来求解;②过点A作AG⊥EF于点G,连接AF,根据等边三⾓形的性质和锐⾓三⾓函数求值得到∠BAF=∠DAG,AGAD =AFAB,进⽽得到△BAD∽△FAG,进⽽求出∠ADB=90°,结合BD=CE,ED=EC得到BD=AD,再⽤等腰直⾓三⾓形的性质求解.【详解】(1)解:BD=CE.证明:∵△ABC是等边三⾓形,∴AB=AC,∠BAC=60°.∵线段AD绕点A按逆时针⽅向旋转60°得到AE,∴AD=AE,∠DAE=60°,∴∠BAC=∠DAE,∴∠BAC−∠DAC=∠DAE−∠DAC,即∠BAD=∠CAE.在△ABD和△ACE中AB=AC∠BAD=∠CAEAD=AE,∴△ABD≌△ACE SAS,∴BD=CE;(2)解:①BE=AE+CE理由:∵线段AD绕点A按逆时针⽅向旋转60°得到AE,∴△ADE是等边三⾓形,∴AD=DE=AE,由(1)得BD=CE,∴BE=DE+BD=AE+CE;②过点A作AG⊥EF于点G,连接AF,如下图.∵△ADE是等边三⾓形,AG⊥DE,∴∠DAG=12∠DAE=30°,∴AGAD=cos∠DAG∵△ABC是等边三⾓形,点F为线段BC中点,∴BF=CF,AF⊥BC,∠BAF=12∠BAC=30°,∴AFAB=cos∠BAF∴∠BAF=∠DAG,AGAD =AF AB,∴∠BAF+∠DAF=∠DAG+∠DAF,即∠BAD=∠FAG,∴△BAD ∽△FAG ,∴∠ADB =∠AGF =90°.∵BD =CE ,ED =EC ,∴BD =AD ,即△ABD 是等腰直⾓三⾓形,∴∠BAD =45°.【点睛】本题主要考查了等边三⾓形的性质,旋转的性质,全等三⾓形的判定和性质,解直⾓三⾓形,相似三⾓形的判定和性质,等腰直⾓三⾓形的判定和性质,理解相关知识是解答关键.25.已知抛物线y =ax 2+bx +c 与x 轴交于A (﹣2,0)、B (6,0)两点,与y 轴交于点C (0,﹣3).(1)求抛物线的表达式;(2)点P 在直线BC 下⽅的抛物线上,连接AP 交BC 于点M ,当PM AM 最⼤时,求点P 的坐标及PMAM 的最⼤值;(3)在(2)的条件下,过点P 作x 轴的垂线l ,在l 上是否存在点D ,使△BCD 是直⾓三⾓形,若存在,请直接写出点D 的坐标;若不存在,请说明理由.【答案】(1)y =14x 2−x −3;(2)P(3,−154),916;(3)(3,6)或(3,−9)或(3,−32)或(3−32)【分析】(1)将A(−2,0)、B(6,0)、C(0,−3)代⼊y =ax 2+bx +c 即可求解析式;(2)过点A 作AE ⊥x 轴交直线BC 于点E ,过P 作PF ⊥x 轴交直线BC 于点F ,由PF //AE ,可得MP AM =PF AE ,则求PF AE 的最⼤值即可;(3)分三种情况讨论:当∠CBD =90°时,过点B 作GH ⊥x 轴,过点D 作DG ⊥y 轴,DG 与GH 交于点G ,过点C 作CH ⊥y 轴,CH 与GH 交于点H ,可证明ΔDBG ∽ΔBCH ,求出D(3,6);当∠BCD =90°时,过点D 作DK ⊥y 轴交于点K ,可证明ΔOBC ∽ΔKCD ,求出D(3,−9);当∠BDC =90°时,线段BC 的中点T(3,−32),设D(3,m),由DT =12BC ,可求D(32)或D(3,−32).【详解】解:(1)将点A(−2,0)、B(6,0)、C(0,−3)代⼊y =ax 2+bx +c ,得4a −2b +c =036a +6b +c =0c =−3 ,解得a =14b =−1c =−3,∴y =14x 2−x −3;(2)如图1,过点A 作AE ⊥x 轴交直线BC 于点E ,过P 作PF ⊥x 轴交直线BC 于点F ,∴PF //AE ,∴ MP AM =PF AE ,设直线BC 的解析式为y =kx +d ,∴6k +d =0d =−3 ,∴ k =12d =−3 ,∴y =12x −3,设P(t,14t 2−t −3),则F(t,12t −3),∴PF =12t −3−14t 2+t +3=−14t 2+32t ,∵A(−2,0),∴E(−2,−4),∴AE =4,∴ MP AM =PF AE =−14t 2+32t 4=−116t 2+38t =−116(t −3)2+916,∴当t =3时,MP AM 有最⼤值916,∴P(3,−154);(3)∵P(3,−154),D 点在l 上,如图2,当∠CBD =90°时,过点B 作GH ⊥x 轴,过点D 作DG ⊥y 轴,DG 与GH 交于点G ,过点C 作CH ⊥y 轴,CH 与GH 交于点H ,∴∠DBG +∠GDB =90°,∠DBG +∠CBH =90°,∴∠GDB =∠CBH ,∴ΔDBG ∽ΔBCH ,∴ DG BH =BG CH ,即33=BG 6,∴BG =6,∴D(3,6);如图3,当∠BCD =90°时,过点D 作DK ⊥y 轴交于点K ,∵∠KCD +∠OCB =90°,∠KCD +∠CDK =90°,∴∠CDK =∠OCB ,∴ΔOBC ∽ΔKCD ,∴ OB KC =OC KD ,即6KC =33,∴KC =6,∴D(3,−9);如图4,当∠BDC =90°时,线段BC 的中点T(3,−32),BC =设D(3,m),∵DT =12BC ,∴|m +32|∴m =32或m =−32,∴D(3−32)或D(3,32);综上所述:ΔBCD 是直⾓三⾓形时,D 点坐标为(3,6)或(3,−9)或(3,32)或(32).【点睛】本题考查⼆次函数的综合,熟练掌握⼆次函数的图象及性质,通过构造平⾏线将MP AM 的最⼤值问题转化为求PF AE 的最⼤值问题是解题的关键.。

中考数学总复习《解直角三角形》专项测试卷带答案

中考数学总复习《解直角三角形》专项测试卷带答案

中考数学总复习《解直角三角形》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A 层·基础过关1.已知∠A 是锐角,sin A =35,则tan A 的值是 ( )A .35B .34C .43D .452.(2024·东营垦利区二模)如图,一辆自行车竖直摆放在水平地面上,右边是它的部分示意图,现测得∠A =88°,∠C =42°,AB =60,则点A 到BC 的距离为 ( )A .60sin 50°B .60sin50°C .60cos 50°D .60tan 50°3.宽与长的比是√5-12的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感.如图,把黄金矩形ABCD 沿对角线AC 翻折,点B 落在点B'处,AB'交CD 于点E ,则sin ∠DAE 的值为 ( )A .√55B .12C .35D .2√554.(2024·淄博高青县模拟)在△ABC 中,若|sin A -12|+(√22-cos B )2=0,则∠C 的度数是 .5.(2024·绥化中考)如图,用热气球的探测器测一栋楼的高度,从热气球上的点A测得该楼顶部点C的仰角为60°,测得底部点B的俯角为45°,点A与楼BC的水平距离AD=50 m,则这栋楼的高度为m(结果保留根号).6. (2024·赤峰中考)综合实践课上,航模小组用无人机测量古树AB的高度.如图,点C处与古树底部A处在同一水平面上,且AC=10米,无人机从C处竖直上升到达D 处,测得古树顶部B的俯角为45°,古树底部A的俯角为65°,则古树AB的高度约为米(结果精确到0.1米;参考数据:sin 65°≈0.906,cos 65°≈0.423,tan 65°≈2.145).7.(2024·浙江中考)如图,在△ABC中,AD⊥BC,AE是BC边上的中线,AB=10,AD=6,tan∠ACB=1.(1)求BC的长;(2)求sin∠DAE的值.B 层·能力提升8.(2024·深圳中考)如图,为了测量某电子厂的高度,小明用高1.8 m 的测量仪EF 测得顶端A 的仰角为45°,小军在小明的前面5 m 处用高1.5 m 的测量仪CD 测得顶端A 的仰角为53°,则电子厂AB 的高度为 ( ) (参考数据:sin 53°≈45,cos 53°≈35,tan 53°≈43)A .22.7 mB .22.4 mC .21.2 mD .23.0 m9.(2024·包头中考)如图,在矩形ABCD 中,E ,F 是边BC 上两点,且BE =EF =FC ,连接DE ,AF ,DE 与AF 相交于点G ,连接BG.若AB =4,BC =6,则sin ∠GBF 的值为 ( )A .√1010B .3√1010 C .13 D .2310. (2024·盐城中考)如图,小明用无人机测量教学楼的高度,将无人机垂直上升到距地面30 m 的点P 处,测得教学楼底端点A 的俯角为37°,再将无人机沿教学楼方向水平飞行26.6 m至点Q处,测得教学楼顶端点B的俯角为45°,则教学楼AB的高度约为m.(精确到1 m,参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)11.(2024·上海中考)在平行四边形ABCD中,∠ABC是锐角,将CD沿直线l翻折至AB所在直线,对应点分别为C',D',若AC'∶AB∶BC=1∶3∶7,则cos∠ABC=.C层·素养挑战12.(2024·广元中考)小明从科普读物中了解到,光从真空射入介质发生折射时,入叫做介质的“绝对折射率”,简称射角α的正弦值与折射角β的正弦值的比值sinαsinβ“折射率”.它表示光在介质中传播时,介质对光作用的一种特征.,β=30°,求该介质的(1)若光从真空射入某介质,入射角为α,折射角为β,且cos α=√74折射率;(2)现有一块与(1)中折射率相同的长方体介质,如图①所示,点A,B,C,D分别是长方体棱的中点,若光线经真空从矩形A1D1D2A2对角线交点O处射入,其折射光线恰好从点C处射出.如图②,已知α=60°,CD=10 cm,求截面ABCD的面积.参考答案A 层·基础过关1.(2024·潍坊寿光市二模)已知∠A 是锐角,sin A =35,则tan A 的值是 (B)A .35B .34C .43D .452.(2024·东营垦利区二模)如图,一辆自行车竖直摆放在水平地面上,右边是它的部分示意图,现测得∠A =88°,∠C =42°,AB =60,则点A 到BC 的距离为 (A)A .60sin 50°B .60sin50°C .60cos 50°D .60tan 50°3.(2024·泸州中考)宽与长的比是√5-12的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感.如图,把黄金矩形ABCD 沿对角线AC 翻折,点B 落在点B'处,AB'交CD 于点E ,则sin ∠DAE 的值为 (A)A .√55B .12C .35D .2√554.(2024·淄博高青县模拟)在△ABC 中,若|sin A -12|+(√22-cos B )2=0,则∠C 的度数是 105° .5.(2024·绥化中考)如图,用热气球的探测器测一栋楼的高度,从热气球上的点A 测得该楼顶部点C 的仰角为60°,测得底部点B 的俯角为45°,点A 与楼BC 的水平距离AD =50 m,则这栋楼的高度为 (50+50√3) m(结果保留根号).6. (2024·赤峰中考)综合实践课上,航模小组用无人机测量古树AB的高度.如图,点C处与古树底部A处在同一水平面上,且AC=10米,无人机从C处竖直上升到达D 处,测得古树顶部B的俯角为45°,古树底部A的俯角为65°,则古树AB的高度约为11.5米(结果精确到0.1米;参考数据:sin 65°≈0.906,cos 65°≈0.423,tan 65°≈2.145).7.(2024·浙江中考)如图,在△ABC中,AD⊥BC,AE是BC边上的中线,AB=10,AD=6,tan∠ACB=1.(1)求BC的长;(2)求sin∠DAE的值.【解析】(1)∵AD⊥BC,AB=10,AD=6∴BD=√AB2-AD2=√102-62=8;∵tan∠ACB=1,∴CD=AD=6∴BC=BD+CD=8+6=14;(2)∵AE 是BC 边上的中线,∴CE =12BC =7,∴DE =CE -CD =7-6=1,∵AD ⊥BC∴AE =√AD 2+DE 2=√62+12=√37∴sin ∠DAE =DEAE =√37=√3737.B 层·能力提升8.(2024·深圳中考)如图,为了测量某电子厂的高度,小明用高1.8 m 的测量仪EF 测得顶端A 的仰角为45°,小军在小明的前面5 m 处用高1.5 m 的测量仪CD 测得顶端A 的仰角为53°,则电子厂AB 的高度为 (A) (参考数据:sin 53°≈45,cos 53°≈35,tan 53°≈43)A .22.7 mB .22.4 mC .21.2 mD .23.0 m9.(2024·包头中考)如图,在矩形ABCD 中,E ,F 是边BC 上两点,且BE =EF =FC ,连接DE ,AF ,DE 与AF 相交于点G ,连接BG.若AB =4,BC =6,则sin ∠GBF 的值为 (A)A .√1010B .3√1010 C .13 D .2310. (2024·盐城中考)如图,小明用无人机测量教学楼的高度,将无人机垂直上升到距地面30 m 的点P 处,测得教学楼底端点A 的俯角为37°,再将无人机沿教学楼方向水平飞行26.6 m 至点Q 处,测得教学楼顶端点B 的俯角为45°,则教学楼AB 的高度约为 17 m .(精确到1 m,参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)11.(2024·上海中考)在平行四边形ABCD中,∠ABC是锐角,将CD沿直线l翻折至或AB所在直线,对应点分别为C',D',若AC'∶AB∶BC=1∶3∶7,则cos∠ABC=274.7C层·素养挑战12.(2024·广元中考)小明从科普读物中了解到,光从真空射入介质发生折射时,入叫做介质的“绝对折射率”,简称射角α的正弦值与折射角β的正弦值的比值sinαsinβ“折射率”.它表示光在介质中传播时,介质对光作用的一种特征.(1)若光从真空射入某介质,入射角为α,折射角为β,且cos α=√7,β=30°,求该介质的4折射率;(2)现有一块与(1)中折射率相同的长方体介质,如图①所示,点A,B,C,D分别是长方体棱的中点,若光线经真空从矩形A1D1D2A2对角线交点O处射入,其折射光线恰好从点C处射出.如图②,已知α=60°,CD=10 cm,求截面ABCD的面积.【解析】(1)∵cos α=√74∴如图设b=√7x,则c=4x,由勾股定理得,a=√(4x)2-(√7x)2=3x∴sin α=ac =3x4x=34,又∵β=30°∴sin β=sin 30°=12∴折射率为sinαsinβ=3412=32.(2)根据折射率与(1)的材料相同,可得折射率为32∵α=60°∴sinαsinβ=sin60°sinβ=32,∴sin β=√33.∵四边形ABCD是矩形,点O是AD中点∴AD=2OD,∠D=90°又∵∠OCD=β∴sin∠OCD=sin β=√33在Rt△ODC中,设OD=√3x,OC=3x由勾股定理得,CD=√(3x)2-(√3x)2=√6x∴tan β=ODCD =√3x√6x=√2.又∵CD=10 cm∴OD10=√2∴OD=5√2cm∴AD=10√2cm,∴截面ABCD的面积为:10√2×10=100√2cm2.。

中考数学专题复习《三角形中的分类讨论、存在性问题》测试卷(带答案)

中考数学专题复习《三角形中的分类讨论、存在性问题》测试卷(带答案)

中考数学专题复习《三角形中的分类讨论 存在性问题》测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.如图 EF 是ABC 的中位线 BD 平分ABC ∠交EF 于点D 若31AE DF ==, 则边BC 的长为( )A .7B .8C .9D .102.如图 三个村庄A B C 构成ABC 供奶站须到三个村庄的距离都相等 则供奶站应建在( )A .三条边的垂直平分线的交点B .三个角的角平分线的交点C .三角形三条高的交点D .三角形三条中线的交点3.若等腰三角形一个外角等于100︒ 则与它不相邻的两个内角的度数分别为( ) A .40,40︒︒ B .80,20︒︒ C .50,50︒︒ D .80,20︒︒或50,50︒︒ 4.一根30 m 长的绳子 折成三段 围成一个三角形 其中一条边的长度比较短边长7m 比较长边短1m 则它是( )A .钝角三角形B .直角三角形C .锐角三角形D .无法判断 5.如图 在ABCD 中 点M N 分别是,AB AD 上的点 且BN DM = 其交点为P 设,CPB CPD αβ∠=∠= 则( ).A .αβ>B .αβ=C .αβ<D .不能确定 6.如图 ACB A CB ''△≌△ 30BCB '∠=︒ 则ACA ∠'的度数为( )A .20︒B .30︒C .35︒D .40︒二 填空题7.如图 长为8cm 的橡皮筋放置在x 轴上 固定两端A 和B 然后把中点C 向上拉升3cm 到D 则橡皮筋被拉长了 cm .8.如图 已知AD 为ABC 的中线 10cm 7cm AB AC ==, ACD 的周长为20cm 则ABD △的周长为 cm .9.在ABC 中 9068C AC BC ∠=︒==,, 则AB 边上的中线CD = .10.如图 ABC 是一张直角三角形的纸片 90C ∠=︒ 6AC = 8BC = 现将ABC 折叠 使点B 与点A 重合 折痕为DE 则DE 的长为 .11.如图 在三角形ABC 中 ,AB AC AD BC ⊥⊥ 垂足为D 3,4,5AB AC BC === 则AD = .12.如图 已知ABC 是等边三角形 6AB = BD AC ⊥ 延长BC 到点E 使CE CD = 则BE 的长为 .三 解答题13.如图 DE AB ⊥于E DF AC ⊥于F 若BD CD = BE CF =(1)求证:AD 平分BAC ∠(2)已知20AC = 4BE = 求AB 的长.14.如图 已知△ABD CAE ≌ A E D 在同一直线上 试探究当BD CE ∥时 AD 与EC 的位置关系 并证明.15.将ABC 沿BC 方向平移 得到DEF .(1)若74,26B F ∠=︒∠=︒ 求A ∠的度数(2)若 4.5cm, 3.5cm BC EC == 求ABC 平移的距离. 16.如图 AB 交CD 于点O 在AOC 与BOD 中 有下列三个条件:△OC OD = △AC BD = △A B ∠=∠.请你在上述三个条件中选择两个为条件 另一个能作为这两个条件推出来的结论 并证明你的结论.(只要求写出一种正确的选法)(1)你选的条件为________ ________ 结论为________(2)试说明你的结论.17.如图 在四边形ABCD 中 已知90B 30ACB ∠=︒ 3AB = 10AD = 8CD =.(1)求证:ACD 是直角三角形(2)求四边形ABCD 的面积.18.如图 在四边形ABCD 中 90B 2AB BC == 1AD = 3CD =.(1)求DAB∠的度数(2)求四边形ABCD的面积.参考答案:1.B2.A3.D4.B5.B6.B7.28.239.510.15 411.12 512.9 13.(2)12AD EC⊥15.(1)80°(2)1cm 16.(1)△ △ △17.(2)932418.(1)135︒(2)2+。

初中数学七八九年级重点必考中考复习资料模拟解析试卷含答案——三角形压轴综合问题热点专题

初中数学七八九年级重点必考中考复习资料模拟解析试卷含答案——三角形压轴综合问题热点专题

初中数学七八九年级重点必考中考复习资料模拟解析试卷含答案——三角形压轴综合问题热点专题专题29三角形压轴综合问题一、解答题1.(2022·青海·中考真题)两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.(1)问题发现:如图1,若和是顶角相等的等腰三角形,BC,DE分别是底边.求证:;图1(2)解决问题:如图2,若和均为等腰直角三角形,,点A,D,E在同一条直线上,CM为中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系并说明理由.图2【答案】(1)见解析(2);【解析】【分析】(1)先判断出∠BAD=∠CAE,进而利用SAS判断出△BAD≌△CAE,即可得出结论;(2)同(1)的方法判断出△BAD≌△CAE,得出AD=BE,∠ADC=∠BEC,最后用角的差,即可得出结论.(1)证明:∵和是顶角相等的等腰三角形,∴,,,∴,∴.在和中,,∴,∴.(2)解:,,理由如下:由(1)的方法得,,∴,,∵是等腰直角三角形,∴,∴,∴,∴.∵,,∴.∵,∴,∴.∴.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等腰三角形,等边三角形,等腰直角三角形的性质,判断出△ACD≌△BCE是解本题的关键.2.(2022·辽宁大连·中考真题)综合与实践问题情境:数学活动课上,王老师出示了一个问题:如图1,在中,D是上一点,.求证.独立思考:(1)请解答王老师提出的问题.实践探究:(2)在原有问题条件不变的情况下,王老师增加下面的条件,并提出新问题,请你解答.“如图2,延长至点E,使,与的延长线相交于点F,点G,H分别在上,,.在图中找出与相等的线段,并证明.”问题解决:(3)数学活动小组河学时上述问题进行特殊化研究之后发现,当时,若给出中任意两边长,则图3中所有已经用字母标记的线段长均可求,该小组提出下面的问题,请你解答.“如图3,在(2)的条件下,若,,,求的长.”【答案】(1)证明见解析;(2)证明见解析;(3)【解析】【分析】(1)利用三角形的内角和定理可得答案;(2)如图,在BC上截取证明再证明证明可得从而可得结论;(3)如图,在BC上截取同理可得:利用勾股定理先求解证明可得可得证明可得而可得再利用勾股定理求解BE,即可得到答案.【详解】证明:(1)而(2)理由如下:如图,在BC上截取,∵∴∴∵∴(3)如图,在BC上截取同理可得:而而【点睛】本题考查的是三角形的内角和定理的应用,全等三角形的判定与性质,勾股定理的应用,相似三角形的判定与性质,作出适当的辅助线构建全等三角形是解本题的关键.3.(2022·山东青岛·中考真题)【图形定义】有一条高线相等的两个三角形称为等高三角形.例如:如图①.在和中,分别是和边上的高线,且,则和是等高三角形.【性质探究】如图①,用,分别表示和的面积.则,∵∴.【性质应用】(1)如图②,D是的边上的一点.若,则__________;(2)如图③,在中,D,E分别是和边上的点.若,,,则__________,_________;(3)如图③,在中,D,E分别是和边上的点,若,,,则__________.【答案】(1)(2);(3)【解析】【分析】(1)由图可知和是等高三角形,然后根据等高三角形的性质即可得到答案;(2)根据,和等高三角形的性质可求得,然后根据和等高三角形的性质可求得;(3)根据,和等高三角形的性质可求得,然后根据,和等高三角形的性质可求得.(1)解:如图,过点A作AE⊥BC,则,∵AE=AE,∴.(2)解:∵和是等高三角形,∴,∴;∵和是等高三角形,∴,∴.(3)解:∵和是等高三角形,∴,∴;∵和是等高三角形,∴,∴.【点睛】本题主要考查了等高三角形的定义、性质以及应用性质解题,熟练掌握等高三角形的性质并能灵活运用是解题的关键.4.(2022·山东烟台·中考真题)(1)【问题呈现】如图1,△ABC和△ADE都是等边三角形,连接BD,CE.求证:BD=CE.(2)【类比探究】如图2,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°.连接BD,CE.请直接写出的值.(3)【拓展提升】如图3,△ABC和△ADE都是直角三角形,∠ABC=∠ADE=90°,且==.连接BD,CE.①求的值;②延长CE交BD于点F,交AB于点G.求sin∠BFC的值.【答案】(1)见解析(2)(3)①;②【解析】【分析】(1)证明△BAD≌△CAE,从而得出结论;(2)证明△BAD∽△CAE,进而得出结果;(3)①先证明△ABC∽△ADE,再证得△CAE∽△BAD,进而得出结果;②在①的基础上得出∠ACE=∠ABD,进而∠BFC=∠BAC,进一步得出结果.(1)证明:∵△ABC和△ADE都是等边三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,∴∠BAD=∠CAE,∴△BAD≌△CAE(S A S),∴BD=CE;(2)解:∵△ABC和△ADE都是等腰直角三角形,,∠DAE=∠BAC=45°,∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,∴∠BAD=∠CAE,∴△BAD∽△CAE,;(3)解:①,∠ABC=∠ADE=90°,∴△ABC∽△ADE,∴∠BAC=∠DAE,,∴∠CAE=∠BAD,∴△CAE∽△BAD,;②由①得:△CAE∽△BAD,∴∠ACE=∠ABD,∵∠AGC=∠BGF,∴∠BFC=∠BAC,∴sin∠BFC.【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解决问题的关键是熟练掌握“手拉手”模型及其变形.5.(2022·广西·中考真题)已知,点A,B分别在射线上运动,.(1)如图①,若,取AB中点D,点A,B运动时,点D也随之运动,点A,B,D的对应点分别为,连接.判断OD与有什么数量关系?证明你的结论:(2)如图②,若,以AB为斜边在其右侧作等腰直角三角形ABC,求点O与点C的最大距离:(3)如图③,若,当点A,B运动到什么位置时,的面积最大?请说明理由,并求出面积的最大值.【答案】(1),证明见解析(2)(3)当时,的面积最大;理由见解析,面积的最大值为【解析】【分析】(1)根据“直角三角形斜边中线等于斜边一半”可得OD=AB,OD′=A′B′,进而得出结论;(2)作△AOB的外接圆I,连接CI并延长,分别交⊙I于O′和D,当O运动到O′时,OC 最大,求出CD和等边三角形AO′B上的高O′D,进而求得结果;(3)作等腰直角三角形AIB,以I为圆心,AI为半径作⊙I,取AB的中点C,连接CI并延长交⊙I于O,此时△AOB的面积最大,进一步求得结果.(3)以AB为斜边在其右侧作等腰直角三角形ABC,连接OC交AB于点T,在OT上取点E,使OE=BE,连接BE,由(2)可知,当时,OC最大,当时,此时OT 最大,即的面积最大,由勾股定理等进行求解即可.(1)解:,证明如下:,AB中点为D,,为的中点,,,,;(2)解:如图1,作△AOB的外接圆I,连接CI并延长,分别交⊙I于O′和D,当O运动到O′时,OC最大,此时△AOB是等边三角形,∴BO′=AB=6,OC最大=CO′=CD+DO′=AB+BO′=3+3;(3)解:如图2,作等腰直角三角形AIB,以I为圆心,AI为半径作⊙I,∴AI=AB=3,∠AOB=∠AIB=45°,则点O在⊙I上,取AB的中点C,连接CI并延长交⊙I于O,此时△AOB的面积最大,∵OC=CI+OI=AB+3=3+3,∴S△AOB最大=×6×(3+3)=9+9.【点睛】本题考查了直角三角形性质,等腰三角形性质,确定圆的条件等知识,解决问题的关键是熟练掌握“定弦对定角”的模型.6.(2022·山东潍坊·中考真题)【情境再现】甲、乙两个含角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处,将甲绕点O顺时针旋转一个锐角到图②位置.小莹用作图软件Geogebra按图②作出示意图,并连接,如图③所示,交于E,交于F,通过证明,可得.请你证明:.【迁移应用】延长分别交所在直线于点P,D,如图④,猜想并证明与的位置..关系.【拓展延伸】小亮将图②中的甲、乙换成含角的直角三角尺如图⑤,按图⑤作出示意图,并连接,如图⑥所示,其他条件不变,请你猜想并证明与的数量..关系.【答案】证明见解析;垂直;【解析】【分析】证明,即可得出结论;通过,可以求出,得出结论;证明,得出,得出结论;【详解】证明:,,,,,,;迁移应用:,证明:,,,,,,,;拓展延伸:,证明:在中,,在中,,,由上一问题可知,,,,.【点睛】本题考查旋转变换,涉及知识点:全等三角形的判定与性质,相似三角形的判定与性质、锐角三角函数、等角的余角相等,解题关键结合图形灵活应用相关的判定与性质.7.(2022·辽宁锦州·中考真题)在中,,点D在线段上,连接并延长至点E,使,过点E作,交直线于点F.(1)如图1,若,请用等式表示与的数量关系:____________.(2)如图2.若,完成以下问题:①当点D,点F位于点A的异侧时,请用等式表示之间的数量关系,并说明理由;②当点D,点F位于点A的同侧时,若,请直接写出的长.【答案】(1)(2)①;②或;【解析】【分析】(1)过点C作CG⊥AB于G,先证明△EDF≌△CDG,得到,然后等腰三角形的性质和含30度直角三角形的性质,即可求出答案;(2)①过点C作CH⊥AB于H,与(1)同理,证明△EDF≌△CDH,然后证明是等腰直角三角形,即可得到结论;②过点C作CG⊥AB于G,与(1)同理,得△EDF≌△CDG,然后得到是等腰直角三角形,利用勾股定理解直角三角形,即可求出答案.(1)解:过点C作CG⊥AB于G,如图,∵,∴,∵,,∴△EDF≌△CDG,∴;∵在中,,,∴,∴,∴;故答案为:;(2)解:①过点C作CH⊥AB于H,如图,与(1)同理,可证△EDF≌△CDH,∴,∴,在中,,,∴是等腰直角三角形,∴,∴是等腰直角三角形,∴,∴;②如图,过点C作CG⊥AB于G,与(1)同理可证,△EDF≌△CDG,∴,∵,当点F在点A、D之间时,有∴,与①同理,可证是等腰直角三角形,∴;当点D在点A、F之间时,如图:∴,与①同理,可证是等腰直角三角形,∴;综合上述,线段的长为或.【点睛】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,勾股定理解直角三角形,三角形的内角和定理,解题的关键是熟练掌握所学的知识,正确的作出辅助线,正确得到三角形全等.8.(2022·北京·中考真题)在中,,D为内一点,连接,,延长到点,使得(1)如图1,延长到点,使得,连接,,若,求证:;(2)连接,交的延长线于点,连接,依题意补全图2,若,用等式表示线段与的数量关系,并证明.【答案】(1)见解析(2);证明见解析【解析】【分析】(1)先利用已知条件证明,得出,推出,再由即可证明;(2)延长BC到点M,使CM=CB,连接EM,AM,先证,推出,通过等量代换得到,利用平行线的性质得出,利用直角三角形斜边中线等于斜边一半即可得到.(1)证明:在和中,,∴,∴,∴,∵,∴.(2)解:补全后的图形如图所示,,证明如下:延长BC到点M,使CM=CB,连接EM,AM,∵,CM=CB,∴垂直平分BM,∴,在和中,,∴,∴,,∵,∴,∴,∵,∴,∴,即,∵,∴,∴.【点睛】本题考查全等三角形的判定与性质,垂直平分线的性质,平行线的判定与性质,勾股定理的逆用,直角三角形斜边中线的性质等,第二问有一定难度,正确作辅助线,证明是解题的关键.9.(2022·福建·中考真题)已知,AB=AC,AB>BC.(1)如图1,CB平分∠ACD,求证:四边形ABDC是菱形;(2)如图2,将(1)中的△CDE绕点C逆时针旋转(旋转角小于∠BAC),BC,DE的延长线相交于点F,用等式表示∠ACE与∠EFC之间的数量关系,并证明;(3)如图3,将(1)中的△CDE绕点C顺时针旋转(旋转角小于∠ABC),若,求∠ADB的度数.【答案】(1)见解析(2),见解析(3)30°【解析】【分析】(1)先证明四边形ABDC是平行四边形,再根据AB=AC得出结论;(2)先证出,再根据三角形内角和,得到,等量代换即可得到结论;(3)在AD上取一点M,使得AM =CB,连接BM,证得,得到,设,,则,得到α+β的关系即可.(1)∵,∴AC=DC,∵AB=AC,∴∠ABC=∠ACB,AB=DC,∵CB平分∠ACD,∴,∴,∴,∴四边形ABDC是平行四边形,又∵AB=AC,∴四边形ABDC是菱形;(2)结论:.证明:∵,∴,∵AB=AC,∴,∴,∵,∴,∵,∴,∴;(3)在AD上取一点M,使得AM=CB,连接BM,∵AB=CD,,∴,∴BM=BD,,∴,∵,∴,设,,则,∵CA=CD,∴,∴,∴,∴,∵,∴,∴,即∠ADB=30°.【点睛】本题考查了菱形的判定定理、全等三角形的判定和性质、三角形内角和定理等,灵活运用知识,利用数形结合思想,做出辅助线是解题的关键.10.(2022·山东威海·中考真题)回顾:用数学的思维思考(1)如图1,在△ABC中,AB=AC.①BD,CE是△ABC的角平分线.求证:BD=CE.②点D,E分别是边AC,AB的中点,连接BD,CE.求证:BD=CE.(从①②两题中选择一题加以证明)(2)猜想:用数学的眼光观察经过做题反思,小明同学认为:在△ABC中,AB=AC,D为边AC上一动点(不与点A,C 重合).对于点D在边AC上的任意位置,在另一边AB上总能找到一个与其对应的点E,使得BD=CE.进而提出问题:若点D,E分别运动到边AC,AB的延长线上,BD与CE还相等吗?请解决下面的问题:如图2,在△ABC中,AB=AC,点D,E分别在边AC,AB的延长线上,请添加一个条件(不再添加新的字母),使得BD=CE,并证明.(3)探究:用数学的语言表达如图3,在△ABC中,AB=AC=2,∠A=36°,E为边AB上任意一点(不与点A,B重合),F为边AC延长线上一点.判断BF与CE能否相等.若能,求CF的取值范围;若不能,说明理由.【答案】(1)见解析(2)添加条件CD=BE,见解析(3)能,0<CF<【解析】【分析】(1)①利用ASA证明△ABD≌△ACE.②利用SAS证明△ABD≌△ACE.(2)添加条件CD=BE,证明AC+CD=AB+BE,从而利用SAS证明△ABD≌△ACE.(3)在AC上取一点D,使得BD=CE,根据BF=CE,得到BD=BF,当BD=BF=BA时,可证△CBF∽△BAF,运用相似性质,求得CF的长即可.(1)①如图1,∵AB=AC,∴∠ABC=∠ACB,∵BD,CE是△ABC的角平分线,∴∠ABD=∠ABC,∠ACE =∠ACB,∴∠ABD=∠ACE,∵AB=AC,∠A=∠A,∴△ABD≌△ACE,∴BD=CE.②如图1,∵AB=AC,点D,E分别是边AC,AB的中点,∴AE=AD,∵AB=AC,∠A=∠A,∴△ABD≌△ACE,∴BD=CE.(2)添加条件CD=BE,证明如下:∵AB=AC,CD=BE,∴AC+CD=AB+BE,∴AD=AE,∵AB=AC,∠A=∠A,∴△ABD≌△ACE,∴BD=CE.(3)能在AC上取一点D,使得BD=CE,根据BF=CE,得到BD=BF,当BD=BF=BA时,E与A重合,∵∠A=36°,AB=AC,∴∠ABC=∠ACB=72°,∠A=∠BF A=36°,∴∠ABF=∠BCF=108°,∠BFC=∠AFB,∴△CBF∽△BAF,∴,∵AB=AC=2=BF,设CF=x,∴,整理,得,解得x=,x=(舍去),故CF= x=,∴0<CF<.【点睛】本题考查了等腰三角形的性质,三角形全等的判定和性质,三角形相似的判定和性质,一元二次方程的解法,熟练掌握等腰三角形的性质,三角形全等的判定,三角形相似的判定性质是解题的关键.11.(2022·贵州铜仁·中考真题)如图,在四边形中,对角线与相交于点O,记的面积为,的面积为.(1)问题解决:如图①,若AB//CD,求证:(2)探索推广:如图②,若与不平行,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由.(3)拓展应用:如图③,在上取一点E,使,过点E作交于点F,点H为的中点,交于点G,且,若,求值.【答案】(1)见解析;(2)(1)中的结论成立,理由见解析:(3)【解析】【分析】(1)如图所示,过点D作AE⊥AC于E,过点B作BF⊥AC于F,求出,然后根据三角形面积公式求解即可;(2)同(1)求解即可;(3)如图所示,过点A作交OB于M,取BM中点N,连接HN,先证明△OEF≌△OCD,得到OD=OF,证明△OEF∽△OAM,得到,设,则,证明△OGF∽△OHN,推出,,则,由(2)结论求解即可.【详解】解:(1)如图所示,过点D作AE⊥AC于E,过点B作BF⊥AC于F,∴,∴,,∵∠DOE=∠BOF,∴;∴;(2)(1)中的结论成立,理由如下:如图所示,过点D作AE⊥AC于E,过点B作BF⊥AC于F,∴,∴,,∵∠DOE=∠BOF,∴;∴;(3)如图所示,过点A作交OB于M,取BM中点N,连接HN,∵,∴∠ODC=∠OFE,∠OCD=∠OEF,又∵OE=OC,∴△OEF≌△OCD(AAS),∴OD=OF,∵,∴△OEF∽△OAM,∴,设,则,∵H是AB的中点,N是BM的中点,∴HN是△ABM的中位线,∴,∴△OGF∽△OHN,∴,∵OG=2GH,∴,∴,∴,,∴,由(2)可知.【点睛】本题主要考查了解直角三角形,相似三角形的性质与判定,全等三角形的性质与判定,三角形中位线定理,正确作出辅助线是解题的关键.12.(2022·湖北武汉·中考真题)已知是的角平分线,点E,F分别在边,上,,,与的面积之和为S.(1)填空:当,,时,①如图1,若,,则_____________,_____________;②如图2,若,,则_____________,_____________;(2)如图3,当时,探究S与m、n的数量关系,并说明理由:(3)如图4,当,,,时,请直接写出S的大小.【答案】(1)①,25;②4;(2)S=(3)S=【解析】【分析】(1)①先证四边形DECF为正方形,再证△ABC为等腰直角三角形,根据CD平分∠ACB,得出CD⊥AB,且AD=BD=m,然后利用三角函数求出BF=BD cos45°=5,DF=BD sin45°=5,AE=AD cos45°=5即可;②先证四边形DECF为正方形,利用直角三角形两锐角互余求出∠A=90°-∠B=30°,利用30°直角三角形先证求出DE=,利用三角函数求出AE=ADcos30°=6,DF=DE=,BF=DF tan30°=2,BD=DF÷sin60°=4即可;(2)过点D作DH⊥AC于H,DG⊥BC于G,在HC上截取HI=BG,连接DI,先证四边形DGCH为正方形,再证△DFG≌△DEH(ASA)与△DBG≌△DIH(SAS),然后证明∠IDA=180°-∠A-∠DIH=90°即可;(3)过点D作DP⊥AC于P,DQ⊥BC于Q,在PC上截取PR=QB,连接DR,过点A作AS⊥DR于S,先证明△DQF≌△DPE,△DBQ≌△DRP,再证△DBF≌△DRE,求出∠ADR=∠ADE+∠BDF=180°-∠FDE=60°即可.(1)解:①∵,,,是的角平分线,∴四边形DECF为矩形,DE=DF,∴四边形DECF为正方形,∵,∴∠A=90°-∠B=45°=∠B,∴△ABC为等腰直角三角形,∵CD平分∠ACB,∴CD⊥AB,且AD=BD=m,∵,∴BD=n=,∴BF=BDcos45°=5,DF=BDsin45°=5,AE=ADcos45°=5,ED=DF=5,∴S= ;故答案为,25;②∵,,,是的角平分线,∴四边形DECF为矩形,DE=DF,∴四边形DECF为正方形,∵,∴∠A=90°-∠B=30°,∴DE=,AE=AD cos30°=6,DF=DE=,∵∠BDF=90°-∠B=30°,∴BF=DF tan30°=2,∴BD=DF÷sin60°=4,∴BD=n=4,∴S=,故答案为:4;;(2)解:过点D作DH⊥AC于H,DG⊥BC于G,在HC上截取HI=BG,连接DI,∴∠DHC=∠DGC=∠GCH=90°,∴四边形DGCH为矩形,∵是的角平分线,DH⊥AC,DG⊥BC,∴DG=DH,∴四边形DGCH为正方形,∴∠GDH=90°,∵,∴∠FDG+∠GDE=∠GDE+∠EDH=90°,∴∠FDG=∠EDH,在△DFG和△DEH中,,∴△DFG≌△DEH(ASA)∴FG=EH,在△DBG和△DIH中,,∴△DBG≌△DIH(SAS),∴∠B=∠DIH,DB=DI=n,∵∠DIH+∠A=∠B+∠A=90°,∴∠IDA=180°-∠A-∠DIH=90°,∴S△ADI=,∴S=;(3)过点D作DP⊥AC于P,DQ⊥BC于Q,在PC上截取PR=QB,连接DR,过点A作AS⊥DR 于S,∵是的角平分线,DP⊥AC,DQ⊥BC,∴DP=DQ,∵∠ACB=60°∴∠QDP=120°,∵,∴∠FDQ+∠FDP=∠FDP+∠EDP=120°,∴∠FDQ=∠EDP,在△DFQ和△DEP中,,∴△DFQ≌△DEP(ASA)∴DF=DE,∠QDF=∠PDE,在△DBQ和△DRP中,,∴△DBQ≌△DRP(SAS),∴∠BDQ=∠RDP,DB=DR,∴∠BDF=∠BDQ+∠FDQ=∠RDP+∠EDP=∠RDE,∵DB=DE,DB=DR,∴△DBF≌△DRE,∴∠ADR=∠ADE+∠BDF=180°-∠FDE=60°,∴S=S△ADR=.【点睛】本题考查等腰直角三角形判定与性质,正方形判定与性质,三角形全等判定与性质,直角三角形判定,三角形面积,角平分线性质,解直角三角形,掌握等腰直角三角形判定与性质,正方形判定与性质,三角形全等判定与性质,直角三角形判定,三角形面积,角平分线性质,解直角三角形是解题关键.13.(2022·黑龙江·中考真题)和都是等边三角形.(1)将绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有(或)成立;请证明.(2)将绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC之间有怎样的数量关系?并加以证明;(3)将绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC之间有怎样的数量关系?直接写出结论,不需要证明.【答案】(1)证明见解析(2)图②结论:,证明见解析(3)图③结论:【解析】【分析】(1)由△ABC是等边三角形,得AB=AC,再因为点P与点A重合,所以PB=AB,PC=AC,P A=0,即可得出结论;(2)在BP上截取,连接AF,证明(SAS),得,再证明(SAS),得,,然后证明是等边三角形,得,即可得出结论;(3)在CP上截取,连接AF,证明(SAS),得,再证明(SAS),得出,,然后证明是等边三角形,得,即可得出结论:.(1)证明:∵△ABC是等边三角形,∴AB=AC,∵点P与点A重合,∴PB=AB,PC=AC,P A=0,∴或;(2)解:图②结论:证明:在BP上截取,连接AF,∵和都是等边三角形,∴,,∴,∴,∴(SAS),∴,∵AC=AB,CP=BF,∴(SAS),∴,,∴,∴,∴是等边三角形,∴,∴;(3)解:图③结论:,理由:在CP上截取,连接AF,∵和都是等边三角形,∴,,∴,∴,∴(SAS),∴,∵AB=AC,BP=CF,∴(SAS),∴,,∴,∴,∴是等边三角形,∴,∴,即.【点睛】本题考查等边三角形的判定与性质,全等三角形的判定与性质,熟练掌握等边三角形的判定与性质、全等三角形的判定与性质是解题的关键.14.(2022·陕西·中考真题)问题提出(1)如图1,是等边的中线,点P在的延长线上,且,则的度数为__________.问题探究(2)如图2,在中,.过点A作,且,过点P 作直线,分别交于点O、E,求四边形的面积.问题解决(3)如图3,现有一块型板材,为钝角,.工人师傅想用这块板材裁出一个型部件,并要求.工人师傅在这块板材上的作法如下:①以点C为圆心,以长为半径画弧,交于点D,连接;②作的垂直平分线l,与于点E;③以点A为圆心,以长为半径画弧,交直线l于点P,连接,得.请问,若按上述作法,裁得的型部件是否符合要求?请证明你的结论.【答案】(1)(2)(3)符合要求,理由见解析【解析】【分析】(1)利用等腰三角形的判定及性质,结合三角形内角和,先求出即可;(2)连接.先证明出四边形是菱形.利用菱形的性质得出,由,得出.根据,得,,即可求出,再求出,利用即可求解;(3)由作法,知,根据,得出.以为边,作正方形,连接.得出.根据l是的垂直平分线,证明出为等边三角形,即可得出结论.(1)解:,,,,解得:,,,故答案为:;(2)解:如图2,连接.图2∵,∴四边形是菱形.∴.∵,∴.∵,∴.∴.∵,∴.∴.∴.(3)解:符合要求.由作法,知.∵,∴.如图3,以为边,作正方形,连接.图3∴.∵l是的垂直平分线,∴l是的垂直平分线.∴.∴为等边三角形.∴,∴,∴.∴裁得的型部件符合要求.【点睛】本题考查了等边三角形的性质,等腰三角形的判定及性质、三角形内角和定理、菱形的判定及性质、锐角三角函数、正方形、垂直平分线,解题的关键是要灵活运用以上知识点进行求解,涉及知识点较多,题目较难.15.(2022·湖南岳阳·中考真题)如图,和的顶点重合,,,,.(1)特例发现:如图1,当点,分别在,上时,可以得出结论:______,直线与直线的位置关系是______;(2)探究证明:如图2,将图1中的绕点顺时针旋转,使点恰好落在线段上,连接,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由;(3)拓展运用:如图3,将图1中的绕点顺时针旋转,连接、,它们的延长线交于点,当时,求的值.【答案】(1),垂直(2)成立,理由见解析(3)【解析】【分析】(1)解直角三角形求出,,可得结论;(2)结论不变,证明,推出,,可得结论;(3)如图3中,过点作于点,设交于点,过点作于点求出,,可得结论.(1)解:在中,,,,∴,在中,,,∴,∴,,∴,此时,故答案为:,垂直;(2)结论成立.理由:∵,∴,∵,,∴,∴,∴,,∵,∴,∴,∵,∴,∴;(3)如图3中,过点作于点,设交于点,过点作于点.∵,,∴,∴.∵,∴,,当时,四边形是矩形,∴,,设,则,,∵,∴,∴,∴,∴,∴,∴,∴,∴.【点睛】本题属于三角形综合题,考查了解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.16.(2022·湖北十堰·中考真题)已知,在内部作等腰,,.点为射线上任意一点(与点不重合),连接,将线段绕点逆时针旋转得到线段,连接并延长交射线于点.(1)如图1,当时,线段与的数量关系是_________;(2)如图2,当时,(1)中的结论是否还成立?若成立,请给予证明;若不成立,请说明理由;(3)若,,,过点作,垂足为,请直接写出的长(用含有的式子表示).【答案】(1)BF=CF(2)成立;理由见解析(3)或PD=0或【解析】【分析】(1)连接AF,先根据“SAS”证明,得出,再证明,即可得出结论;(2)连接AF,先说明,然后根据“SAS”证明,得出,再证明,即可得出结论;(3)先根据,AB=AC,得出△ABC为等边三角形,再按照,,三种情况进行讨论,得出结果即可.(1)解:BF=CF;理由如下:连接AF,如图所示:根据旋转可知,,AE=AD,∵∠BAC=90°,∴,,∴,∵AC=AB,∴(SAS),∴,∴,∵在Rt△ABF与Rt△ACF中,∴(HL),∴BF=CF.故答案为:BF=CF.(2)成立;理由如下:连接AF,如图所示:根据旋转可知,,AE=AD,∵,∴,,∴,∵AC=AB,∴,∴,∴,∵在Rt△ABF与Rt△ACF中,∴(HL),∴BF=CF.∵,AB=AC,∴△ABC为等边三角形,∴,,当时,连接AF,如图所示:根据解析(2)可知,,∴,∵,,即,,根据解析(2)可知,,∴,∴,,,∵,∴,∴,,∴;当时,AD与AC重合,如图所示:∵,,∴△ADE为等边三角形,∴∠ADE=60°,∵,∴,∴此时点P与点D重合,;当时,连接AF,如图所示:根据解析(2)可知,,∴,∵,,即,,根据解析(2)可知,,∴,∴,∵,,∵,∴,∴,,∴;综上分析可知,或PD=0或.17.(2022·湖南湘潭·中考真题)在中,,,直线经过点,过点、分别作的垂线,垂足分别为点、.(1)特例体验:如图①,若直线,,分别求出线段、和的长;(2)规律探究:①如图②,若直线从图①状态开始绕点旋转,请探究线段、和的数量关系并说明理由;②如图③,若直线从图①状态开始绕点A顺时针旋转,与线段相交于点,请再探线段、和的数量关系并说明理由;(3)尝试应用:在图③中,延长线段交线段于点,若,,求.【答案】(1)BD=1;CE=1;DE=2(2)DE=CE+BD;理由见解析;②BD=CE+DE;理由见解析(3)【解析】【分析】(1)先根据得出,根据,得出,,再根据,求出,,即可得出,最后根据三角函数得出,,即可求出;(2)①DE=CE+BD;根据题意,利用“AAS”证明,得出AD=CE,BD=AE,即可得出结论;②BD=CE+DE;根据题意,利用“AAS”证明,得出AD=CE,BD=AE,即可得出结论;(3)在Rt△AEC中,根据勾股定理求出,根据,得出,代入数据求出AF,根据AC=5,算出CF,即可求出三角形的面积.(1)解:∵,,∴,∵,∴,,∵BD⊥AE,CE⊥DE,∴,∴,,∴,∴,,∴.(2)DE=CE+BD;理由如下:∵BD⊥AE,CE⊥DE,∴,∴,∵,∴,∴,∵AB=AC,∴,∴AD=CE,BD=AE,∴DE=AD+AE=CE+BD,即DE=CE+BD;②BD=CE+DE,理由如下:∵BD⊥AE,CE⊥DE,∴,∴,∵,∴,∴,∵AB=AC,∴,∴AD=CE,BD=AE,∴BD=AE=AD+DE=CE+DE,即BD=CE+DE.(3)根据解析(2)可知,AD=CE=3,∴,在Rt△AEC中,根据勾股定理可得:,∵BD⊥AE,CE⊥AE,∴,∴,即,解得:,∴,∵AB=AC=5,∴.【点睛】本题主要考查了三角形全等的判定和性质,等腰三角形的判定和性质,勾股定理,平行线的性质,解直角三角形,根据题意证明,是解题的关键.18.(2022·江苏扬州·中考真题)如图1,在中,,点在边上由点向点运动(不与点重合),过点作,交射线于点.(1)分别探索以下两种特殊情形时线段与的数量关系,并说明理由;①点在线段的延长线上且;②点在线段上且.(2)若.①当时,求的长;②直接写出运动过程中线段长度的最小值.【答案】(1)①②(2)①②4【解析】【分析】(1)①算出各个内角,发现其是等腰三角形即可推出;②算出各内角发现其是30°的直角三角形即可推出;(2)①分别过点A,E作BC的垂线,得到一线三垂直的相似,即,设,,利用30°直角三角形的三边关系,分别表示出,,,,列式求解a即可;②分别过点A,E作BC的垂线,相交于点G,H,证明可得,然后利用完全平方公式变形得出,求出AE的取值范围即可.(1)①如图:∵在中,,∴∵∴,在中,∴∴∴;②如图:∵∴,∴在中,∴∴;(2)①分别过点A,E作BC的垂线,相交于点H,G,则∠EGD=∠DHA=90°,∴∠GED+∠GDE=90°,∵∠HDA+∠GDE=90°,∴∠GED=∠HDA,∴,设,,则,,在中,,AB=6则,在中,,则在中,,∴∴由得,即解得:,(舍)故;②分别过点A,E作BC的垂线,相交于点G,H,则∠EHD=∠AGD=90°,∵∠ADE=90°,∴∠EDH=90°-∠ADG=∠DAG,∵∠EHD=∠AGD=90°,∴,∴,∴,∵∠BAC=90°,∠C=60°,∴∠B=30°,∴,∴,∴=,∵∴,∴,∵,∴,∵,∴,∴,故AE的最小值为4.【点睛】本题考查了直角三角形的性质,三角形相似的判定和性质,等腰三角形的性质,一线三垂直相似模型,垂线段最短,熟练掌握直角三角形的性质,一线三垂直模型,垂线段最短原理是解题的关键.19.(2022·河北·中考真题)如图,四边形ABCD中,,∠ABC=90°,∠C=30°,AD =3,,DH⊥BC于点H.将△PQM与该四边形按如图方式放在同一平面内,使点P与A重合,点B在PM上,其中∠Q=90°,∠QPM=30°,.(1)求证:△PQM≌△CHD;(2)△PQM从图1的位置出发,先沿着BC方向向右平移(图2),当点P到达点D后立刻绕点D逆时针旋转(图3),当边PM旋转50°时停止.①边PQ从平移开始,到绕点D旋转结束,求边PQ扫过的面积;②如图2,点K在BH上,且.若△PQM右移的速度为每秒1个单位长,绕点D旋转的速度为每秒5°,求点K在△PQM区域(含边界)内的时长;③如图3.在△PQM旋转过程中,设PQ,PM分别交BC于点E,F,若BE=d,直接写出CF的长(用含d的式子表示).【答案】(1)见详解(2)①;②;③【解析】【分析】(1)先证明四边形是矩形,再根据算出CD长度,即可证明;(2)①平移扫过部分是平行四边形,旋转扫过部分是扇形,分别算出两块面积相加即可;②运动分两个阶段:平移阶段:;旋转阶段:取刚开始旋转状态,以PM为直径作圆,H为圆心,延长DK与圆相交于点G,连接GH,GM,过点G作于T;设,利用算出,,,利用算出DG,利用算出GT,最后利用算出,发现,从而得到,度数,求出旋转角,最后用旋转角角度计算所用时间即可;③分两种情况:当旋转角<30°时,DE在DH的左侧,当旋转角≥30°时,DE在DH上或右侧,证明,结合勾股定理,可得,即可得CF与d的关系.(1)∵,∴则在四边形中故四边形为矩形,在中,∴,∵。

中考专题复习三角形的综合题(含答案)

中考专题复习三角形的综合题(含答案)

中考专题复习三角形的综合题(含答案)三角形是中考数学中的重要知识点之一。

综合题是考察学生对三角形知识的综合应用能力的题型。

下面是一些中考专题复三角形综合题的示例及其答案。

示例一已知△ABC 中,∠BCA = 90°,AD ⊥ BC 于 D,CD = 6 cm,BD = 8 cm,求△ACB 的面积。

答案:首先,我们可以根据勾股定理求得 AC 的长度:AC² = AD² + CD² = 8² + 6² = 100所以,AC = 10 cm。

由于△ACB 是直角三角形,所以该三角形的面积为:面积 = 1/2 × AC × BC = 1/2 × 10 × 8 = 40 平方厘米。

示例二已知△ABC 中,∠A = 60°,AB = 5 cm,AC = 8 cm,求△ABC 的高和面积。

答案:首先,我们可以利用正弦定理求得 BC 的长度:BC / sin A = AC / sin BBC / sin 60° = 8 / sin BBC = (8 × sin 60°) / sin B ≈ 9.24 cm所以,BC ≈ 9.24 cm。

由于△ABC 是一个等边三角形,其三条边长相等,所以该三角形的高等于边长乘以√3 除以 2:高= (5 × √3) / 2 ≈ 4.33 cm所以,△ABC 的高约为 4.33 cm。

该三角形的面积可以使用公式 S = (1/2) ×底 ×高计算:面积= (1/2) × 5 × 4.33 ≈ 10.83 平方厘米。

示例三已知△ABC 和△MNQ 的面积分别为 20 平方厘米和 25 平方厘米,且 AB:MN = △ABC 和△MNQ 的周长之比。

答案:由于 AB:MN = AB = kMN,BC = kQN。

中考数学三角形复习试题以及答案

中考数学三角形复习试题以及答案

三角形的概念及其性质1.三角形的概念由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三角形的分类(1)按边分类:(2)按角分类:3.三角形的内角和外角(1)三角形的内角和等于180°.(2)三角形的任一个外角等于和它不相邻的两个内角之和;三角形的一个外角大于任何一个和它不相邻的内角.4.三角形三边之间的关系三角形任意两边之和大于第三边,任意两边之差小于第三边.5.三角形内角与对边对应关系在同一个三角形内,大边对大角,大角对大边;在同一三角形中,等边对等角,等角对等边.6.三角形具有稳定性.知识点二、三角形的“四心”和中位线三角形中的四条特殊的线段是:高线、角平分线、中线、中位线.1.内心:三角形角平分线的交点,是三角形内切圆的圆心,它到各边的距离相等.2.外心:三角形三边垂直平分线的交点,是三角形外接圆的圆心,它到三个顶点的距离相等.3.重心:三角形三条中线的交点,它到每个顶点的距离等于它到对边中点距离的2倍.4.垂心:三角形三条高线的交点.5.三角形的中位线:连结三角形两边中点的线段是三角形的中位线.中位线定理:三角形的中位线平行于第三边且等于第三边的一半.要点诠释:(1)三角形的内心、重心都在三角形的内部.(2)钝角三角形的垂心、外心都在三角形的外部.(3)直角三角形的垂心为直角顶点,外心为直角三角形斜边的中点.(4)锐角三角形的垂心、外心都在三角形的内部.知识点三、全等三角形1.定义:能完全重合的两个三角形叫做全等三角形.2.性质:(1)对应边相等(2)对应角相等(3)对应角的平分线、对应边的中线和高相等(4)周长、面积相等3.判定:(1)边角边(SAS)(2)角边角(ASA)(3)角角边(AAS)(4)边边边(SSS)(5)斜边直角边(HL)(适用于直角三角形)要点诠释:判定三角形全等至少必须有一组对应边相等.知识点四、等腰三角形1.定义:有两条边相等的三角形叫做等腰三角形.2.性质:(1)具有三角形的一切性质.(2)两底角相等(等边对等角)(3)顶角的平分线,底边中线,底边上的高互相重合(三线合一)(4)等边三角形的各角都相等,且都等于60°.3.判定:(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);(2)三个角都相等的三角形是等边三角形;(3)有一个角为60°的等腰三角形是等边三角形.要点诠释:(1)腰、底、顶角、底角是等腰三角形特有的概念;(2)等边三角形是特殊的等腰三角形.知识点五、直角三角形1.定义:有一个角是直角的三角形叫做直角三角形.2.性质:(1)直角三角形中两锐角互余;(2)直角三角形中,30°锐角所对的直角边等于斜边的一半.(3)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.(4)勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方.(5)勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.(6)直角三角形中,斜边上的中线等于斜边的一半;(7)SRt△ABC= ch= ab,其中a、b为两直角边,c为斜边,h为斜边上的高.3.判定:(1)两内角互余的三角形是直角三角形;(2)一条边上的中线等于该边的一半,则这条边所对的角是直角,则这个三角形是直角三角形.(3)如果三角形两边的平方和等于第三边的平方,则这个三角形是直角三角形,第三边为斜边.知识点六、线段垂直平分线和角平分线1.线段垂直平分线:经过线段的中点并且垂直这条线段的直线,叫做这条线段的垂直平分线.线段垂直平分线的定理:(1)线段垂直平分线上的点与这条线段两个端点的距离相等.(2)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.线段垂直平分线可以看作是与线段两个端点距离相等的所有点的集合.2.角平分线的性质:(1)角的平分线上的点到角的两边的距离相等;(2)到角的两边的距离相等的点在角的平分线上;(3)角的平分线可以看做是到角的两边距离相等的所有点的集合.四、规律方法指导1.数形结合思想本单元中所学的三角形性质、角平分线性质、全等三角形的性质、直角三角形中的勾股定理等,都是在结合图形的基础上,求线段或角的度数,证明线段或角相等.在几何学习中,应会利用几何图形解决实际问题.2.分类讨论思想在没给图形的前提下,画三角形或三角形一边上的高、三角形的垂心、外心时要考虑分类:三种情况,锐角三角形、直角三角形、钝角三角形.3. 化归与转化思想在解决利用三角形的基础知识计算、证明问题时,通过做辅助线、利用所学知识进行准确推理等转化手段,归结为另一个相对较容易解决的或者已经有解决模式的问题,已知与未知之间的转化;数与形的转化;一般与特殊的转化.4.注意观察、分析、总结应将三角形的判定及性质作为重点,对于特殊三角形的判定及性质要记住并能灵活运用,注重积累解题思路和运用数学思想和方法解决问题的能力和培养,淡化纯粹的几何证明.学会演绎推理的方法,提高逻辑推理能力和逻辑表达能力,掌握几何证明中的分析,综合,转化等数学思想.经典例题透析考点一、三角形的概念及其性质1.(1)(2010山东济宁)若一个三角形三个内角度数的比为2︰3︰4,那么这个三角形是( )A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等边三角形思路点拨:三角形的内角和为180°,三个内角度数的份数和是9,每一份度数是20,则三个内角度数分别为40°、60°、80°,是锐角三角形.答案:B(2)三角形的三边分别为3,1-2a,8,则a的取值范围是( )A.-6-2思路点拨:涉及到三角形三边关系时,尽可能简化运算,注意运算的准确性.解析:根据三角形三边关系得:8-3<1-2a<8+3,解得-5举一反三:【变式1】已知a,b,c为△ABC的三条边,化简得_________.思路点拨:本题利用三角形三边关系,使问题代数化,从而化简得出结论.解析:∵a,b,c为△ABC的三条边∴a-b-c<0, b-a-c<0∴ =(b+c-a)+(a+c-b)=2c.【变式2】有五根细木棒,长度分别为1cm,3cm,5cm,7cm,9cm,现任取其中的三根木棒,组成一个三角形,问有几种可能( )A.1种B.2种C.3种D.4种解析:只有3、5、7或3、7、9或5、7、9三种.应选C.【变式3】等腰三角形中两条边长分别为3、4,则三角形的周长是_________.思路点拨:要分类讨论,给出的边长中,可能分别是腰或底.注意满足三角形三边关系.解析:(1)当腰为3时,周长=3+3+4=10;(2)当腰为4时,周长=3+4+4=11.所以答案为10或11.2.(1)(2010宁波市)如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是△ABC、△BCD的角平分线,则图中的等腰三角形有 ( )A.5个B.4个C.3个D.2个考点:等腰三角形答案:A(2)如图在△ABC中,∠ABC=90°,∠A=50°,BD∥AC,则∠CBD的度数是______.考点:直角三角形两锐角互余.解析:△ABC 中,∠C=∠ABC-∠A =90°-50°=40°又∵BD∥AC,∴∠CBD=∠C=40°.3.已知△ABC的三个内角∠A、∠B、∠C满足关系式∠B+∠C=3∠A,则此三角形中( )A.一定有一个内角为45°B.一定有一个内角为60°C.一定是直角三角形D.一定是钝角三角形考点:三角形内角和180°.思路点拨:会灵活运和三角形内角和等于180°这一定理,即∠B+∠C=180°-∠A.解析:∵△ABC中,∠A+∠B+∠C=180°,∴∠B+∠C=180°-∠A∵∠B+∠C=3∠A,∴180°-∠A=3∠A,∴ ∠A=45°,∴选A,其它三个答案不能确定.举一反三:【变式1】下图能说明∠1>∠2的是( )考点:三角形外角性质.思路点拨:本类题目考查学生了解三角形外角大于任何一个不相邻的内角.解析:A中∠1和∠2是对顶角,∠1=∠2;B中∠1和∠2是同位角,若两直线平行则相等,不平行则不一定相等;C中∠1是三角形的一个外角,∠2是和它不相邻的内角,所以∠1>∠2.D中∠1和∠2的大小相等.故选C.总结升华:三角形内角和180°以及边角之间的关系,在习题中往往是一个隐藏的已知条件,在做题时要注意审题,并随时作为检验自己解题是否正确的标准.【变式2】如果三角形的一个内角等于其他两个内角的和,这个三角形是( )A.锐角三角形B.钝角三角形C.直角三角形D.不能确定思路点拨:理解直角三角形定义,结合三角形内角和得出结论.解析:若△ABC的三个内角∠A、∠B、∠C中,∠A+∠B=∠C又∠A+∠B+∠C=180°,所以2∠C=180°,可得∠C=90°,所以选C.【变式3】下列命题:(1)等边三角形也是等腰三角形;(2)三角形的外角等于两个内角的和;(3)三角形中最大的内角不能小于60°;(4)锐角三角形中,任意两内角之和必大于90°,其中错误的个数是( )A.0 个B.1个C.2个D.3个思路点拨:本题的解题关键是要理解定义,掌握每种三角形中角的度数的确定.解析:(2)中应强调三角形的外角等于不相邻的两个内角的和;三角形中最大的内角若小于60°,则三个角的和就小于180°,不符合三角形内角和定理,故(3)正确;(4)三角形中,任意两内角之和若不大于90°,则另一个内角就大于或等于90°,就不能是锐角三角形.所以中有(2)错,故选B.考点二、三角形的“四心”和中位线4.(1)与三角形三个顶点距离相等的点是这个三角形的( )A.二条中线的交点B. 二条高线的交点C.三条角平分线的交点D.三边中垂线的交点考点:线段垂直平分线的定理.思路点拨:三角形三边垂直平分线的交点是外心,是三角形外接圆的圆心,到三角形三个顶点距离相等.答案D若改成二边中垂线的交点也正确.(2)(2010四川眉山)如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有________个正三角形.考点:三角形中位线找规律思路点拨:图①有1个正三角形;图②有(1+4)个正三角形;图③有(1+4+4)个正三角形;图④有(1+4+4+4)个正三角形;图⑤有(1+4+4+4+4)个正三角形;….答案:175.一个三角形的内心在它的一条高线上,则这个三角形一定是( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形考点:三角形角平分线定理.思路点拨:本题考查三角形的内心是三角形角平分线的交点,若内心在一条高线上,又符合三线合一的性质.所以该三角形是等腰三角形.故选B.举一反三:【变式1】如图,已知△ABC中,∠A=58°,如果(1)O为外心;(2)O为内心;(3)O为垂心;分别求∠BOC的度数.考点:三角形外心、内心、垂心性质.解析:∠A是锐角时,(1)O为外心时,∠BOC=2∠A =116°;(2)O为内心时,∠BOC=90°+ ∠A=119°;(3)O为垂心,∠BOC=180°-∠A=122°.【变式2】如果一个三角形的内心,外心都在三角形内,则这个三角形是( )A.锐角三角形B.只有两边相等的锐角三角形C.直角三角形D.锐角三角形或直角三角形解析:三角形的内心都在三角形内部;锐角三角形外心在三角形内部;直角三角形的外心在三角形斜边的中点上、钝角三角形的外心三角形外部.故选A.【变式3】能把一个三角形分成两个面积相等的三角形的线段,是三角形的( )A.中线B.高线C.边的中垂线D.角平分线思路点拨:三角形面积相等,可利用底、高相等或相同得到.解析:三角形的一条中线分得的两个三角形底相等,高相同.应选A.6.(1)(2010广东茂名)如图,吴伯伯家有一块等边三角形的空地ABC,已知点E、F分别是边AB、AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,则需用篱笆的长是( )A、15米B、20米C、25米D、30米考点:三角形中位线定理.思路点拨:BE=AE=5 ,CF=FA=5,BC=2EF=10答案:C。

中考数学《三角形》专题训练(附答案解析)

中考数学《三角形》专题训练(附答案解析)

中考数学《三角形》专题训练(附答案解析)一单选题1.下列多边形具有稳定性的是()A.B.C.D.【答案】D【解析】利用三角形具有稳定性直接得出答案.【详解】解:三角形具有稳定性四边形五边形六边形都具有不稳定性故选D.【点睛】本题考查三角形的特性牢记三角形具有稳定性是解题的关键.2.请你量一量如图ABC中BC边上的高的长度下列最接近的是()A.0.5cm B.0.7cm C.1.5cm D.2cm【答案】D【解析】作出三角形的高然后利用刻度尺量取即可.【详解】解:如图所示过点A作AO⊥BC用刻度尺直接量得AO更接近2cm故选:D.【点睛】题目主要考查利用刻度尺量取三角形高的长度作出三角形的高是解题关键.3.若等腰三角形的两边长分别是3cm和5cm 则这个等腰三角形的周长是()A.8cm B.13cm C.8cm或13cm D.11cm或13cm【答案】D【解析】题目给出等腰三角形有两条边长为3和5 而没有明确腰底分别是多少所以要进行讨论还要应用三角形的三边关系验证能否组成三角形.【详解】解:当3是腰时⊥3+3>5⊥3 3 5能组成三角形此时等腰三角形的周长为3+3+5=11(cm)当5是腰时⊥3+5>55 5 3能够组成三角形此时等腰三角形的周长为5+5+3=13(cm)则三角形的周长为11cm或13cm.故选:D【点睛】本题考查等腰三角形的性质及三角形三边关系已知没有明确腰和底边的题目一定要想到两种情况分类进行讨论还应验证各种情况是否能构成三角形进行解答这点非常重要也是解题的关键.4.下列长度的三条线段能首尾相接构成三角形的是()A.1cm2cm3cm B.3cm4cm5cmC.4cm5cm10cm D.6cm9cm2cm【答案】B【解析】根据三角形的三边关系“任意两边之和大于第三边任意两边之差小于第三边” 进行分析.【详解】解:根据三角形的三边关系知A1+2=3 不能组成三角形故选项错误不符合题意B3+4>5 能够组成三角形故选项正确符合题意C5+4<10 不能组成三角形故选项错误不符合题意D2+6<9 不能组成三角形故选项错误不符合题意故选:B.【点睛】此题考查了三角形的三边关系.解题的关键是看较小的两个数的和是否大于第三个数.5.下列长度的三条线段能组成三角形的是()A.3 4 8B.5 6 11C.5 6 10D.5 5 10【答案】C【解析】根据三角形的三边关系定理(任意两边之和大于第三边)逐项判断即可得.【详解】+=<不能组成三角形此项不符题意解:A3478B5611+=不能组成三角形此项不符题意+=>能组成三角形此项符合题意C561110D5510+=不能组成三角形此项不符题意故选:C.【点睛】本题考查了三角形的三边关系定理熟练掌握三角形的三边关系定理是解题关键.6.如图在Rt△AB C中⊥C=90° ⊥B=56° 则⊥A的度数为()A.34︒B.44︒C.124︒D.134︒【答案】A【解析】根据直角三角形的两个锐角互余即可得出⊥A的度数.【详解】解:⊥Rt△AB C中⊥C=90° ⊥B=56°⊥⊥A=90°-⊥B=90°-56°=34°故选:A.【点睛】本题考查了直角三角形的性质:直角三角形的两个锐角互余熟练掌握直角三角形的性质并能进行推理计算是解决问题的关键.7.若长度分别是a 3 5的三条线段能组成一个三角形则a的值可以是()A.1B.2C.4D.8【答案】C【解析】根据三角形的三边关系:任意两边之和大于第三边 任意两边之差小于第三边 求出a 的取值范围即可得解.【详解】根据三角形的三边关系得5353a -<<+ 即28a << 则选项中4符合题意故选:C .【点睛】本题主要考查了三角形的三边关系 熟练掌握相关不等关系是解决本题的关键.8.(2021·山东泰安)如图 直线//m n 三角尺的直角顶点在直线m 上 且三角尺的直角被直线m 平分 若160∠=︒ 则下列结论错误的是( )A .275∠=︒B .345∠=︒C .4105∠=︒D .5130∠=︒【答案】D 【解析】根据角平分线的定义求出⊥6和⊥7的度数 再利用平行线的性质以及三角形内角和求出⊥3 ⊥8 ⊥2的度数 最后利用邻补角互补求出⊥4和⊥5的度数.【详解】首先根据三角尺的直角被直线m 平分⊥⊥6=⊥7=45°A ⊥⊥1=60° ⊥6=45° ⊥⊥8=180°-⊥1-⊥6=180-60°-45°=75° m∥n ⊥⊥2=⊥8=75°结论正确 选项不合题意B ⊥⊥7=45° m ⊥n ⊥⊥3=⊥7=45° 结论正确 选项不合题意C ⊥⊥8=75° ⊥⊥4=180-⊥8=180-75°=105° 结论正确 选项不合题意D ⊥⊥7=45° ⊥⊥5=180-⊥7=180-45°=135° 结论错误 选项符合题意.故选:D .【点睛】本题考查了角平分线的定义平行线的性质三角形内角和邻补角互补解答本题的关键是掌握平行线的性质:两直线平行同位角相等内错角相等同旁内角互补.9.(2020·山东淄博)如图若⊥ABC⊥⊥ADE则下列结论中一定成立的是()A.AC=DE B.⊥BAD=⊥CAE C.AB=AE D.⊥ABC=⊥AED【答案】B【解析】根据全等三角形的性质即可得到结论.【详解】解:⊥⊥ABC⊥⊥ADE⊥AC=AE AB=AD⊥ABC=⊥ADE⊥BAC=⊥DAE⊥⊥BAC﹣⊥DAC=⊥DAE﹣⊥DAC即⊥BAD=⊥CAE.故A C D选项错误B选项正确故选:B.【点睛】本题考查了全等三角形的性质熟练掌握全等三角形的性质是解题的关键.10.(2020·广东深圳)如图已知AB=AC BC=6 尺规作图痕迹可求出BD=()A.2B.3C.4D.5【答案】B【解析】根据尺规作图的方法步骤判断即可.【详解】由作图痕迹可知AD为⊥BAC的角平分线而AB=AC由等腰三角形的三线合一知D为BC重点BD =3故选B【点睛】本题考查尺规作图-角平分线及三线合一的性质,关键在于牢记尺规作图的方法和三线合一的性质.11.(2020·福建)如图 面积为1的等边三角形ABC 中 ,,D E F 分别是AB BC CA 的中点 则DEF ∆的面积是( )A .1B .12C .13D .14【答案】D 【解析】根据题意可以判断四个小三角形是全等三角形,即可判断一个的面积是14. 【详解】⊥,,D E F 分别是AB BC CA 的中点,且⊥ABC 是等边三角形⊥⊥ADF ⊥⊥DBE ⊥⊥FEC ⊥⊥DFE ⊥⊥DEF 的面积是14. 故选D .【点睛】本题考查等边三角形的性质及全等,关键在于熟练掌握等边三角形的特殊性质.12.(2020·四川巴中)如图 在ABC 中 120BAC ∠=︒ AD 平分BAC ∠ //DE AB 3AD = 5CE = 则AC 的长为( )A .9B .8C .6D .7【答案】B 【解析】根据角平分线的性质可得到1602BAD CAD BAC ∠=∠=∠=︒ 然后由DE AB ∥可知60BAD ADE ∠=∠=︒ 从而得到60ADE EAD ∠=∠=︒ 所以ADE 是等边三角形 由AC AE CE =+ 即可得出答案.【详解】解:⊥120BAC ∠=︒ AD 平分BAC ∠ ⊥1602BAD CAD BAC ∠=∠=∠=︒ ⊥//DE AB⊥60BAD ADE ∠=∠=︒⊥60ADE EAD ∠=∠=︒⊥ADE 是等边三角形⊥3AE AD ==⊥5CE =⊥358AC AE CE =+=+=故选:B .【点睛】本题主要考查了角平分线的性质 平行线的性质 等边三角形的判定和性质 熟练掌握相应的判定定理和性质是解题的关键 属于基础综合题.13.(2020·广西贺州)如图 将两个完全相同的Rt ⊥ACB 和Rt ⊥A'C ′B ′拼在一起 其中点A ′与点B 重合 点C '在边AB 上 连接B ′C 若⊥ABC =⊥A ′B ′C ′=30° AC =A ′C ′=2 则B ′C 的长为( )A .7B .7C .3D .3【答案】A 【解析】先根据直角三角形的性质可得4,4,60AB A B B A C '''=''=∠=︒ 再根据勾股定理和角的和差可得3,90BC B BC '=∠=︒ 最后在Rt B BC '中 利用勾股定理即可得.【详解】解:⊥90,30,2ACB A C B ABC A B C AC A C ''''∠=∠''=︒∠=∠=︒=''=⊥4,4,60AB A B B A C '''=''=∠=︒ ⊥2223BC AB AC -= 90B BC ABC B A C ''''∠=∠+∠=︒则在Rt B BC '中 2222(23)427B C BC B B ''=+=+故选:A .【点睛】本题考查了含30度角的直角三角形的性质勾股定理等知识点熟练掌握含30度角的直角三角形的性质是解题关键.14.(2020·四川广安)如图在五边形ABCDE中若去掉一个30°的角后得到一个六边形BCDEMN则⊥l+⊥2的度数为()A.210°B.110°C.150°D.100°【答案】A【解析】根据三角形的内角和定理可得⊥AMN+⊥ANM=150° 根据平角的定义可得⊥1+⊥AMN=180°⊥2+⊥ANM=180° 从而求出结论.【详解】解:⊥⊥A=30°⊥⊥AMN+⊥ANM=180°-⊥A=150°⊥⊥1+⊥AMN=180° ⊥2+⊥ANM=180°⊥⊥1+⊥2=180°+180°-(⊥AMN+⊥ANM)=210°故选A.【点睛】此题考查的是三角形内角和定理的应用掌握三角形的内角和定理是解题关键.15.(2020·山东济南)如图在ABC中AB=AC分别以点A B为圆心以适当的长为半径作弧两弧分别交于E F作直线EF D为BC的中点M为直线EF上任意一点.若BC=4 ABC面积为10 则BM+MD长度的最小值为()A.52B.3C.4D.5【答案】D【解析】由基本作图得到得EF垂直平分AB则MB=MA所以BM+MD=MA+MD连接MA DA如图利用两点之间线段最短可判断MA+MD的最小值为AD再利用等腰三角形的性质得到AD⊥BC 然后利用三角形面积公式计算出AD即可.【详解】解:由作法得EF垂直平分AB⊥MB=MA⊥BM+MD=MA+MD连接MA DA如图⊥MA+MD≥AD(当且仅当M点在AD上时取等号)⊥MA+MD的最小值为AD⊥AB=AC D点为BC的中点⊥AD⊥BC⊥110,2ABCS BC AD==⊥1025,4AD⨯==⊥BM+MD长度的最小值为5.故选:D.【点睛】本题考查的是线段的垂直平分线的性质利用轴对称求线段和的最小值三角形的面积两点之间线段最短掌握以上知识是解题的关键.16.(2020·山东烟台)如图点G为ABC的重心连接CG AG并延长分别交AB BC于点E F 连接EF若AB=4.4 AC=3.4 BC=3.6 则EF的长度为()A.1.7B.1.8C.2.2D.2.4【答案】A【解析】由已知条件得EF是三角形的中位线进而根据三角形中位线定理求得EF的长度.【详解】解:⊥点G为△ABC的重心⊥AE=BE BF=CF⊥EF=12AC=1.7故选:A.【点睛】本题主要考查了三角形的重心三角形的中位线定理关键正确利用重心定义得EF为三角形的中位线.17.(2020·山东淄博)如图在⊥AB C中AD BE分别是BC AC边上的中线且AD⊥BE垂足为点F设BC=a AC=b AB=c则下列关系式中成立的是()A.a2+b2=5c2B.a2+b2=4c2C.a2+b2=3c2D.a2+b2=2c2【答案】A【解析】【详解】设EF=x DF=y根据三角形重心的性质得AF=2y BF=2EF=2x利用勾股定理得到4x2+4y2=c2 4x2+y2=b2x2+4y2=a2然后利用加减消元法消去x y得到a b c的关系.【解答】解:设EF=x DF=y⊥AD BE分别是BC AC边上的中线⊥点F为⊥ABC的重心AF=AC=b BD=a⊥AF=2DF=2y BF=2EF=2x⊥AD⊥BE⊥⊥AFB=⊥AFE=⊥BFD=90°在Rt⊥AF B中4x2+4y2=c2⊥在Rt⊥AEF中4x2+y2=b2⊥在Rt ⊥BF D 中 x 2+4y 2=a 2 ⊥⊥+⊥得5x 2+5y 2=(a 2+b 2) ⊥4x 2+4y 2=(a 2+b 2) ⊥⊥﹣⊥得c 2﹣(a 2+b 2)=0 即a 2+b 2=5c 2.故选:A .【点评】本题考查了三角形的重心:重心到顶点的距离与重心到对边中点的距离之比为2:1. 也考查了勾股定理.18.(2020·湖南益阳)如图 在ABC ∆中 AC 的垂直平分线交AB 于点D DC 平分ACB ∠ 若50A ∠= 则B 的度数为( )A .25B .30C .35D .40【答案】B 【解析】根据垂直平分线的性质和角平分线的定义求得⊥ACB 的度数 再根据三角形内角和求出⊥B 的度数.【详解】解:⊥DE 是AC 的垂直平分线⊥AD =CD ⊥ACD =⊥A =50°⊥DC 平分ACB ∠⊥⊥ACB =2⊥ACD =100°⊥⊥B =180°-100°-50°=30°故选:B .【点睛】本题考查垂直平分线的性质 角平分线的定义和三角形内角和定理 熟练掌握垂直平分线的性质和角平分线的定义是解题的关键.19.(2021·广西河池)如图 40A ∠︒= CBD ∠是ABC 的外角 120CBD ∠︒= 则C ∠的大小是( )A .90︒B .80︒C .60︒D .40︒【答案】B 【解析】根据三角形的外角性质直接求解即可.【详解】CBD ∠是ABC 的外角 40A ∠︒= 120CBD ∠︒=∴CBD A C ∠=∠+∠.1204080C CBD A ∴∠=∠-∠=︒-︒=︒.故选B .【点睛】本题考查了三角形外角的性质 掌握三角形外角性质是解题的关键.20.(2021·黑龙江哈尔滨)如图 ABC DEC ≌△△ 点A 和点D 是对应顶点 点B 和点E 是对应顶点 过点A 作AF CD ⊥ 垂足为点F 若65BCE ∠=︒ 则CAF ∠的度数为( )A .30B .25︒C .35︒D .65︒【答案】B 【解析】由题意易得65ACF BCE ∠=∠=︒ 90AFC ∠=︒ 然后问题可求解.【详解】解:⊥ABC DEC ≌△△⊥ACB DCE ∠=∠⊥ACB ACE DCE ACE ∠-∠=∠-∠ 即ACF BCE ∠=∠⊥65BCE ∠=︒⊥65ACF BCE ∠=∠=︒⊥AF CD ⊥⊥90AFC ∠=︒⊥9025CAF ACF ∠=︒-∠=︒故选B .【点睛】本题主要考查全等三角形的性质及直角三角形的性质 熟练掌握全等三角形的性质及直角三角形的性质是解题的关键.21.(2021·广西贵港)如图 在AB C 中 ⊥ABC =90° AB =8 BC =12 D 为AC 边上的一个动点 连接BD E 为BD 上的一个动点 连接AE CE 当⊥ABD =⊥BCE 时 线段AE 的最小值是( )A .3B .4C .5D .6【答案】B 【解析】如图 取BC 的中点T 连接AT ET .首先证明90CEB ∠=︒ 求出AT ET 根据AE AT ET ≥- 可得结论.【详解】解:如图 取BC 的中点T 连接AT ET .90ABC ∠=︒90ABD CBD ∴∠+∠=︒ABD BCE ∠=∠90CBD BCE ∴∠+∠=︒90CEB ∴∠=︒6CT TB ==162ET BC ∴== 22228610AT AB BT =++ AE AT ET ≥-4AE ∴≥AE ∴的最小值为4故选:B .【点睛】本题考查直角三角形斜边中线的性质 勾股定理等知识 解题的关键是求出AT ET 的长 属于中考常考题型.22.(2021·辽宁本溪)如图 在ABC 中 AB BC = 由图中的尺规作图痕迹得到的射线BD 与AC 交于点E 点F 为BC 的中点 连接EF 若2BE AC == 则CEF △的周长为( )A 31B 53C 51D .4【答案】C 【解析】根据作图可知BD 平分ABC ∠ AB BC = 由三线合一 解Rt BEC △ 即可求得.【详解】BD 平分ABC ∠,AB BC =,2BE AC ==BE AC ∴⊥,112AE EC AC === ∴2222215BC BE EC ++点F 为BC 的中点 ∴152EF BC FC === ∴CEF △的周长为:55151CE EF FC ++=+=+ 故选C .【点睛】本题考查了角平分线的概念 等腰三角形性质 勾股定理 直角三角形性质 求出BC 边是解题的关键.23.(2022·青海)如图 在Rt ABC △中 90ACB ∠=︒ D 是AB 的中点 延长CB 至点E 使BE BC = 连接DE F 为DE 中点 连接BF .若16AC = 12BC = 则BF 的长为( )A .5B .4C .6D .8【答案】A 【解析】利用勾股定理求得20AB = 然后由直角三角形斜边上的中线等于斜边的一半求得CD 的长度结合题意知线段BF 是CDE △的中位线 则12BF CD =. 【详解】 解:在Rt ABC △中 90ACB ∠=︒ 16AC = 12BC =2222161220AB AC BC ∴+=+=.又CD 为中线1102CD AB ∴==. F 为DE 中点 BE BC =即点B 是EC 的中点BF ∴是CDE △的中位线 则152BF CD ==. 故选:A .【点睛】本题主要考查了勾股定理 三角形中位线定理 直角三角形斜边上的中线 利用直角三角形的中线性质求出线段CD 的长度是解题的关键.24.(2022·辽宁大连)如图 在ABC 中 90ACB ∠=︒ 分别以点A 和点C 为圆心 大于12AC 的长为半径作弧 两弧相交于M N 两点 作直线MN 直线MN 与AB 相交于点D 连接CD 若3AB = 则CD 的长是( )A .6B .3C .1.5D .1【答案】C 【解析】由作图可得:MN 是AC 的垂直平分线 记MN 与AC 的交点为G 证明,MN BC ∥ 再证明,AD BD = 可得AD BD CD == 从而可得答案.【详解】解:由作图可得:MN 是AC 的垂直平分线 记MN 与AC 的交点为G⊥,,,AG CG MNAC AD CD⊥90ACB ∠=︒,MN BC ∥ ⊥,AGAD CG BD⊥,AD BD =3,AB = 13 1.5.22CD AB 故选C【点睛】本题考查的是线段的垂直平分线的性质 平行线分线段成比例 证明AD BD CD ==是解本题的关键. 25.(2022·湖南)如图 点O 是等边三角形ABC 内一点 2OA = 1OB = 3OC = 则AOB ∆与BOC ∆的面积之和为( )A 3B 3C 33D 3【答案】C【解析】将AOB ∆绕点B 顺时针旋转60︒得BCD ∆ 连接OD 得到BOD 是等边三角形 再利用勾股定理的逆定理可得90COD ∠=︒ 从而求解.【详解】解:将AOB ∆绕点B 顺时针旋转60︒得BCD ∆ 连接ODOB OD ∴= 60BOD ∠=︒ 2CD OA ==BOD ∴∆是等边三角形1OD OB ∴== ∵2222134OD OC +=+= 2224CD ==222OD OC CD ∴+=90DOC ∴∠=︒ AOB ∴∆与BOC ∆的面积之和为2313311342BOC BCD BOD COD S S S S +=+=+⨯= 故选:C .【点睛】本题主要考查了等边三角形的判定与性质 勾股定理的逆定理 旋转的性质等知识 利用旋转将AOB ∆与BOC ∆的面积之和转化为BOC BCD SS + 是解题的关键. 26.(2022·黑龙江)如图 ABC 中 AB AC = AD 平分BAC ∠与BC 相交于点D 点E 是AB 的中点 点F 是DC 的中点 连接EF 交AD 于点P .若ABC 的面积是24 1.5PD = 则PE 的长是( )A .2.5B .2C .3.5D .3【答案】A 【解析】连接DE 取AD 的中点G 连接EG 先由等腰三角形“三线合一“性质 证得AD ⊥BC BD =CD 再由E 是AB 的中点 G 是AD 的中点 求出S △EGD =3 然后证△EGP ⊥△FDP (AAS ) 得GP =CP =1.5 从而得DG =3 即可由三角形面积公式求出EG 长 由勾股定理即可求出PE 长.【详解】解:如图 连接DE 取AD 的中点G 连接EG⊥AB =AC AD 平分BAC ∠与BC 相交于点D⊥AD⊥BC BD=CD⊥S△ABD=112422ABCS=⨯=12⊥E是AB的中点⊥S△AED=1112 22ABDS=⨯=6⊥G是AD的中点⊥S△EGD=116 22AEDS=⨯=3⊥E是AB的中点G是AD的中点⊥EG∥BC EG=12BD=12CD⊥⊥EGP=⊥FDP=90°⊥F是CD的中点⊥DF=12CD⊥EG=DF⊥⊥EPG=⊥FPD⊥⊥EGP⊥⊥FDP(AAS)⊥GP=PD=1.5⊥GD=3⊥S△EGD=12GD EG⋅=3 即1332EG⨯=⊥EG=2在Rt⊥EGP中由勾股定理得PE22222 1.5EG GP+=+故选:A.【点睛】本题考查等腰三角形的性质 三角形面积 全等三角形判定与性质 勾股定理 熟练掌握三角形中线分三角形两部分的面积相等是解题的关键.27.(2022·四川乐山)如图 在Rt ABC 中 90C ∠=︒ 5BC = 点D 是AC 上一点 连接B D .若1tan 2A ∠= 1tan 3ABD ∠= 则CD 的长为( )A .5B .3C 5D .2【答案】C 【解析】先根据锐角三角函数值求出25AC = 再由勾股定理求出5,AB =过点D 作DE AB ⊥于点E 依据三角函数值可得11,,23DE AE DE BE ==从而得32BE AE = 再由5AE BE +=得AE =2 DE =1 由勾股定理得AD 5 从而可求出C D .【详解】解:在Rt ABC 中 90C ∠=︒ 5BC = ⊥1tan 2BC A AC ∠== ⊥225,AC BC ==由勾股定理得,2222(25)(5)5AB AC BC =++=过点D 作DE AB ⊥于点E 如图⊥1tan 2A ∠=1tan 3ABD ∠= ⊥11,,23DE DE AE BE == ⊥11,,23DE AE DE BE == ⊥1123AE BE = ⊥32BE AE =⊥5,AE BE += ⊥352AE AE += ⊥2,AE =⊥1DE =在Rt ADE ∆中,222AD AE DE =+ ⊥2222215AD AE DE ++⊥25,AD CD AC +== ⊥2555,CD AC AD =-==故选:C【点睛】本题主要考查了勾股定理 由锐角正切值求边长 正确作辅助线求出DE 的长是解答本题的关键. 28.(2022·内蒙古包头)如图 在Rt ABC 中 90,30,2ACB A BC ∠=︒∠=︒= 将ABC 绕点C 顺时针旋转得到A B C '' 其中点A '与点A 是对应点 点B '与点B 是对应点.若点B '恰好落在AB 边上 则点A 到直线A C '的距离等于( )A .33B .23C .3D .2【答案】C 【解析】如图 过A 作AQ A C 于,Q 求解4,23,AB AC 结合旋转:证明60,,90,B A B C BC B C A CB 可得BB C '△为等边三角形 求解60,A CA 再应用锐角三角函数可得答案.【详解】解:如图 过A 作AQ A C 于,Q由90,30,2ACB A BC ∠=︒∠=︒= 224,23,AB ACAB BC结合旋转: 60,,90,B A B C BC B C A CBBB C 为等边三角形60,30,BCB ACB60,A CA 3sin 6023 3.2AQ AC⊥A 到A C '的距离为3.故选C【点睛】本题考查的是旋转的性质 含30的直角三角形的性质 勾股定理的应用 等边三角形的判定与性质 锐角三角函数的应用 作出适当的辅助线构建直角三角形是解本题的关键.29.(2021·内蒙古鄂尔多斯)如图 在Rt ABC 中 90,8,6ACB AC BC ∠=︒== 将边BC 沿CN 折叠 使点B 落在AB 上的点B ′处 再将边AC 沿CM 折叠 使点A 落在CB '的延长线上的点A '处 两条折痕与斜边AB 分别交于点N M 则线段A M '的长为( )A .95B .85C .75D .65【答案】B【解析】利用勾股定理求出AB =10 利用等积法求出CN =245 从而得AN =325 再证明⊥NMC =⊥NCM =45° 进而即可得到答案.【详解】解:⊥90,8,6ACB AC BC ∠=︒==⊥AB 22226810AC BC ++⊥S △ABC =12×AB ×CN =12×AC ×BC⊥CN =245⊥AN 22222432855AC CN ⎛⎫-=-= ⎪⎝⎭⊥折叠⊥AM =A'M ⊥BCN =⊥B'CN ⊥ACM =⊥A'CM⊥⊥BCN +⊥B'CN +⊥ACM +⊥A'CM =90°⊥⊥B'CN +⊥A'CM =45°⊥⊥MCN =45° 且CN ⊥AB⊥⊥NMC =⊥NCM =45°⊥MN =CN =245⊥A'M =AM =AN −MN =325-245=85. 故选B .【点睛】本题考查了翻折变换 勾股定理 等腰直角三角形的性质 熟练运用折叠的性质是本题的关键.二 填空题30.(2022·云南)已知△ABC是等腰三角形.若⊥A=40° 则△ABC的顶角度数是____.【答案】40°或100°【解析】分⊥A为三角形顶角或底角两种情况讨论即可求解.【详解】解:当⊥A为三角形顶角时则△ABC的顶角度数是40°当⊥A为三角形底角时则△ABC的顶角度数是180°-40°-40°=100°故答案为:40°或100°.【点睛】本题考查了等腰三角形的性质此类题目难点在于要分情况讨论.31.(2022·青海西宁)如图在△AB C中⊥C=90° ⊥B=30° AB=6 将△ABC绕点A逆时针方向旋转15°得到△AB′C′ B′C′交AB于点E则B′E=________.【答案】333【解析】根据已知可以得出⊥BAC=60° 而将△ABC绕点A按逆时针方向旋转15° 可知⊥C′AE=45° 可以求出AC=AC′=EC′=3 据此即可求解.【详解】解:在Rt△AB C中⊥ACB=90° ⊥B=30° AB=6则⊥BAC=60° AC=3 BC22-363将△ABC绕点A按逆时针方向旋转15°后则⊥C′AC=15° AC= AC′=3 B′C′=BC3⊥⊥C′AE=45°而⊥AC′E=90° 故△AC′E是等腰直角三角形⊥AC=AC′=EC′=3⊥B′E= B′C′-EC33.故答案为:33.【点睛】本题考查旋转变换直角三角形30度角的性质等腰直角三角形的判定和性质勾股定理等知识解题的关键是熟练掌握基本知识.32.(2021·吉林长春)将一副三角板按如图所示的方式摆放点D在边AC上//BC EF则ADE∠的大小为_______度.【答案】75︒∠利用平角为180︒即可求解.【解析】根据两直线平行得同位角相等根据三角形外角性质求得CDG【详解】、交于点G设DF BCBC EF//∴∠=∠F DGB=∠+∠=︒C CDG45∠=︒C30CDG∴∠=︒15∴∠=︒-︒-︒=︒180901575ADE故答案为75︒.【点睛】本题考查了平行线的性质三角形的外角性质平角的概念解题的关键是构建未知量和已知量之间的关系.△的周长为13 则33.(2020·湖北)如图在ABC中DE是AC的垂直平分线.若3AE=ABDABC的周长为______.【答案】19.【解析】由线段的垂直平分线的性质可得2,AC AE AD DC == 从而可得答案.【详解】 解: DE 是AC 的垂直平分线.3AE =26,,AC AE AD DC ∴===13,AB BD AD ++=ABC ∴的周长AB BC AC AB BD AD AC =++=+++13619.=+=故答案为:19.【点睛】本题考查的是线段的垂直平分线的性质 掌握线段的垂直平分线的性质是解题的关键.34.(2020·山东日照)如图 有一个含有30°角的直角三角板 一顶点放在直尺的一条边上若⊥2=65°则⊥1的度数是_____.【答案】25°##25度【解析】延长EF 交BC 于点G 根据题意及直角三角形的性质可直接进行求解.【详解】解:如图 延长EF 交BC 于点G⊥直尺⊥AD ⊥BC⊥⊥2=⊥3=65°又⊥30°角的直角三角板⊥⊥1=90°﹣65°=25°.故答案为:25°.【点睛】本题主要考查平行线的性质及直角三角形的性质熟练掌握知识点是解题的关键.35.(2020·江苏常州)如图在ABC中BC的垂直平分线分别交BC AB于点E F.若AFC△是等边三角形则B∠=_________°.【答案】30【解析】根据垂直平分线的性质得到⊥B=⊥BCF再利用等边三角形的性质得到⊥AFC=60° 从而可得⊥B.【详解】解:⊥EF垂直平分BC⊥BF=CF⊥⊥B=⊥BCF⊥⊥ACF为等边三角形⊥⊥AFC=60°⊥⊥B=⊥BCF=30°.故答案为:30.【点睛】本题考查了垂直平分线的性质等边三角形的性质外角的性质解题的关键是利用垂直平分线的性质得到⊥B=⊥BCF.36.(2020·辽宁辽宁)如图在ABC∆中M N分别是AB和AC的中点连接MN点E是CN的BC=则CD的长为_________.中点连接ME并延长交BC的延长线于点D若4【答案】2【解析】依据三角形中位线定理 即可得到MN =12BC =2 MN //BC 依据⊥MNE ⊥⊥DCE (AAS ) 即可得到CD =MN =2.【详解】解:⊥M N 分别是AB 和AC 的中点⊥MN 是⊥ABC 的中位线⊥MN =12BC =2 MN ⊥BC⊥⊥NME =⊥D ⊥MNE =⊥DCE⊥点E 是CN 的中点⊥NE =CE⊥⊥MNE ⊥⊥DCE (AAS )⊥CD =MN =2.故答案为:2.【点睛】本题主要考查了三角形中位线定理以及全等三角形的判定与性质 全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时 关键是选择恰当的判定条件.37.(2021·新疆)如图 在ABC 中 AB AC = 70C ∠=︒ 分别以点A B 为圆心 大于12AB 的长为半径作弧 两弧相交于M N 两点 作直线MN 交AC 于点D 连接BD 则BDC ∠=__________︒.【答案】80︒【解析】由等腰三角形 “等边对等角”求出ABC ∠ 再由垂直平分线的性质得到AD DB = 最后由三角形外角求解即可.【详解】 解:AB AC =,70C ∠=︒70ABC ∴∠=︒,40A ∠=︒ MN 垂直平分ABAD DB ∴=40ABD A ∴∠=∠=︒404080BDC A ABD ∠=∠+∠=︒+︒=︒ .故答案为:80︒.【点睛】本题考查了等腰三角形性质 垂直平分线性质 三角形外角概念 能正确理解题意 找到所求的角与已知条件之间的关系是解题的关键.38.(2021·山东聊城)如图 在⊥AB C 中 AD ⊥BC CE ⊥AB 垂足分别为点D 和点E AD 与CE 交于点O 连接BO 并延长交AC 于点F 若AB =5 BC =4 AC =6 则CE :AD :BF 值为____________.【答案】12:15:10【解析】由题意得:BF ⊥AC 再根据三角形的面积公式 可得5432ABC SAD CE BF === 进而即可得到答案.【详解】解:⊥在⊥AB C 中 AD ⊥BC CE ⊥AB 垂足分别为点D 和点E AD 与CE 交于点O⊥BF ⊥AC⊥AB =5 BC =4 AC =6 ⊥111222ABC SBC AD AB CE AC BF =⋅=⋅=⋅ ⊥5432ABC S AD CE BF === ⊥CE :AD :BF =12:15:10故答案是:12:15:10.【点睛】本题主要考查三角形的高 掌握“三角形的三条高交于一点”是解题的关键.56.(2022·北京)如图 在ABC ∆中 AD 平分,.BAC DE AB ∠⊥若2,1,AC DE ==则ACD S ∆=____.【答案】1【解析】作DF AC ⊥于点F 由角平分线的性质推出1DF DE == 再利用三角形面积公式求解即可.【详解】解:如图 作DF AC ⊥于点F⊥AD 平分BAC ∠ DE AB ⊥ DF AC ⊥⊥1DF DE == ⊥1121122ACD S AC DF ∆=⋅=⨯⨯=.故答案为:1.【点睛】本题考查角平分线的性质 通过作辅助线求出三角形AC D 中AC 边的高是解题的关键. 39.(2022·山东青岛)如图 已知,,16,,ABC AB AC BC AD BC ABC ==⊥∠△的平分线交AD 于点E 且4DE =.将C ∠沿GM 折叠使点C 与点E 恰好重合.下列结论正确的有:__________(填写序号) ⊥8BD =⊥点E 到AC 的距离为3 ⊥103=EM⊥EM AC ∥【答案】①④##⊥⊥【解析】根据等腰三角形的性质即可判断⊥ 根据角平分线的性质即可判断⊥ 设DM x = 则8EM x =- Rt EDM △中 222EM DM DE =+ 4DE =.继而求得EM 设AE a = 则4,8AD AE ED a BD =+=+= 根据AE AB ED BD = 进而求得a 的值 根据20443tan 83AD C DC +===4tan 3EDEMD DM ∠== 可得C EMD ∠=∠ 即可判断⊥【详解】解:⊥,,16,,ABC AB AC BC AD BC ==⊥△ ⊥182BD DC BC === 故⊥正确 如图 过点E 作EF AB ⊥于F EH AC ⊥于H,AD BC AB AC ⊥=AE ∴平分BAC ∠EH EF ∴=BE 是ABD ∠的角平分线,ED BC EF AB ⊥⊥EF ED ∴=4EH ED ∴== 故⊥不正确 .将C ∠沿GM 折叠使点C 与点E 恰好重合 ,8EM MC DM MC DM EM CD ∴=+=+== 设DM x = 则8EM x =-Rt EDM △中 222EM DM DE =+ 4DE =. ()22284x x -=+解得3x =5EM MC ∴==故⊥不正确设AE a = 则4,8AD AE ED a BD =+=+= ()22248AB a =++11221122ABE BDE AB EF AE BD SS BD ED ED BD ⨯⨯==⨯⨯ AE AB ED BD∴= 48a AB = 2AB a =∴()2248a ++()22a = 解得203a =或4a =-(舍去) 20443tan 83AD C DC +∴=== 4tan 3ED EMD DM ∠== C EMD ∴∠=∠EM AC ∴∥ 故⊥正确故答案为:①⊥【点睛】本题考查了解直角三角形 三线合一 角平分线的性质 掌握以上知识是解题的关键.40.(2022·河南)如图 在Rt ⊥AB C 中 ⊥ACB =90° 22AC BC == 点D 为AB 的中点 点P 在AC 上 且CP =1 将CP 绕点C 在平面内旋转 点P 的对应点为点Q 连接AQ DQ .当⊥ADQ =90°时 AQ 的长为______.513135【解析】连接CD 根据题意可得当⊥ADQ =90°时 分Q 点在线段CD 上和DC 的延长线上 且1CQ CP == 勾股定理求得AQ 即可.【详解】如图 连接CD在Rt ⊥AB C 中 ⊥ACB =90° 22AC BC ==4AB ∴= CD AD ⊥122CD AB ∴== 根据题意可得 当⊥ADQ =90°时 Q 点在CD 上 且1CQ CP ==211DQ CD CQ ∴=-=-=如图 在Rt ADQ △中 2222215AQ AD DQ ++在Rt ADQ △中 2,3AD CD QD CD CQ ===+=22222313AQ AD DQ ∴=+=+513【点睛】本题考查了旋转的性质 勾股定理 直角三角形斜边上中线的性质 确定点Q 的位置是解题的关键. 41.(2022·青海西宁)矩形ABC D 中 8AB = 7AD = 点E 在AB 边上 5AE =.若点P 是矩形ABCD边上一点 且与点A E 构成以AE 为腰的等腰三角形 则等腰三角形AEP 的底边长是________. 【答案】245【解析】分情况讨论:⊥当AP =AE =5 点P 在边AD 上时 由勾股定理可求得底边PE 的长 ⊥当PE =AE =5 点P 在边BC 上时 求出BE 由勾股定理求出PB 再由勾股定理求出底边AP 即可.【详解】解:⊥矩形ABCD⊥⊥A =⊥B =90°分两种情况:当AP =AE =5 点P 在边AD 上时 如图所示:⊥⊥BAD =90°⊥PE 222255AP AE ++2当PE =AE =5 点P 在边BC 上时 如图所示:⊥BE =AB -AE =8-5=3 ⊥B =90°⊥PB 222253PE BE --⊥底边AP 22228445AB PB ++=综上 等腰三角形AEP 的底边长是5245【点睛】本题考查了矩形的性质 勾股定理 熟练掌握矩形的性质和等腰三角形的判定 进行分类讨论是解决问题的关键.42.(2022·辽宁锦州)如图 在ABC 中 ,30AB AC ABC =∠=︒ 点D 为BC 的中点 将ABC 绕点D 逆时针旋转得到A B C ''' 当点A 的对应点A '落在边AB 上时 点C '在BA 的延长线上 连接BB ' 若1AA '= 则BB D '△的面积是____________.33【解析】先证明A AD ' 是等边三角形 再证明AO BC '⊥ 再利用直角三角形30角对应的边是斜边的一般分别求出A B ''和A O ' 再利用勾股定理求出OD 从而求得BB D '△的面积.【详解】解:如下图所示 设A B ''与BD 交于点O 连接A D '和AD⊥点D 为BC 的中点 ,30AB AC ABC =∠=︒⊥AD BC ⊥,A D B C '''⊥ A D '是B A C '''∠的角平分线 AD 是BAC ∠⊥120B A C ︒'''∠= 120BAC ︒∠=⊥60BAD B A D ︒'∠'=∠=⊥A D AD '=⊥A AD ' 是等边三角形⊥1A A AD A D ''===⊥18060BA B B A C ︒︒'''''∠=-∠=⊥BA B A AD '''∠=∠⊥//A B AD ''⊥AO BC '⊥ ⊥1122A O A D ''==⊥1314OD =-=⊥22A B A D '''==⊥30A BD A DO ︒''∠=∠=⊥BO OD = ⊥13222OB '=-= 23BD OD ==⊥113333222BB DS BD B O ''=⨯⨯==. 【点睛】本题考查等腰三角形 等边三角形和直角三角形的性质 证明A AD ' 是等边三角形是解本题的关键. 43.(2022·广西贵港)如图 将ABC 绕点A 逆时针旋转角()0180αα︒<<︒得到ADE 点B 的对应点D 恰好落在BC 边上 若,25DE AC CAD ⊥∠=︒ 则旋转角α的度数是______.【答案】50︒【解析】先求出65ADE ∠=︒ 由旋转的性质 得到65∠=∠=︒B ADE AB AD = 则65ADB ∠=︒ 即可求出旋转角α的度数.【详解】解:根据题意⊥,25DE AC CAD ⊥∠=︒⊥902565ADE ∠=︒-︒=︒由旋转的性质 则65∠=∠=︒B ADE AB AD =⊥65ADB B ∠=∠=︒⊥180665550BAD ︒-∠=︒=︒-︒⊥旋转角α的度数是50°故答案为:50°.【点睛】本题考查了旋转的性质 三角形的内角和定理 解题的关键是熟练掌握旋转的性质进行计算.44.(2022·湖北十堰)【阅读材料】如图⊥ 四边形ABCD 中 AB AD = 180B D ∠+∠=︒ 点E F 分别在BC CD 上 若2BAD EAF ∠∠= 则EF BE DF =+.【解决问题】如图⊥ 在某公园的同一水平面上 四条道路围成四边形ABCD .已知100m CD CB == 60D ∠=︒ 120ABC ∠=︒ 150BCD ∠=︒ 道路AD AB 上分别有景点M N 且100m DM = )5031m BN = 若在M N 之间修一条直路 则路线M N →的长比路线M A N →→的长少_________m (结果取整数 3 1.7≈).【答案】370【解析】延长,AB DC 交于点E 根据已知条件求得90E ∠=︒,进而根据含30度角的直角三角形的性质 求得,EC EB ,AE AD 从而求得AN AM +的长 根据材料可得MN DM BN =+ 即可求解.【详解】解:如图 延长,AB DC 交于点E 连接,CM CN60D ∠=︒ 120ABC ∠=︒ 150BCD ∠=︒30A ∴∠=︒ 90E ∠=︒100DC DM ==DCM ∴是等边三角形60DCM ∴∠=︒90BCM ∴∠=︒。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考总复习专题训练
《三角形》
一、选择题(每小题3分,共45分)
1. 满足下列条件的三角形,按角分类有三个属于同一类,则另一个是( )。

A.∠A :∠B :∠C =1:2:3
B.∠A -∠B =∠C
C.∠A =∠C =40°
D.∠A =2∠B =2∠C
2. 如果线段a 、b 、c 能组成直角三角形,则它们的比可以是( )。

A. 1:2:4
B. 1:3:5
C. 3:4:7
D. 5:12:13
3. 已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为( )。

A.90°
B.110°
C.100°
D.120°
4. 在一个三角形中有两个内角相等,这个三角形还有一个外角为110°,则两个相等的内角
的度数为( )。

A.40°
B.55°
C.70°或55°
D.70°
5.一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是
( )。

A.14
B.15
C.16
D.17
6. 下列命题:(1)等边三角形也是等腰三角形;(2)三角形的外角等于两个内角的和;
(3)三角形中最大的内角不能小于60°;(4)锐角三角形中,任意两内角之和必大于90°,其中错误的个数是( )。

A.0 个
B.1个
C.2个
D.3个
7.锐角三角形的三个内角是∠A 、∠B 、∠C ,如果B A ∠+∠=∠α,C B ∠+∠=∠β,
A C ∠+∠=∠γ,那么α∠、β∠、γ∠这三个角中( )。

A .没有锐角
B .有1个锐角
C .有2个锐角
D .有3个锐角
8.如图1,已知AB ∥CD ,则( )。

A .∠1=∠2+∠3
B .∠1=2∠2+∠3
C .∠1=2∠2-∠3
D .∠1=180º-∠2-∠3
9. 如图2,将一张矩形纸片ABCD 如图所示折叠,使顶点C 落在C '点.已知2AB =,
30DEC '∠=,则折痕DE 的长为( )。

A.2
B.
C.4
D. 1
10. 如图3,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点, 且S ABC =4cm 2,则阴影面积
等于( )。

A.2cm 2
B.1cm 2
C.12cm 2
D.14
cm 2
图1 图2 图3
11.对于下列各组条件,不能判定△ABC ≌△C B A '''的一组是( )。

A.∠A=∠A ′,∠B=∠B ′,AB=A ′B ′
B.∠A=∠A ′,AB=A ′B ′,AC=A ′C ′
C.∠A=∠A ′,AB=A ′B ′,BC=B ′C ′
D.AB=A ′B ′,AC=A ′C ′,BC=B ′C ′
12.有五根细木棒,长度分别为1cm ,3cm ,5cm ,7cm ,9cm ,现任取其中的三根木棒,组成
一个三角形,问有几种可能( )。

A.1种
B.2种
C.3种
D.4种
13.能把一个三角形分成两个面积相等的三角形的线段,是三角形的( )。

A.中线
B.高线
C.边的中垂线
D.角平分线
14.已知ΔABC 的三个内角∠A 、∠B 、∠C 满足关系式∠B+∠C=3∠A ,则此三角形中( )。

A.一定有一个内角为45︒
B.一定有一个内角为60︒
C.一定是直角三角形
D.一定是钝角三角形
15.等腰三角形一腰上的高与底边所成的角等于( )。

A.顶角的2倍
B. 顶角的一半
C. 顶角
D. 底角的一半
二、填空题(每小题3分,共45分)
1.等腰三角形的两边长分别为4和9,则第三边长为_________。

2.等腰三角形一腰上的高与底边的夹角等于45°,则这个三角形的顶角等于_________。

3.已知等腰三角形的腰长是6cm ,底边长是8cm ,那么以各边中点为顶点的三角形的周长是
_________cm 。

4. 如图4,一扇窗户打开后,用窗钩BC 可将其固定,这里运用的几何原理是
________________________。

5.如图5,一个正方体的棱长为2cm ,一只蚂蚁欲从A 点处沿正方体侧面到B 点处吃食物,
那么它需要爬行的最短路径的长是_________。

6. 如图6, △ABC 中,∠ACB=90°,CD 是高,∠A=30°,BD=3,则AB=_________。

图4 图5 图6
7. 如图7,已知DE 是AC 的垂直平分线,10cm AB =,11cm BC =,则ABD △的周长为_________。

D
A C B
8.如图8,D 、E 为AB 、AC 的中点,将△ABC 沿线段DE 折叠,使点A 落在点F 处,若∠B=500

则∠BDF=_________。

9.如图9,已知正方形ABCD 的边长为2,△BPC 是等边三角形,则△CDP 的面积是_________;
△BPD 的面积是_________。

图7 图8 图9
10. 两根木棒的长分别是8cm,10cm.要选择第三根木棒将它们钉成三角形,那么第三根木棒
的长x 的取值范围是_________;如果以5cm 为等腰三角形的一边,另一边为10cm,则它的周长为_________。

11.在直角三角形中,两锐角的平分线相交成钝角的度数是_________。

12.一个等腰三角形的底角为15°,腰长为4cm ,那么,该三角形的面积等于_________。

13. 如图10,已知∠1=20°,∠2=25°,∠A=35°,则∠BDC 的度数为_________。

14. 如图11,在△ABC 中,∠B=∠C,FD ⊥BC,DE ⊥AB,∠AFD=158°, 则∠EDF =_________度。

15. 在高5m ,长13m 的一段台阶上铺上地毯,台阶的剖面图如图12所示,地毯的长度至少
需要_________m 。

图10 图11 图12
三、解答下列各题(每小题10分,共60 分)
1.如图13,已知ΔABC 中,∠A=58°,分别求∠BOC 的度数。

(1)O 为外心,(2)O 为内心,(3)O 为垂心。

图13
2. 如图14,大江的一侧有A 、B 两个工厂,它们有垂直于江边的小路,长度分别为3千米
和1千米,设两条小路相距4千米,现在要在江边建立一个抽水站,把水送到A 、B 两厂去,欲使供水管路最短,抽水站应建在哪里?

14 21D
A F E
A 5m
3.如图15,已知:AC=DF,BC=EF,AD=BE ,你能判定BC ∥EF 吗?说说你的理由。

图15
4.如图16,在ΔABC 中,AD 平分∠BAC ,DE||AC,EF ⊥AD 交BC 延长线于F 。

求证:∠FAC=
∠B 。

图16
5.已知:如图17,△ABC 和△ECD 都是等腰直角三角形,︒=∠=∠90DCE ACB ,D 为AB
边上一点,
求证:(1)△ACE ≌△BCD ; (2)222DE AE AD =+。

图17
6.如图18,△ABC 、△DEC 均为等边三角形,点M 为线段AD 的中点,点N 为线段BE 的中点,
求证:△CNM 为等边三角形。

图18
A D
B E F
C
中考总复习专题训练(八) 参考答案
一、1、C 2、D 3、C 4、C 5、B 6、B 7、A 8、A
9、C 10、B 11、C 12、C 13、A 14、A 15、B
二、1、9; 2、90°; 3、10; 4、三角形的稳定性; 5、cm 52; 6、12 ;
7、21 cm ; 8、800; 9、1, 13-; 10、2<x <18,25cm ; 11、1350
; 12、4cm 2 ; 13、800; 14、680
;15、17。

三、1、(1)1160,1190,1220;2、距A3千米处;3、提示:证明△ABC ≌△DEF ; 4、先证EA=ED ,再证FA=FD 得∠FDA=∠FAD 。

5、(1) ∵ DCE ACB ∠=∠
∴ ACE ACD BCD ACD ∠+∠=∠+∠
即 ACE BCD ∠=∠
∵ EC DC AC BC ==,
∴ △BCD ≌△ACE
(2)∵ BC AC ACB =︒=∠,90,
∴ ︒=∠=∠45BAC B
∵ △BCD ≌△ACE
∴ ︒=∠=∠45CAE B
∴ ︒=︒+︒=∠+∠=∠904545BAC CAE DAE
∴ 222DE AE AD =+ 。

6、先证△ACD ≌△BCE 得AD=BE ,∠DAC=∠EBC , 再证△ACM ≌△BCN
得CM=CN ,并证 ∠MCN=60°。

相关文档
最新文档