33水电站中长期调度优化的粒子群算法MATLAB源码

合集下载

matlab 粒子群优化算法

matlab 粒子群优化算法

粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化
算法,它模拟了鸟群或鱼群等生物群体的行为,通过个体之间的协作和信息共享来寻找问题的最优解。

在 MATLAB 中,可以使用 PSO 工具箱来实现粒子群优化算法。

以下是在 MATLAB 中使用 PSO 工具箱实现粒子群优化算法的基本步骤:
步骤1: 定义优化问题
首先,需要定义要优化的目标函数。

目标函数是希望最小化或最大化的目标。

例如,如果希望最小化一个简单的函数,可以这样定义:
步骤2: 设置 PSO 参数
然后,需要设置 PSO 算法的参数,如种群大小、迭代次数、惯性权重等。

这些参
数的选择可能会影响算法的性能,需要根据具体问题进行调整。

步骤3: 运行 PSO 算法
使用particleswarm函数运行 PSO 算法,将目标函数和参数传递给它。

这里@myObjective表示使用myObjective函数作为目标函数,1是变量的维度,[]表
示没有约束条件。

示例:
考虑一个简单的最小化问题,目标函数为 Rosenbrock 函数:
设置 PSO 参数:
运行 PSO 算法:
在这个示例中,rosenbrock函数是一个二维的 Rosenbrock 函数,PSO 算法将寻找使得该函数最小化的变量值。

请注意,实际应用中,需要根据具体问题调整目标函数、约束条件和 PSO 参数。

MATLAB 的文档和示例代码提供了更多关于 PSO 工具箱的详细信息。

matlab调用粒子群算法

matlab调用粒子群算法

matlab调用粒子群算法
在MATLAB中调用粒子群算法可以通过以下步骤实现:
1. 导入数据,首先,你需要准备好你的数据,包括目标函数、约束条件等。

这些数据将作为粒子群算法的输入。

2. 编写目标函数,在MATLAB中,你需要编写你的目标函数,这是粒子群算法的核心。

目标函数的设计应该能够评估给定参数下的解的质量。

3. 设置粒子群算法参数,在MATLAB中,你需要设置粒子群算法的参数,包括种群大小、迭代次数、惯性权重等。

这些参数的选择会影响算法的性能和收敛速度。

4. 调用粒子群算法函数,MATLAB提供了内置的粒子群算法函数,如“particleswarm”。

你可以直接调用这些函数,并将目标函数和参数传递给它们。

5. 运行算法并获取结果,一旦调用了粒子群算法函数,你就可以运行算法并获取优化后的结果。

你可以分析结果,比较不同参数
设置下的性能,以及对算法进行调优。

总的来说,在MATLAB中调用粒子群算法涉及到准备数据、编写目标函数、设置参数、调用算法函数以及分析结果等步骤。

通过这些步骤,你可以利用MATLAB中的粒子群算法来解决优化问题。

希望这些信息能够帮助到你。

matlab 粒子滤波代码

matlab 粒子滤波代码

以下是一个简单的 MATLAB 粒子滤波器的代码示例:```matlab% 初始化参数N = 100; % 粒子数量dt = 0.1; % 时间步长x = [0 0]; % 初始位置P = eye(2); % 初始协方差矩阵Q = eye(2); % 过程噪声协方差矩阵R = eye(2); % 观测噪声协方差矩阵G = [0.9 0.1; 0.1 0.9]; % 转换矩阵N_particles = size(Q,1); % 粒子数量particles = zeros(N_particles,2); % 初始化粒子particles(:,1) = x(1); % 设置粒子的 x 分量particles(:,2) = x(2); % 设置粒子的 y 分量weights = ones(N_particles,1) / N_particles; % 初始化权重% 模拟观测数据z = [1.2 0.5]; % 观测位置R_inv = inv(R); % 观测噪声协方差矩阵的逆H = [z(1) -z(2); z(2) z(1)]; % 观测矩阵y = H * x; % 预测的观测值% 粒子滤波步骤for t = 1:100% 重采样步骤weights = weights / sum(weights);index = randsample(1:N_particles, N, true, weights); particles = particles(index,:);% 预测步骤x_pred = particles;P_pred = Q;x_pred = G * x_pred;P_pred = P_pred + dt * G * P_pred;P_pred = P_pred + P_pred * G' + R;% 更新步骤y_pred = H * x_pred;S = H * P_pred * H' + R_inv;K = P_pred * H' * inv(S);x = x_pred + K * (z - y_pred);P = P_pred - P_pred * K * H';end```在这个代码示例中,我们使用了两个步骤:重采样步骤和预测/更新步骤。

matlab粒子群算法默认种群规模

matlab粒子群算法默认种群规模

【主题】matlab粒子裙算法默认种裙规模【内容】一、介绍matlab粒子裙算法matlab粒子裙算法(Particle Swarm Optimization,简称PSO)是一种启发式优化算法,源自于鸟裙觅食的行为。

PSO算法通过迭代搜索空间中的潜在解,寻找最优解。

其基本思想是模拟鸟裙觅食的行为,在搜索空间中不断调整潜在解的位置,直至找到最优解。

二、 PSO算法的种裙规模在matlab中,PSO算法的种裙规模即为裙体中粒子的数量,它决定了搜索空间的范围和算法的性能。

PSO算法的默认种裙规模为50。

种裙规模的设定直接影响算法的搜索速度和全局最优解的找寻能力。

三、种裙规模的设置原则1. 确定问题的复杂度:种裙规模应根据待解决问题的复杂度来设定。

对于复杂、高维度的问题,适当增加种裙规模有助于提高搜索效率。

2. 计算资源的限制:种裙规模的增加会带来更高的计算开销,因此在资源有限的情况下,需要平衡种裙规模和计算性能。

3. 经验设定:在实际应用中,也可根据经验和实验结果来调整种裙规模,找到最适合问题的设置。

四、调整种裙规模的方法1. 网格搜索法:通过在一定范围内以一定步长遍历种裙规模,评估不同规模下算法的性能和收敛速度,找到最佳的种裙规模。

2. 实验验证法:在实际问题中,通过对不同种裙规模下算法的性能进行实验验证,找到最适合问题的种裙规模。

3. 算法迭代法:根据算法的迭代次数和搜索效果来动态调整种裙规模,逐步优化算法的性能。

五、结语种裙规模是PSO算法中一个重要的参数,它直接关系到算法的搜索效率和性能。

在使用matlab的PSO算法时,合理设置种裙规模对于解决实际问题非常重要。

需要根据问题本身的特点、计算资源的限制以及实际应用情况来进行合理的选择和调整。

希望本文对于matlab粒子裙算法默认种裙规模的设置能够提供一些参考和帮助。

六、种裙规模与算法性能的关系种裙规模是PSO算法中最为关键的参数之一,其大小直接影响算法的搜索效率和全局最优解的寻找能力。

12QoS路由问题的粒子群算法MATLAB源代码

12QoS路由问题的粒子群算法MATLAB源代码

QoS路由问题的粒子群算法MATLAB源代码粒子群算法在离散优化领域的应用比较少见,为了将粒子群算法应用在QoS 路由领域,而又不偏离粒子群算法的基本思想,定义并设计了一种“⊕算子”,并且设计了一种“随机游动算子”,将基于路径的变异算子引入算法,增强算法的全局搜索能力。

%% 第一步:产生网络拓扑结构BorderLength=10; %正方形区域的边长,单位:kmNodeAmount=30; %网络节点的个数Alpha=10; %网络特征参数,Alpha越大,短边相对长边的比例越大Beta=5; %网络特征参数,Beta越大,边的密度越大PlotIf=1; %是否画网络拓扑图,如果为1则画图,否则不画FlagIf=0; %是否标注参数,如果为1则将标注边的参数,否则不标注[Sxy,AM,Cost,Delay,DelayJitter,PacketLoss]=NetCreate(BorderLength,NodeAmount,Alpha,Beta, PlotIf,FlagIf);%% 第二步:使用粒子群算法搜索最优路径,存储数据,输出最优结果和收敛曲线% GreenSim团队——专业级算法设计&代写程序% 欢迎访问GreenSim团队主页→/greensimS=[2,4]; %源节点的集合,用向量存储T=[25,27,29]; %目的节点的几何,用向量存储Alpha=1; %适应值计算式中费用的系数Beta=5e5; %适应值计算式中延时的系数Gamma=3e6; %适应值计算式中延时抖动的系数Delta=1000; %适应值计算式中丢包率的系数QoSD=100e-6; %延时的QoS约束QoSDJ=100e-6; %延时抖动的QoS约束QoSPL=0.02; %丢包率的QoS约束r1=0.1; %单个粒子的历史最优个体对当前粒子的影响系数,0<r1<=1r2=0.3; %粒子群的全局最优个体对当前粒子的影响系数,0<r2<=1r3=0.2; %粒子随机游动的影响系数,0<=r3<=1,r3可以为0,这时将关闭随机游动功能P=10; %粒子的个数Q=20; %迭代次数%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%m=length(S);n=length(T);AllRoutes=cell(m,n);%各粒子经过的全部路径AllFitness=cell(m,n);HistoryBestRoutes=cell(m,n);%各粒子的历史最优路径HistoryBestFitness=cell(m,n);AllBestRoutes=cell(m,n);%全局最优路径AllBestFitness=cell(m,n);for i=1:mfor j=1:ns=S(i);t=T(j);[ROUTEst,FitFlag,HR,HFF,AR,AFF]=PSOUC(s,t,r1,r2,r3,P,Q,AM,Cost,Delay,DelayJitter,Packet Loss,QoSD,QoSDJ,QoSPL,Alpha,Beta,Gamma,Delta);AllRoutes{i,j}=ROUTEst;AllFitness{i,j}=FitFlag;HistoryBestRoutes{i,j}=HR;HistoryBestFitness{i,j}=HFF;AllBestRoutes{i,j}=AR;AllBestFitness{i,j}=AFF;endend%下面整理最优结果SYZ=Inf;FinalRoute=[];%最终的最优路由FinalFitness=[];%最终的最优路由对应的参数LearnCurve1=zeros(1,Q);%收敛曲线LearnCurve2=zeros(1,Q);%收敛曲线for q=1:QTT=[];for i=1:mfor j=1:nABR=HistoryBestRoutes{i,j};ABF=HistoryBestFitness{i,j};for p=1:PABRq=ABR{p,q};ABFq=ABF{p,q};TT=[TT,ABFq(1,1)];if ABFq(1,1)<SYZFinalRoute=ABRq;FinalFitness=ABFq;SYZ=ABFq(1,1);endendendendLearnCurve1(q)=mean(TT);LearnCurve2(q)=min(TT);endfigure(2)plot(LearnCurve1,'bs-')xlabel('迭代次数')ylabel('平均适应值')figure(3)plot(LearnCurve2,'bs-')xlabel('迭代次数')ylabel('最优粒子适应值')function[ROUTEst,FitFlag,HR,HFF,AR,AFF]=PSOUC(s,t,r1,r2,r3,P,Q,AM,Cost,Delay,DelayJitter,Packet Loss,QoSD,QoSDJ,QoSPL,Alpha,Beta,Gamma,Delta)%% 使用粒子群算法求源节点s到目的节点t的满足QoS约束的最小费用路径,将这些路径及其参数记录下来% GreenSim团队——专业级算法设计&代写程序% 欢迎访问GreenSim团队主页→/greensim%% 输入参数列表% s 单个的源节点% t 单个的目的节点% r1 单个粒子的历史最优个体对当前粒子的影响系数,0<r1<=1% r2 粒子群的全局最优个体对当前粒子的影响系数,0<r2<=1% r3 粒子随机游动的影响系数,0<=r3<=1,r3可以为0,这时将关闭随机游动功能% P 粒子的个数% Q 迭代次数% AM 01形式存储的邻接矩阵% Cost 边的费用邻接矩阵% Delay 边的时延邻接矩阵% DelayJitter 边的延时抖动邻接矩阵% PacketLoss 边的丢包率邻接矩阵% QoSD 延时的QoS约束% QoSDJ 延时抖动的QoS约束% QoSPL 丢包率的QoS约束% Alpha 适应值计算式中费用的系数% Beta 适应值计算式中延时的系数% Gamma 适应值计算式中延时抖动的系数% Delta 适应值计算式中丢包率的系数%% 输出参数列表% ROUTEst P×Q的细胞结构,存储所有粒子经历过的从s到t的路径% FitFlag P×Q的细胞结构,存储与ROUTEst对应的Fitness和Flag数据% HR P×Q的细胞结构,存储所有粒子的历史最优路径% HFF P×Q的细胞结构,存储所有粒子的历史最优路径对应的参数% AR 1×Q的细胞结构,存储全局最优路径% AR 1×Q的细胞结构,存储全局最优路径对应的参数%% 粒子群初始化ROUTEst=cell(P,Q);FitFlag=cell(P,Q);HR=cell(P,Q);%各粒子的历史最优路径HFF=cell(P,Q);%各粒子的历史最优路径对应的参数AR=cell(1,Q);%全局最优路径AFF=cell(1,Q);%全局最优路径对应的参数TRACK=Initialize(AM,s,P);for p=1:PRoute=TRACK{p};pos=find(Route==t);Route=Route(1:pos(1));Route=Fresh(Route);ROUTEst{p,1}=Route;HR{p,1}=Route;[Fitness,Flag]=Fit(Route,Cost,Delay,DelayJitter,PacketLoss,QoSD,QoSDJ,QoSPL,Alpha,Beta,Ga mma,Delta);FitFlag{p,1}=[Fitness;Flag];HFF{p,1}=[Fitness;Flag];endSYZ=Inf;for p=1:PRoute=HR{p,1};FF=HFF{p,1};if FF(1,1)<SYZAR{1}=Route;SYZ=FF(1,1);AFF{1}=FF;endend%%for q=2:Q%按照粒子群迭代公式计算各个粒子的下一个位置for p=1:PRoute=ROUTEst{p,q-1};OptRoute1=HR{p,q-1};OptRoute2=AR{1,q-1};Route=SpecialAdd(Route,OptRoute1,r1,Cost);%向自己的历史最优位置靠近Route=SpecialAdd(Route,OptRoute2,r2,Cost);%向全局历史最优位置靠近Route=RandMove(Route,r3,AM);%随机游动[Fitness,Flag]=Fit(Route,Cost,Delay,DelayJitter,PacketLoss,QoSD,QoSDJ,QoSPL,Alpha,Beta,Ga mma,Delta);ROUTEst{p,q}=Route;FitFlag{p,q}=[Fitness;Flag];end%更新各粒子的历史最优位置for p=1:PF1=HFF{p,q-1};F2=FitFlag{p,q};if F2(1,1)<F1(1,1)HR{p,q}=ROUTEst{p,q};HFF{p,q}=FitFlag{p,q};elseHR{p,q}=HR{p,q-1};HFF{p,q}=HFF{p,q-1};endend%更新全局历史最优位置for p=1:PRoute=HR{p,q};FF=HFF{p,q};if FF(1,1)<SYZ&&FF(2,1)==1AR{q}=Route;SYZ=FF(1,1);AFF{q}=FF;elseAR{q}=AR{q-1};AFF{q}=AFF{q-1};endendend。

Matlab粒子群算法工具箱使用方法及实例演示

Matlab粒子群算法工具箱使用方法及实例演示
Matlab粒子群算法工具箱 使用方法及实例演示
粒子群算法是一种优化算法,本演示将介绍Matlab粒子群算法工具箱的使用 方法,并给出实例演示。
了解粒子群算法
优点
全局搜索能力强
缺点
易受局部最优解影响
应用领域
函数优化、机器学习、图 像处理、模式识别等
Matlab粒子群算法工具箱介绍
1 功能
提供了丰富的粒子群算 法相关函数
判断算法是否达到收敛
优化函数
定义待优化的问题
粒子群算法案例实现
1
训练数据集创建
2
准备训练数据集,用于优化问题求解
3
构建优化函数
定义优化问题,如函数最小化或参数 寻优
粒子初始化
随机生成粒子群初始状态
粒子群算法参数调节方法
惯性权重
控制粒子搜索速度和全局局 部权衡
加速度因子
影响粒子个体与全局经验信 息的权重
2 使用
方便易学,适用于不同 应用场景
3 扩展性
支持自定义函数和参数 设置
工具箱的下载和安装
1
下载
从MathWorks官网或File Exchange下载工具箱
2
安装
运行安装程序并按照提示进行安装
3
添加路径
将工具箱文件夹添加到Matlab的路径中
工具箱的主要函数
初始化函数
用于生成初始粒子群状态
收敛性判断函数
收敛因子
控制算法收敛速度和精确度
粒子群算法在函数优化中的应用
1 目标函束优化
有约束条件下的函数优化问题
2 参数寻优
机器学习算法参数调优
粒子群算法在机器学习中的应用
神经网络训练
优化神经网络的权重和偏置

粒子群算法matlab代码(PDF)

粒子群算法matlab代码(PDF)

粒子群算法(1)----粒子群算法简介一、粒子群算法的历史粒子群算法源于复杂适应系统(Complex Adaptive System,CAS)。

CAS理论于1994年正式提出,CAS中的成员称为主体。

比如研究鸟群系统,每个鸟在这个系统中就称为主体。

主体有适应性,它能够与环境及其他的主体进行交流,并且根据交流的过程“学习”或“积累经验”改变自身结构与行为。

整个系统的演变或进化包括:新层次的产生(小鸟的出生);分化和多样性的出现(鸟群中的鸟分成许多小的群);新的主题的出现(鸟寻找食物过程中,不断发现新的食物)。

所以CAS系统中的主体具有4个基本特点(这些特点是粒子群算法发展变化的依据):首先,主体是主动的、活动的。

主体与环境及其他主体是相互影响、相互作用的,这种影响是系统发展变化的主要动力。

环境的影响是宏观的,主体之间的影响是微观的,宏观与微观要有机结合。

最后,整个系统可能还要受一些随机因素的影响。

粒子群算法就是对一个CAS系统---鸟群社会系统的研究得出的。

粒子群算法(Particle Swarm Optimization,PSO)最早是由Eberhart和Kennedy于1995年提出,它的基本概念源于对鸟群觅食行为的研究。

设想这样一个场景:一群鸟在随机搜寻食物,在这个区域里只有一块食物,所有的鸟都不知道食物在哪里,但是它们知道当前的位置离食物还有多远。

那么找到食物的最优策略是什么呢?最简单有效的就是搜寻目前离食物最近的鸟的周围区域。

PSO算法就从这种生物种群行为特性中得到启发并用于求解优化问题。

在PSO中,每个优化问题的潜在解都可以想象成d维搜索空间上的一个点,我们称之为“粒子”(Particle),所有的粒子都有一个被目标函数决定的适应值(Fitness Value),每个粒子还有一个速度决定他们飞翔的方向和距离,然后粒子们就追随当前的最优粒子在解空间中搜索。

Reynolds对鸟群飞行的研究发现。

粒子群算法解决VRP代码(matlab)

粒子群算法解决VRP代码(matlab)

粒子群算法解决VRP代码(matlab)particle_swarm_optimization.m文件:function PSOforTSP%初始化Alpha=0.25; %个体经验保留概率Beta=0.25; %全局经验保留概率NC_max=100; %最大迭代次数m=80; %微粒数CityNum=14; %问题的规模(城市个数)[dislist,Clist]=tsp(CityNum);NC=1;%迭代计数器R_best=zeros(NC_max,CityNum); %各代最佳路线L_best=inf.*ones(NC_max,1);%各代最佳路线的长度L_ave=zeros(NC_max,1);%各代路线的平均长度%产生微粒的初始位置for i=1:mx(i,:)=randperm(CityNum);L(i)=CalDist(dislist,x(i,:));endp=x; %p为个体最好解pL=L;[L_best(1,1) n_best]=min(L);R_best(1,:)=x(n_best,:);L_ave(1,1)=mean(L);%初始交换序v=ones(CityNum-1,2,m)*(round(rand*(CityNum-1))+1);figure(1);while NC<=NC_max %停止条件之一:达到最大迭代次数for i=1:mxnew(i,:)=changeFun(x(i,:),v(:,:,i));A=changeNum(x(i,:),p(i,:));Arand=randFun(A,Alpha);xnew(i,:)=changeFun(xnew(i,:),Arand);B=changeNum(x(i,:),R_best(NC,:));Brand=randFun(B,Beta);xnew(i,:)=changeFun(xnew(i,:),Brand);v(:,:,i)=changeNum(x(i,:),xnew(i,:));L(i)=CalDist(dislist,xnew(i,:));if L(i)<pl(i)< p="">p(i,:)=xnew(i,:);pL(i)=L(i);endend[L_bestnew n_best]=min(L);R_bestnew=xnew(n_best,:);L_ave(NC+1,1)=mean(L);if L_bestnew<l_best(nc,1)< p="">L_best(NC+1,1)=L_bestnew;R_best(NC+1,:)=R_bestnew;elseL_best(NC+1,1)=L_best(NC,1);R_best(NC+1,:)=R_best(NC,:);endx=xnew;drawTSP10(Clist,R_best(NC,:),L_best(NC,1),NC,0); %pause;NC=NC+1;end%输出结果Pos=find(L_best==min(L_best));Shortest_Route=R_best(Pos(1),:);Shortest_Length=L_best(Pos(1)); figure(2);plot([L_best L_ave]);legend('最短距离','平均距离'); endfunction xnew=changeFun(x,C); changeLen=size(C,1);xnew=x;for i=1:changeLena=xnew(C(i,1));xnew(C(i,1))=xnew(C(i,2));xnew(C(i,2))=a;endendfunction C=changeNum(x,y); CityNum=size(x,2);C=ones(CityNum-1,2);for i=1:CityNum-1pos=find(x==y(i));C(i,:)=[i pos];x=changeFun(x,C(i,:));endendfunction v=randFun(v,w);randLen=size(v,1);for i=1:randLenif rand>wv(i,2)=v(i,1);endendendfunction F=CalDist(dislist,s)%计算回路路径距离DistanV=0;n=size(s,2);for i=1:(n-1)DistanV=DistanV+dislist(s(i),s(i+1));endDistanV=DistanV+dislist(s(n),s(1));F=DistanV;endfunction [DLn,cityn]=tsp(n)city14=[0 0;0.3 0.334;0.08 0.433;0.166 0.456;0.5 0.4439;0.2439 0.1463;0.1207 0.2293;0.2293 0.761;0.6171 0.9414;0.8732 0.6536;0.6878 0.5219;0.8488 0.3609;0.6683 0.2536;0.6195 0.2634];for i=1:14for j=1:14DL14(i,j)=((city14(i,1)-city14(j,1))^2+(city14(i,2)-city14(j,2))^2)^0.5;endendDLn=DL14;cityn=city14;enddrawTSP10.m文件:function m=drawTSP(Clist,BSF,bsf,p,f)CityNum=size(Clist,1);for i=1:CityNum-1plot([Clist(BSF(i),1),Clist(BSF(i+1),1)],[Clist(BSF(i),2),Clist(BSF(i +1),2)],'ms-','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g');hold on;endaxis([0,1,0,1]);plot([Clist(BSF(CityNum),1),Clist(BSF(1),1)],[Clist(BSF(CityNu m),2),Clist(BSF(1), 2)],'ms-','LineWidth',2,'MarkerEdgeColor','k','MarkerFaceColor','g');title([num2str(CityNum),'城市TSP']);if f==0text(0.1,0.1,['第',int2str(p),' 步',' 最短距离为',num2str(bsf)]);elsetext(0.1,0.1,['最终搜索结果:最短距离',num2str(bsf)]);endhold off;pause(0.05);</l_best(nc,1)<></pl(i)<>。

动态规划-粒子群算法在水库优化调度中的应用

动态规划-粒子群算法在水库优化调度中的应用

sleti polm aD nm cPorm n —at l S am O t i tn ( PP O) a oi m w sue o sln .T i o s rbe , ya i rg migPrc w r pi z i v h a ie m ao D —S l rh a sd t o ig hs g t v
O p i a pe a i n o e e v i s d o tm lo r to fr s r or ba e n
d n m i r g a m i nd pa tc e s r p i i a i n y a cp o r m ng a r i l wa m o tm z to
L u - i DU i ISh n x n, Hu ( oeeo o p t c ne n eh o g ,Wua nvrt o i c a eh o g ,Wua ue 40 8 ,C i ) C lg C m ue Si c dTcnl y l f r e a o h nU i syf S e e n Tcnl y e i c n d o hnH bi 30 1 hn a
mu t t g e ii n ma i g s b p o lms h ou in o a h s b p o lm sg tb a il w r p i z t n ag rtm. l sa e d cso — k n u — r be ;t e sl t fe c u — rb e wa o y p r ce s a o t a i l o h i o t m mi o i T e n me c l x e me t s o h t t r i n c lu ai n h eib l y o h P— S ss p r rt h e ea P h u r a p r n s h w t a h mo e t i e i wi me i ac l t ,t e rl i t f e D P O i u e o t e g n r lD o a i t i o

Matlab中的粒子群优化算法详解

Matlab中的粒子群优化算法详解

Matlab中的粒子群优化算法详解引言:粒子群优化算法(Particle Swarm Optimization, PSO)是一种模拟鸟群觅食行为的优化算法,具有简单易实现、无需求导和全局搜索能力强等特点。

该算法在解决多种问题中得到广泛应用,特别是在机器学习、智能优化等领域。

本文将详细介绍Matlab中粒子群优化算法的实现过程及应用。

一、粒子群优化算法原理粒子群优化算法源自于对鸟群觅食行为的模拟。

假设一个鸟群中的每个个体被称为粒子,所有粒子共同组成了一个搜索空间,每个粒子会根据自身的当前位置和历史最佳位置进行搜索,并且受到其邻近粒子的信息影响。

通过不断的迭代运算,粒子们逐渐收敛到全局最优解或局部最优解。

具体算法流程如下:1. 初始化粒子群的位置和速度。

2. 计算每个粒子的适应度值,并更新个体最优位置。

3. 根据全局最优位置调整粒子的速度和位置。

4. 重复执行第2步和第3步,直到满足终止条件。

二、Matlab中粒子群优化算法实现步骤在Matlab中,可以通过以下步骤来实现粒子群优化算法:1. 初始化粒子群的位置和速度。

首先需要确定粒子群的大小,即粒子的个数。

对于每个粒子,需要随机生成一个初始位置和速度。

可以使用Matlab中的rand函数来生成指定范围内的随机数。

问题优劣的指标,因此需要根据具体问题来确定。

对于更新个体最优位置,可以通过比较当前适应度值和历史最佳适应度值的大小,选择适应度更优的位置进行更新。

3. 根据全局最优位置调整粒子的速度和位置。

粒子的速度和位置的更新是通过以下公式实现的:V(i,j) = w * V(i,j) + c1 * rand() * (P(i,j) - X(i,j)) + c2 * rand() * (G(j) - X(i,j))X(i,j) = X(i,j) + V(i,j)其中,V(i,j)表示第i个粒子在第j个维度上的速度,X(i,j)表示第i个粒子在第j个维度上的位置,P(i,j)表示第i个粒子的历史最佳位置,G(j)表示全局最佳位置,w、c1和c2分别表示惯性权重、个体学习因子和社会学习因子。

粒子群算法 matlab源代码

粒子群算法  matlab源代码

%相关参数的设置UB=600; %函数的上界LB=300; %函数的下界PopSize=40; %种群的大小Dim=10; %微粒的维数c1=2; %学习因子c2=2; %学习因子w_start=0.9;%惯性权重的开始值w_end=0.4;%惯性权重的最后值Vmax=100;%微粒的最大速度MaxIter=1500;%最大迭代次数Iter=0;%初始迭代次数%初始化群和速度X=rand(PopSize,Dim)*(UB-LB)+LB;%微粒位置随机初始化V=rand(PopSize,Dim);%微粒速度随机初始化;%测试函数:Griewank函数ind=repmat(1:Dim,PopSize,1);FX=sum(((X.^2)/4000)')'- prod(cos(X./sqrt(ind))')'+1;%设定当前位置为粒子的最好位置,并记录其最好值PBest=X;FPBest=FX;%找到初始微粒群体的最好微粒[Fgbest,r]=min(FX);CF=Fgbest;%记录当前全局最优值Best=X(r,:);%用于保存最优粒子的位置FBest=Fgbest;%循环while(Iter<=MaxIter)Iter=Iter+1;%更新惯性权重的值;w_now=((w_start-w_end)*(MaxIter-Iter)/MaxIter)+w_end;A=repmat(X(r,:),PopSize,1);%生成随机数R1=rand(PopSize,Dim);R2=rand(PopSize,Dim);%速度更新V=w_now*V+c1*R1.*(PBest-X)+c2*R2.*(A-X);%对进化后速度大于最大速度的微粒进行处理changeRows=V>Vmax;VStep(find(changeRows))=Vmax;%对进化后速度小雨最小速度的微粒进行处理changeRows=V<-Vmax;V(find(changeRows))=-Vmax;%微粒位置进行更新X=X+1.0*V;%重新计算新位置的适应度值ind=repmat(1:Dim,PopSize,1);FX=sum(((X.^2)/4000)')'- prod(cos(X./sqrt(ind))')'+1;%更新每个微粒的最好位置P=FX<FPBest;FPBest(find(P))=FX(find(P));%适应值更换PBest(find(P),:)=X(find(P),:)%粒子位置更换[Fgbest,g]=min(FPBest);%保存最好适应值if Fgbest<CF %如果本次适应值好于上次则保存[fBest,b]=min(FPBest);%最好适应值为fBestBest=PBest(b,:);%最好位置为BestendCF=Fgbest;%保留本次适应值准备与下次比较end %循环结束。

水利工程水资源调度的智能优化算法

水利工程水资源调度的智能优化算法

水利工程水资源调度的智能优化算法水资源是人类生存和发展的重要基础,尤其在水资源稀缺的情况下,水利工程水资源调度变得尤为重要。

为了实现对水资源的合理利用和优化调度,智能优化算法被广泛应用于水利工程中。

本文将介绍几种常用的智能优化算法,并探讨其在水利工程水资源调度中的应用。

一、遗传算法遗传算法是模拟生物进化过程的一种优化算法,通过模拟“适者生存,不适者淘汰”的过程,逐步寻找到问题的最优解。

在水利工程水资源调度中,遗传算法可以通过调整灌溉和供水的方案,实现对水资源的最优利用。

例如,可以通过调整灌溉时间和灌溉量,使得作物的灌溉需求得到满足的同时,节约水资源的使用。

二、粒子群算法粒子群算法模仿鸟群觅食的过程,通过模拟个体之间的信息传递和学习,最终找到最优解。

在水利工程水资源调度中,粒子群算法可以用于调度水库的蓄水和放水策略,以实现对水资源的合理调度。

例如,可以通过调整水库的蓄水线和出水线,控制水库的蓄水和放水速度,以适应不同季节的用水需求。

三、人工鱼群算法人工鱼群算法模拟鱼群觅食的行为,通过个体之间的信息传递和聚群,搜索到最优的解决方案。

在水利工程水资源调度中,人工鱼群算法可以用于调度灌溉系统中的喷灌器和滴灌器,以实现对灌溉水源的最优分配。

例如,可以通过调整喷灌器和滴灌器的布局和工作时间,使得灌溉水源能够覆盖作物的生长需求,减少水资源的浪费。

四、模拟退火算法模拟退火算法模拟金属退火过程,在局部搜索和全局搜索之间不断进行权衡,最终找到最优解。

在水利工程水资源调度中,模拟退火算法可以用于调度流域内不同河道的水量分配,以实现对水资源的优化利用。

例如,可以通过调整河道之间的水流量分配,满足不同地区的用水需求,避免水资源的过度集中或浪费。

综上所述,智能优化算法在水利工程水资源调度中具有重要意义。

遗传算法、粒子群算法、人工鱼群算法和模拟退火算法都可以应用于水资源调度中,通过优化水资源的利用,实现对水利工程的有效管理。

水电站水库优化调度几种求解方法的比较研究

水电站水库优化调度几种求解方法的比较研究
、l /…分别 为第 t 容 许 的 出力最 小值 和最 、 时段
1 水 电站 水 库优 化 调 度 模 型
2 求解 算 法
水 电站水库 优化 调度 就是根 据水库 人流 、电力
系统负荷 及其他 综合 利用 要求 ,寻求最 优 的水库运
行 调度 方 式 。 “ 电量 最 大 ” 为优 化 准 则 的水 电 发 作
约束 处理思 路 不适用 于P O S 模型 ,针对过 去 水 电站
式 中: 为整个调度期内最大发电量 ; 为水库t 时段 平 均 出 力 . £ 时段 长 ; 第t △为 Z为 时段 初 水位 ; 为第 t 时段 初 蓄 水量 ; …么 分别 为 第t 时段 水 位 最小 值
和 最 大 值 ; …
出库流量 ; 量;
大值
水库 PO 化调 度模 型求 解方 面存 存 的误 区 ,本 文 S优
将 主要 研究 水 电站水 库优 化调 度模 P O S 求解 算法
分 别 为第 £ 段 蓄 水 量 的 最 小 时
值 、最 大值 ; g为第tf 的入 库 流量 ; H段 ; Q为第t 的 时段
, ≤ ≤ v
大 系 统分 解 协调 法 (S C) LD 和遗 传 算 法 ( A) G 等㈣ 。
粒子 群优 化算 法 ( S 由于 其参 数少 , 敛速 度快 , P O) 收 易 于编程 实 现 . 近几 年也 被 广泛 应 于研 究解 决 水
库 优化 调度 问题f 。 铀】
Q ≤Q≤Q.
V = - A + q) t ・ V=/ 。I = 肌
() 4
() 5 () 6
由于P O 于群 智能并 行寻 优算 法 ,与D 等传 S属 P 统 算法 的寻优机 制不 同 ,存 水 电站 水库优 化调 度模 型 求解 上 ,D 、 次优 化 算法 (O 等 传 统 方法 的 P逐 P A)

有约束多目标粒子群算法matlab程序

有约束多目标粒子群算法matlab程序

有约束多目标粒子群算法matlab程序约束多目标粒子群算法(Constrained Multi-Objective Particle Swarm Optimization,CMOPSO)是一种用于处理多目标优化问题的进化算法。

以下是一个简单的MATLAB 示例程序,演示了如何实现CMOPSO。

请注意,这只是一个基本的框架,你可能需要根据你的具体问题进行适当的修改。

```matlabfunction [paretoFront, paretoSet] = cmopso(objectiveFunction, constraintFunction, nParticles, nIterations, nObjectives)% 参数设置nVariables = 2; % 例子中假设有两个变量w = 0.5; % 权重因子c1 = 2; % 学习因子1c2 = 2; % 学习因子2vMax = 0.2; % 最大速度nConstraints = 2; % 约束数量% 初始化粒子群particles.position = rand(nParticles, nVariables);particles.velocity = rand(nParticles, nVariables);particles.bestPosition = particles.position;particles.bestValue = inf(nParticles, nObjectives);% 迭代优化for iteration = 1:nIterations% 更新粒子位置和速度for i = 1:nParticles% 计算适应值fitness = objectiveFunction(particles.position(i, :));% 计算约束违反度constraintViolation = constraintFunction(particles.position(i, :));% 更新粒子最优解if all(constraintViolation <= 0) && dominates(fitness, particles.bestValue(i, :))particles.bestPosition(i, :) = particles.position(i, :);particles.bestValue(i, :) = fitness;end% 更新全局最优解if all(constraintViolation <= 0) && dominates(fitness, globalBestValue)globalBestPosition = particles.position(i, :);globalBestValue = fitness;end% 更新粒子速度和位置r1 = rand(1, nVariables);r2 = rand(1, nVariables);particles.velocity(i, :) = w * particles.velocity(i, :) + ...c1 * r1 .* (particles.bestPosition(i, :) - particles.position(i, :)) + ...c2 * r2 .* (globalBestPosition - particles.position(i, :));% 速度限制particles.velocity(i, :) = min(max(particles.velocity(i, :), -vMax), vMax);% 更新粒子位置particles.position(i, :) = particles.position(i, :) + particles.velocity(i, :);endend% 获取Pareto 前沿和Pareto 集paretoFront = [];paretoSet = [];for i = 1:nParticlesif all(constraintFunction(particles.position(i, :)) <= 0)isDominated = false;for j = 1:size(paretoFront, 1)if dominates(particles.bestValue(i, :), paretoFront(j, :))isDominated = true;break;elseif dominates(paretoFront(j, :), particles.bestValue(i, :))paretoFront(j, :) = [];break;endendif ~isDominatedparetoFront = [paretoFront; particles.bestValue(i, :)];paretoSet = [paretoSet; particles.bestPosition(i, :)];endendendendfunction result = dominates(a, b)% 判断a 是否支配bresult = all(a <= b) && any(a < b);end```请注意,这只是一个简单的示例,具体问题的约束函数和目标函数需要根据你的应用进行修改。

pso算法matlab代码

pso算法matlab代码

pso算法matlab代码粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,其基本思想是通过模拟鸟群觅食行为来寻找最优解。

以下是一个简单的 MATLAB 代码示例,用于实现 PSO 算法:matlab复制代码% 定义问题参数n_particles = 100; % 粒子数量n_iterations = 100; % 迭代次数n_dimensions = 2; % 问题的维度lb = [-10-10]; % 问题的下界ub = [1010]; % 问题的上界c1 = 2; % 个体学习因子c2 = 2; % 社会学习因子% 初始化粒子群particles = lb + (ub-lb).*rand(n_particles,n_dimensions);velocities = zeros(n_particles, n_dimensions);p_best = particles;g_best = particles(1, :);g_best_fitness = inf;% 主循环for i = 1:n_iterations% 计算每个粒子的适应度值fitness = evaluate(particles); % 更新个体最优解for j = 1:n_particlesif fitness(j) < p_best(j, :)p_best(j, :) = particles(j, :); endend% 更新全局最优解for j = 1:n_particlesif fitness(j) < g_best_fitness g_best_fitness = fitness(j);g_best = particles(j, :);endend% 更新粒子速度和位置for j = 1:n_particlesr1 = rand(); % 个体学习因子随机数r2 = rand(); % 社会学习因子随机数velocities(j, :) = velocities(j, :) +c1*r1*(p_best(j, :) - particles(j, :)) + c2*r2*(g_best - particles(j, :));particles(j, :) = particles(j, :) + velocities(j, :);% 边界条件处理particles(j, :) = max(particles(j, :) , lb);particles(j, :) = min(particles(j, :) , ub);endend% 输出结果disp('全局最优解:');disp(g_best);disp('全局最优解的适应度值:');disp(g_best_fitness);其中,evaluate函数用于计算每个粒子的适应度值,需要根据具体问题进行定义。

粒子群算法matlab代码

粒子群算法matlab代码

一、粒子群主程序psize=20; %粒子个数的设置pd=12; %粒子的维数lz=zeros(psize,pd);for i=1:psize %随机生成粒子群,psize行pd列,pd维。

suiji=rand(1,pd);for j=1:pd/2if suiji(j)<0.5lz(i,j)=fix(unifrnd(0,100))*100;elselz(i,j)=fix(unifrnd(0,100)+1)*100;endendfor j=pd/2+1:1:pdif suiji(j)<0.5lz(i,j)=fix(unifrnd(0,45))/100;elselz(i,j)=fix(unifrnd(0,45)+1)/100;endendlz(i,1:pd/2)=sort(lz(i,1:pd/2));lz(i,pd/2+1:pd)=sort(lz(i,pd/2+1:pd));endlv=lz;goodvalue=lz; %每个粒子自己历史最好值初始化,psize行pd列。

vmax=20; %速度上限c1=2;c2=2; %学习因子w=0.729; %随机因子和惯性因子bestvalue=zeros(1,pd); %全局最好值初始化,1行pd列for j=1:pdbestvalue(1,j)=goodvalue(1,j);endfnew=zeros(1,psize);for j=1:psizefnew(j)=fpso(lz(1,:));endfold=fnew;flagstop=0; %终止标志k=0; %迭代次数记录f0=fpso(bestvalue); %适应值初始化while flagstop==0for i=1:psize %适应值比较,更新各自历史最好值(位置)fnew(i)=fpso(lz(i,:)); %记录每次每个粒子的适应值,便于以后设置终止条件if fnew(i)<fold(i)fold(i)=fnew(i); %fold记录每个粒子的最好历史值goodvalue(i,j)=lz(i,j);endendendfor i=1:psize%每个粒子历史最好值比较,更新全局最好值f1=fold(i);if f1<f0f0=f1;for j=1:pdbestvalue(1,j)=goodvalue(i,j);endendend%*********粒子趋一点终止条件*********%flagstop0=max(abs(fold)); %比较当次的所有粒子的适应值,flagstop1=min(abs(fold)); %若它们之间差别较小,则可以停止。

主从博弈 智能粒子群优化 matlab

主从博弈 智能粒子群优化 matlab

主题:基于智能粒子裙优化的 matlab 编程在主从博弈中的应用一、概述1.1 主从博弈的概念1.2 智能粒子裙优化算法简介1.3 论文的研究目的和意义二、主从博弈模型2.1 主从博弈的基本原理2.2 主从博弈的数学模型2.3 主从博弈在实际问题中的应用三、智能粒子裙优化算法3.1 粒子裙优化算法的原理3.2 粒子裙优化算法的优点和局限性3.3 智能粒子裙优化算法的改进和应用3.4 智能粒子裙优化算法在多目标优化问题中的应用四、基于 matlab 的智能粒子裙优化编程4.1 matlab 程序设计基础4.2 智能粒子裙优化算法的 matlab 实现4.3 matlab 中其他优化算法的比较五、主从博弈中的智能粒子裙优化应用5.1 主从博弈模型的建立5.2 智能粒子裙优化算法在主从博弈中的应用5.3 实例分析和结果讨论六、结论与展望6.1 论文工作总结6.2 研究中存在的不足6.3 后续研究方向的展望七、参考文献文章正文:一、概述1.1 主从博弈的概念主从博弈是博弈论中的一种重要模型,指在博弈过程中存在多个参与者,其中一个拥有更多的信息和资源,被称为主体,而其他参与者则相对被动,称为从体。

主从博弈模型在经济学、管理学以及工程优化领域有着广泛的应用。

1.2 智能粒子裙优化算法简介智能粒子裙算法是一种模拟自然界裙体行为的优化算法,通过模拟鸟裙觅食的行为,不断调整搜索的方向和速度,最终找到最优解。

智能粒子裙算法简洁、高效,被广泛应用于各种优化问题的求解。

1.3 论文的研究目的和意义本文旨在探讨智能粒子裙优化算法在主从博弈模型中的应用,并结合matlab 编程实现,以期为相关领域的研究和实践提供参考和借鉴。

二、主从博弈模型2.1 主从博弈的基本原理主从博弈模型是一种动态博弈模型,包括至少两个玩家,其中一个是控制者,另一个是被控制者。

控制者通过制定策略来影响被控制者的行为,从而达到自身的最优化目标。

2.2 主从博弈的数学模型主从博弈模型可以用数学方法进行建模和分析,通常采用博弈论中的策略、收益矩阵等概念来描述参与者的决策行为和利益关系。

matlab粒子群算法解决指派问题

matlab粒子群算法解决指派问题

一、概述我们来介绍一下Matlab的粒子裙算法及指派问题的背景,粒子裙算法是一种基于裙体智能的优化算法,模拟了鸟裙或鱼裙寻找食物的行为,在解决各种优化问题中具有较好的效果。

指派问题是一类组合优化问题,解决的是将N个任务分配给N个执行者,使得总成本最小的问题。

二、Matlab粒子裙算法Matlab提供了丰富的工具箱,其中就包括了粒子裙算法工具箱。

通过Matlab的粒子裙算法工具箱,用户可以方便地进行粒子裙算法的实现和优化。

该工具箱提供了丰富的函数和命令,能够满足不同问题的求解需求。

三、指派问题指派问题是一类常见的优化问题,其应用广泛,如作业调度、资源分配等。

指派问题的目标是找到一种最优的分配方案,使得总成本或总收益最大化。

在实际应用中,指派问题的规模可能很大,需要借助优化算法进行求解。

四、粒子裙算法解决指派问题1. 问题建模首先需要将指派问题进行数学建模,将任务和执行者的关系用矩阵表示,定义适应度函数,指派问题的目标是最小化总成本,即适应度函数的最小化。

2. 算法实现利用Matlab提供的粒子裙算法工具箱,可以方便地实现指派问题的求解。

通过编写相应的Matlab脚本,调用粒子裙算法进行优化求解。

3. 求解结果分析求解出最优的分配方案之后,需要对结果进行分析和验证,确保所得的分配方案满足问题的要求,并对算法的性能进行评估。

五、实例分析为了验证粒子裙算法在解决指派问题中的有效性,我们选取了几个典型的指派问题实例进行分析和比较,通过Matlab实现粒子裙算法进行求解,与其他优化算法进行对比,验证了粒子裙算法在求解指派问题中的有效性和效率。

六、总结与展望通过本文对Matlab粒子裙算法解决指派问题的分析与研究,我们证明了粒子裙算法在解决指派问题中的有效性,同时也发现了其中的一些不足之处。

我们希望在未来的研究中,针对粒子裙算法在解决指派问题中的不足之处进行改进,提高算法的效率和稳定性,推动其在实际应用中的更广泛使用。

粒子群数据拟合 matlab

粒子群数据拟合 matlab

粒子裙数据拟合 MATLAB【概述】1. 粒子裙优化算法是一种模拟自然界中裙体行为的智能优化算法,其灵感来源于鸟裙、鱼裙等生物裙体的行为。

2. 该算法的特点是搜索过程简单直观,易于理解和实现,并且具有较快的收敛速度和全局优化能力。

3. 在数据拟合领域,粒子裙优化算法被广泛应用于拟合曲线、曲面以及其他数学模型的参数,对于非线性、高维度、复杂的拟合问题具有较好的效果。

【Matlab中的粒子裙算法】4. 在Matlab中,粒子裙算法的基本实现可以通过调用工具箱函数实现,也可以根据具体需求自行编写代码。

5. Matlab中提供了丰富的粒子裙算法工具箱,包括了基本的粒子裙优化算法、多粒子裙算法以及其他进化算法的实现。

6. 通过这些工具箱,用户可以方便地进行参数设置、目标函数的定义以及优化过程的监控。

【粒子裙数据拟合实例】7. 以一个简单的数据拟合实例来说明粒子裙算法在Matlab中的应用。

8. 假设我们有一组包含噪声数据的非线性函数y = ax^2 + bx + c,现在的目标是利用粒子裙算法拟合出最优的参数a、b、c。

9. 需要定义目标函数,即拟合误差的评价指标,通常可以选取均方误差或者最大似然函数作为优化的目标。

10. 在Matlab中,我们可以利用内置的优化函数或者自定义函数来实现目标函数的定义。

【粒子裙参数设置与优化过程】11. 选择合适的粒子裙算法工具箱,并根据实际问题设置算法的参数,如种裙大小、最大迭代次数、惯性权重等。

12. 在实际应用中,对于不同类型的数据和拟合模型,需要根据经验或者试验来调整参数以获取较好的拟合结果。

13. 随着优化迭代的进行,粒子裙算法会不断地更新粒子的位置和速度,直至达到最优拟合结果或者满足停止条件。

【结果分析与优化策略】14. 得到粒子裙算法优化后的参数后,需要对拟合结果进行分析和评价。

15. 可以通过绘制拟合曲线和实际数据的对比图来直观地评价拟合效果,同时也可以计算拟合误差指标进行定量评估。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档