材料学导论:陶瓷材料.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《材料科学导论》课程学习报告
—关于陶瓷材料学习的体会1.陶瓷材料概论
说到陶瓷,在许多人的印象中,是一种坚硬易碎的物体,缺乏韧性,缺乏塑性。许多陶瓷学家把陶瓷看成是用无机非金属化合物粉体,经高温烧结而成,以多晶聚集体为主的固态物。这一定义虽然同时指出了材料的制备特征和结构特征,但却把玻璃、搪瓷、金属陶瓷等摒除在外。所以,陶瓷材料是用天然或合成化合物经过成形和高温烧结制成的一类无机非金属材料。它具有高熔点、高硬度、高耐磨性、耐氧化等优点。可用作结构材料、刀具材料,由于陶瓷还具有某些特殊的性能,又可作为功能材料。
2. 陶瓷材料的发展
陶瓷是人类最早利用自然界提供的原料制造而成的材料。旧石器时代,人们就发现经火煅烧过的粘土,其硬度和强度都大大提高,而且不再被水瓦解。于是,就有了利用粘土的可塑性,将其加工成所需的形状,然后用火烧制成的陶器。随着金属冶炼术的发展,人类掌握了通过鼓风机提高燃烧温度的技术,并且发现,有一些经高温烧制的陶器,由于局部熔化变得更加致密坚硬,完全改变了陶器多孔,透水的缺点。经过长期的摸索和经验积累,以粘土,石英,长石等矿物原料配制而成的瓷器出现了。
从陶器发展到瓷器,是陶瓷发展过程中的一次重大飞跃。这种传统的瓷器,从结构上来看,是由玻璃相结合在一起的、由许多微小的晶
粒构成的物体。
随着科学技术的高速发展,人们迫切需要大量强度很高,绝缘性能良好的陶瓷材料。此时,人们发现,尽管陶瓷中的玻璃相使陶瓷变得坚硬、致密,然而它却妨碍了陶瓷强度的提高。同时,玻璃相也是陶瓷绝缘性能,特别是高频绝缘性能不好的根源。于是,玻璃相含量比传统陶瓷低的一些强度高,性能好的材料不断涌现。现在,许多科学与技术方面使用的高性能陶瓷(High performance Ceramics)都是几乎不含有玻璃相的结晶态陶瓷。为了有别于传统陶瓷,称之为先进陶瓷(Advanced Ceramics)或高技术陶瓷(High Tech Ceramics);有时也称为精细陶瓷(Fine Ceramics)或工程陶瓷(Engineering Ceramics)。
3. 陶瓷材料的定义
陶瓷的传统定义:陶器和瓷器的总称,包括玻璃,搪瓷,耐火材料,砖瓦,水泥,石膏等。
陶瓷的狭义定义:以粘土为主要原料,经高温烧制而成的制品。
陶瓷的广义定义:经高温烧制而成的无机非金属材料的总称。
陶瓷的精确定义:用天然原料或人工合成的粉状化合物,经过成型和高温烧结制成的,由无机化合物构成的多相固体材料。
4. 陶瓷材料的分类
陶瓷材料按照性能可大致分为普通陶瓷和特种陶瓷。
1. 普通陶瓷:原料: 粘土、石英和长石。
特点:坚硬而脆性较大、绝缘性和耐腐蚀性极好;制造工艺简单,成本低廉,各种陶瓷中用量极大。
分类:普通陶瓷又分为普通日用陶瓷和普通工业陶瓷。
(1) 普通日用陶瓷:特点:作日用器皿和瓷器,具有良好的光泽度、透明度,热稳定性和机械强度较高。分类:长石质瓷(国内外常用的日用瓷,作一般工业瓷制品)、绢云母质瓷(我国的传统日用瓷)、骨质瓷(近些年得到广泛应用,主要作为高级日用瓷制品)和滑石质瓷(我国发展的综合性能好的新型高质瓷)。
(2) 普通工业陶瓷:特点:普通工业陶瓷有炻器和精陶。炻器是陶器和瓷器之间的一种瓷。分类:工业陶瓷按用途分为:建筑卫生瓷(用于装饰板,卫生间装置和器具等,通常尺寸较大,要求强度和热稳定性好)、化学工业瓷(用于化工、制药、食品等工业及实验室中的管道设备、耐腐蚀容器及实验器皿等,通常要求耐各种化学介质腐蚀的能力要强)、电工瓷(主要指电器绝缘用瓷,也叫高压陶瓷,要求机械性能高、介电性和热稳定性好)。
2. 特种陶瓷,也叫现代陶瓷、精细陶瓷或高性能陶瓷。一般认为,特种陶瓷是“采用高精度的原材料,具有精确控制的化学组成、按照便于控制的制作技术加工的、便于进行结构设计,并具有优异特性的陶瓷”。
特种陶瓷按照显微结构和基本性能,可分为结构陶瓷、功能陶瓷、智能陶瓷、纳米陶瓷和陶瓷基复合材料。(1) 结构陶瓷:用于高压高温、抗辐射、抗冲击、耐腐蚀、耐磨等环境下的陶瓷材料,可分为氧化物陶瓷、氮化物陶瓷、碳化物陶瓷、硼化物陶瓷等。(2) 功能陶瓷:具有接受特殊敏感功能的陶瓷制品,可分为电功能陶瓷、磁功
能陶瓷、光功能陶瓷、生物功能陶瓷。(3) 智能陶瓷:能够接受外部环境的信息而自动改变自身状态的一种新型陶瓷材料,主要有压电陶瓷、形状记忆陶瓷和电流陶瓷。(4) 纳米陶瓷:晶粒或颗粒处于纳米范围(1-100nm)的陶瓷,包括纳米陶瓷粉体、纳米陶瓷纤维、纳米陶瓷薄膜、纳米陶瓷块体。(5) 陶瓷基复合材料:由陶瓷基体和增强体所组成的复合材料,其性能比单一材料的性能优越。初具有陶瓷的高强度、高硬度,良好的耐磨性、耐热性、耐腐蚀性等特点外,还使陶瓷的韧性大大提高,强度和模量也有一定提高。主要有纤维增强、晶须增强、颗粒增强陶瓷基复合材料。
根据陶瓷的性能,把它们分为高强度陶瓷、高温陶瓷、高韧性陶瓷、铁电陶瓷、压电陶瓷、电解质陶瓷、半导体陶瓷、电介质陶瓷、光学陶瓷(既透明陶瓷)、磁性瓷、耐酸陶瓷等。
按照陶瓷的化学组成划分有:1、氧化物陶瓷:氧化铝、氧化锆、氧化镁、氧化钙、氧化铍、氧化锌、氧化钇、二氧化钛、二氧化钍、三氧化铀等。2、氮化物陶瓷:氮化硅、氮化铝、氮化硼、氮化铀等。
3、碳化物陶瓷:碳化硅、碳化硼、碳化铀等。
4、硼化物陶瓷:硼化锆、硼化镧等。
5、硅化物陶瓷:二硅化钼等。
6、氟化物陶瓷:氟化镁、氟化钙、三氟化镧等。
7、硫化物陶瓷:硫化锌、硫化铈等。其它还有砷化物陶瓷,硒化物陶瓷,碲化物陶瓷等。
除了主要由一种化合物构成的单相陶瓷外,还有由两种或两种以上的化合物构成的复合陶瓷。例如,由氧化铝和氧化镁结合而成的镁铝尖晶石陶瓷,由氮化硅和氧化铝结合而成的氧氮化硅铝陶瓷,由氧
化铬、氧化镧和氧化钙结合而成的铬酸镧钙陶瓷,由氧化锆、氧化钛、氧化铅、氧化镧结合而成的锆钛酸铅镧(PLZT)陶瓷等等。此外,有一大类在陶瓷中添加了金属而生成的金属陶瓷,例如氧化物基金属陶瓷,碳化物基金属陶瓷,硼化物基金属陶瓷等,也是现代陶瓷中的重要品种上。
5.陶瓷的结构性质
5.1 密度与孔隙率
陶瓷的密度具有特殊的含义。,当我们描述陶瓷的密度时,就必须说明是什么密度。因为陶瓷一般是由微小的颗粒烧结而成的,颗粒之间必然存在孔隙,于是就有了表观体积与真实体积之别,显然,表观体积为真实体积与材料内孔隙体积之和(这里“孔隙”的概念不是指晶格中原子排列的空隙,而是由于球形颗粒堆积时必然留下的孔隙,尺寸在微米或纳米级)。陶瓷的重量除以表观体积就得到表观密度,除以真实体积就得到真实密度。但所谓“真实”密度并不等于理论密度(ρ),理论密度是计算得到的晶格密度,而真实密度是用某种测定方法得到的不含孔隙的密度。孔隙体积占表观体积的百分数称为孔隙度。如果我们说某一陶瓷的孔隙度为20%,那么其表面密度就应是理论密度的80%。在实际情况中,陶瓷的密度一般低于理论密度的60%。要想提高陶瓷的密度,可采取很多措施。如使用宽分布的颗粒,让小颗粒嵌入大颗粒的缝隙中;或采用机械振动,拍打等手段。即使如此,也很难使陶瓷的表观密度达到理论密度的80%以上。要想进一步提高密度,就不能使用颗粒烧结的方法,必须采用新技术。气