高中数学苏教版选修
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 统计案例 §1.1 独立性检验
一、基础过关
1.当χ2>2.706时,就有________的把握认为“x 与y 有关系”.
2.在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175人秃顶,则χ2≈__________.(结果保留3位小数) 3.分类变量X 和Y .(填序号)
①ad -bc 越小,说明X 与Y 的关系越弱; ②ad -bc 越大,说明X 与Y 的关系越强; ③(ad -bc )2越大,说明X 与Y 的关系越强; ④(ad -bc )2越接近于0,说明X 与Y 的关系越强.
4.通过随机询问110
由χ2=n (ad -bc )2
(a +b )(c +d )(a +c )(b +d )算得,
χ2=110×(40×30-20×20)260×50×60×50≈7.8.
附表:
参照附表,得到的正确结论是________.
①在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”; ②在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”; ③有99%以上的把握认为“爱好该项运动与性别有关”; ④有99%以上的把握认为“爱好该项运动与性别无关”.
5.为了研究男子的年龄与吸烟的关系,抽查了100个男子,按年龄超过和不超过40岁,吸
则有________的把握确定吸烟量与年龄有关. 二、能力提升
6
为了判断主修统计专业是否与性别有关,根据表中的数据,得
χ2=
50×(13×20-10×7)2
23×27×20×30
≈4.844.因为χ2≈4.844>3.841,所以判断主修统计专业与性别有关系,那么这种判断出错的可能性为________.
7.在2×2列联表中,若每个数据变为原来的2倍,则卡方值变为原来的________倍. 8.下列说法正确的是________.(填序号)
①对事件A 与B 的检验无关,即两个事件互不影响; ②事件A 与B 关系越密切,χ2就越大;
③χ2的大小是判断事件A 与B 是否相关的惟一数据; ④若判定两事件A 与B 有关,则A 发生B 一定发生.
9
设H 0:服用此药的效果与患者的性别无关,则χ2的值约为________,从而得出结论:服用此药的效果与患者的性别有关,这种判断出错的可能性为________.
10.某县对在职的71名高中数学教师就支持新的数学教材还是支持旧的数学教材做了调查,
根据此资料,你是否认为教龄的长短与支持新的数学教材有关?
11
(1)这种传染病是否与饮用水的卫生程度有关,请说明理由;
(2)若饮用干净水得病5人,不得病50人;饮用不干净水得病9人,不得病22人.
按此样本数据分析这种疾病是否与饮用水的卫生程度有关,并比较两种样本在反映总体时的差异.
三、探究与拓展
12.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:
(1)分别估计两个分厂生产的零件的优质品率;
(2)由以上统计数据填写2×2列联表,并问是否有99%的把握认为“两个分厂生产的零
件的质量有差异”.
答案
1.90% 2.16.373 3.③ 4.③ 5.99.9% 6.5% 7.2 8.② 9.4.882 5%
10.解 由公式得χ2=n (ad -bc )2
(a +b )(c +d )(a +c )(b +d ) =71×(12×24-25×10)237×34×22×49≈0.08.
∵χ2<2.706.
∴我们没有理由说教龄的长短与支持新的数学教材有关. 11.解 (1)假设:传染病与饮用水的卫生程度无关.
由公式得χ2
=830×(52×218-466×94)2146×684×518×312
≈54.21.
因为54.21>10.828.
因此我们有99.9%的把握认为该地区这种传染病与饮用水的卫生程度有关. (2)依题意得2×2
此时,χ2=
86×(5×22-50×9)2
55×31×14×72
≈5.785.
由于5.785>5.024,所以我们有97.5%的把握认为该种传染病与饮用水的卫生程度有关. 两个样本都能统计得到传染病与饮用水的卫生程度有关这一相同结论,但(1)问中我们有99.9%的把握肯定结论的正确性,(2)问中我们只有97.5%的把握肯定结论的正确性. 12.解 (1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为
360
500×100%=72%;
乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为320
500
×100%=64%. (2)
由列联表中的数据,得
χ2=1 000×(360×180-320×140)2680×320×500×500
≈7.353>6.635.
所以有99%的把握认为“两个分厂生产的零件的质量有差异”.