等比数列经典例题 百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等比数列选择题
1.设数列{}n a 的前n 项和为n S ,且(
)*
2n n S a n n N =+∈,则3
a
=( )
A .7-
B .3-
C .3
D .7
2.已知等比数列{}n a 的各项均为正数,公比为q ,11a >,676712a a a a +>+>,记
{}n a 的前n 项积为n
T
,则下列选项错误的是( ) A .01q <<
B .61a >
C .121T >
D .131T >
3.已知{}n a 是正项等比数列且1a ,312
a ,22a 成等差数列,则
91078a a a a +=+( ) A
1
B
1
C
.3-
D
.3+4.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}
2
n a 的前n 项和为n T ,若2
(1)0n n n S T λ-->对*n N ∈恒成立,则实数λ的取值范围是( )
A .()3,+∞
B .()1,3-
C .93,5⎛⎫ ⎪⎝⎭
D .91,5⎛
⎫- ⎪⎝
⎭
5.已知数列{}n a 的前n 项和为n S 且满足111
30(2),3
n n n a S S n a -+=≥=,下列命题中错误的是( )
A .1n S ⎧⎫⎨⎬⎩⎭
是等差数列 B .13n S n =
C .1
3(1)
n a n n =-
-
D .{}
3n S 是等比数列
6.在等比数列{}n a 中,11a =,427a =,则352a a +=( ) A .45
B .54
C .99
D .81
7.已知各项均为正数的等比数列{}n a 的前4项和为30,且53134a a a =+,则3a =( ) A .2
B .4
C .8
D .16
8.已知等比数列{a n }中a 1010=2,若数列{b n }满足b 1=1
4
,且a n =1n n b b +,则b 2020=( )
A .22017
B .22018
C .22019
D .22020
9.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9=
( ) A .4
B .5
C .8
D .15
10.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,66771
1,
01
a a a a -><-,则下列结论正确的是( )
A .681a a >
B .01q <<
C .n S 的最大值为7S
D .n T 的最大值为7T
11.已知正项等比数列{}n a 满足7652a a a =+,若存在两项m a ,n a 14a =,则
14
m n
+的最小值为( ) A .
53
B .
32
C .
43
D .
116
12.已知1a ,2a ,3a ,4a 成等比数列,且()2
1234123a a a a a a a +++=++,若11a >,则( )
A .13a a <,24a a <
B .13a a >,24a a <
C .13a a <,24a a >
D .13a a >,24a a >
13.公差不为0的等差数列{}n a 中,2
3711220a a a -+=,数列{}n b 是等比数列,且
77b a =,则68b b =( )
A .2
B .4
C .8
D .16
14.在流行病学中,基本传染数R 0是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.初始感染者传染R 0个人,为第一轮传染,这R 0个人中每人再传染R 0个人,为第二轮传染,…….R 0一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.假设新冠肺炎的基本传染数0 3.8R =,平均感染周期为7天,设某一轮新增加的感染人数为M ,则当M >1000时需要的天数至少为( )参考数据:lg38≈1.58 A .34
B .35
C .36
D .37
15.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,)33,记为第一次操作;再将剩下的两个区间1[0,]3,2[,1]3
分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于
9
10
,则需要操作的次数n 的最小值为( )(参考数据:lg 20.3010=,lg30.4771=)
A .4
B .5
C .6
D .7
16..在等比数列{}n a 中,若11a =,54a =,则3a =( )
A .2
B .2或2-
C .2-
D
17.设等差数列{}n a 的公差10,4≠=d a d ,若k a 是1a 与2k a 的等比中项,则k =( )
A .3或6
B .3 或-1
C .6
D .3
18.若数列{}n a 是等比数列,且17138a a a =,则311a a =( ) A .1
B .2
C .4
D .8
19.已知等比数列的公比为2,其前n 项和为n S ,则3
3
S a =( ) A .2
B .4
C .
74 D .
158
20.已知等比数列{}n a 的前n 项和为n S ,且1352
a a +=,245
4a a +=,则n n S =a ( )
A .14n -
B .41n -
C .12n -
D .21n -
二、多选题21.题目文件丢失! 22.题目文件丢失! 23.题目文件丢失!
24.一个弹性小球从100m 高处自由落下,每次着地后又跳回原来高度的
2
3
再落下.设它第n 次着地时,经过的总路程记为n S ,则当2n ≥时,下面说法正确的是( ) A .500n S < B .500n S ≤
C .n S 的最小值为
700
3
D .n S 的最大值为400
25.设数列{}n a 的前n 项和为*
()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是
( )
A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列
B .若2
n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列
C .若()11n
n S =--,则{}n a 是等比数列
D .若{}n a 是等差数列,则n S ,2n n S S -,*
32()n n S S n N -∈也成等差数列
26.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )
A .数列{}n a 为等比数列
B .数列{}n S n +为等比数列
C .数列{}n a 中10511a =
D .数列{}2n S 的前n 项和为
2224n n n +---
27.已知正项等比数列{}n a 的前n 项和为n S ,若31a =,
13511121
4
a a a ++=,则( )
A .{}n a 必是递减数列
B .531
4
S =
C .公比4q =或
14
D .14a =或
14
28.已知等比数列{}n a 中,满足11a =,2q ,n S 是{}n a 的前n 项和,则下列说法正
确的是( )
A .数列{}2n a 是等比数列
B .数列1n a ⎧⎫
⎨
⎬⎩⎭
是递增数列 C .数列{}2log n a 是等差数列 D .数列{}n a 中,10S ,20S ,30S 仍成等比
数列
29.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,66771
1,
01
a a a a -><-,则下列结论正确的是( ) A .01q <<
B .681a a >
C .n S 的最大值为7S
D .n T 的最大值为6T
30.已知数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, n S 是数列1 n a ⎧⎫
⎨⎬⎩⎭
的前n 项和,则下列结论中正确的是( ) A .()211
21n n
S n a -=-⋅ B .212
n n S S =
C .2311222
n n n S S ≥
-+ D .212
n n S S ≥+
31.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )
A .数列{}n S n +为等比数列
B .数列{}n a 的通项公式为1
21n n a -=-
C .数列{}1n a +为等比数列
D .数列{}2n S 的前n 项和为2224n n n +---
32.记单调递增的等比数列{}n a 的前n 项和为n S ,若2410a a +=,23464a a a =,则( )
A .1
12n n n S S ++-=
B .12n n
a
C .21n
n S =- D .1
21n n S -=-
33.在《增删算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.”则下列说法正确的是( ) A .此人第二天走了九十六里路
B .此人第三天走的路程站全程的
18
C .此人第一天走的路程比后五天走的路程多六里
D .此人后三天共走了42里路
34.在递增的等比数列{a n }中,S n 是数列{a n }的前n 项和,若a 1a 4=32,a 2+a 3=12,则下列说法正确的是( ) A .q =1 B .数列{S n +2}是等比数列
C .S 8=510
D .数列{lga n }是公差为2的等差数列
35.已知等差数列{}n a 的首项为1,公差4d =,前n 项和为n S ,则下列结论成立的有( )
A .数列n S n ⎧⎫
⎨⎬⎩⎭
的前10项和为100
B .若1,a 3,a m a 成等比数列,则21m =
C .若
11
16
25n
i i i a a =+>∑,则n 的最小值为6 D .若210m n a a a a +=+,则
116m n
+的最小值为25
12
【参考答案】***试卷处理标记,请不要删除
一、等比数列选择题 1.A 【分析】
先求出1a ,再当2n ≥时,由(
)*
2n n S a n n N
=+∈得1
121n n S
a n --=+-,两式相减后化
简得,121n n a a -=-,则112(1)n n a a --=-,从而得数列{}1n a -为等比数列,进而求出
n a ,可求得3a 的值
【详解】
解:当1n =时,1121S a =+,得11a =-, 当2n ≥时,由(
)*
2n n S a n n N
=+∈得1
121n n S
a n --=+-,两式相减得
1221n n n a a a -=-+,即121n n a a -=-,
所以112(1)n n a a --=-,
所以数列{}1n a -是以2-为首项,2为公比的等比数列,
所以1122n n a --=-⨯,所以1
221n n a -=-⨯+,
所以232217a =-⨯+=-,
故选:A 2.D
【分析】
等比数列{}n a 的各项均为正数,11a >,676712a a a a +>+>,可得67(1)(1)0a a --<,因此61a >,71a <,01q <<.进而判断出结论. 【详解】 解:
等比数列{}n a 的各项均为正数,11a >,676712a a a a +>+>,
67(1)(1)0a a ∴--<,
11a >,若61a <,则一定有71a <,不符合
由题意得61a >,71a <,01q ∴<<,故A 、B 正确. 6712a a +>,671a a ∴>,
6121231267()1T a a a a a a =⋯=>,故C 正确,
13
1371T a =<,故D 错误,
∴满足1n T >的最大正整数n 的值为12.
故选:D . 3.D 【分析】 根据1a ,
312a ,22a 成等差数列可得3121
222
a a a ⨯=+,转化为关于1a 和q 的方程,求出q 的值,将
910
78
a a a a ++化简即可求解.
【详解】
因为{}n a 是正项等比数列且1a ,31
2
a ,22a 成等差数列, 所以
3121
222
a a a ⨯=+,即21112a q a a q =+,所以2210q q --=,
解得:1q =+
1q =
(
22
2
2910787878
13a a a q a q q a a a a ++====+++,
故选:D 4.D 【分析】
由2n n S a =-利用11,1,2
n
n n S n a S S n -=⎧=⎨-≥⎩,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}
2
n a 是以1为首项,
1
4
为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将2(1)0n
n n S T λ-->恒成立,转化为(
)
()
321(1)
2
10n
n
n
λ---+>对
*n N ∈恒成立,再分n 为偶数和n 为奇数讨论求解.
【详解】
当1n =时,112S a =-,得11a =; 当2n ≥时,由2n n S a =-, 得112n n S a --=-,
两式相减得11
2
n n a a -=, 所以数列{}n a 是以1为首项,
1
2
为公比的等比数列. 因为11
2
n n a a -=, 所以22114
n n a a -=.
又2
11a =,所以{}
2
n a 是以1为首项,
1
4
为公比的等比数列, 所以1112211212n
n n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414
n
n
n T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,
由2(1)0n n n
S T λ-->,得2
14141(1)10234n n
n
λ⎡⎤⎡⎤⎛⎫⎛⎫---⨯->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦, 所以2
21131(1)1022n n
n λ⎡⎤⎡⎤⎛⎫⎛⎫---->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦
, 所以2
11131(1)110222n n n n
λ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫----+>⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣
⎦⎣⎦.
又*n N ∈,所以1102n
⎛⎫-> ⎪⎝⎭
,
所以1131(1)1022n n
n
λ⎡⎤⎡⎤⎛⎫⎛⎫---+>⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦
,
即(
)
()
321(1)
2
10n
n
n
λ---+>对*n N ∈恒成立,
当n 为偶数时,()()321210n
n
λ--+>,
所以()()3213216
632121
21
n
n
n n n λ-+-<==-
+++, 令6
321
n n b =-+,则数列{}n b 是递增数列,
所以2269
3215
λb <=-
=+; 当n 为奇数时,(
)()
321210n
n
λ-++>,
所以()()3213216
632121
21
n
n
n n n λ-+--<==-
+++,
所以16
332121
λb -<=-=-=+, 所以1λ>-.
综上,实数λ的取值范围是91,5⎛
⎫- ⎪⎝
⎭.
故选:D. 【点睛】
方法点睛:数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题. 5.C 【分析】
由1
(2)n n n a S S n -=-≥代入得出{}n S 的递推关系,得证1n S ⎧⎫⎨⎬⎩⎭
是等差数列,可判断A ,求出n S 后,可判断B ,由1a 的值可判断C ,求出3n S 后可判断D . 【详解】
2n ≥时,因为130n n n a S S -+=,所以1130n n n n S S S S ---+=,所以
1
113n n S S --=, 所以1n S ⎧⎫
⎨⎬⎩⎭
是等差数列,A 正确;
1113S a ==,113S =,公差3d =,所以133(1)3n
n n S =+-=,所以13n S n
=,B 正确; 11
3
a =不适合13(1)n a n n =--,C 错误;
1313n n S +=
,数列113n +⎧⎫
⎨⎬⎩⎭
是等比数列,D 正确. 故选:C . 【点睛】
易错点睛:本题考查由数列的前n 项和求数列的通项公式,考查等差数列与等比数列的判断,
在公式1n n n a S S -=-中2n ≥,不包含1a ,因此由n S 求出的n a 不包含1a ,需要特别求解检验,否则易出错.
6.C 【分析】
利用等比数列的通项与基本性质,列方程求解即可 【详解】
设数列{}n a 的公比为q ,因为3
41a a q =,所以3q =,所以24
352299a a q q +=+=.
故选C 7.C 【分析】
根据等比数列的通项公式将53134a a a =+化为用基本量1,a q 来表示,解出q ,然后再由前4项和为30求出1a ,再根据通项公式即可求出3a . 【详解】
设正数的等比数列{}n a 的公比为()0q q >,
因为53134a a a =+,所以4211134a q a q a =+,则42
340q q --=,
解得24q =或2
1q =-(舍),所以2q
,
又等比数列{}n a 的前4项和为30,
所以23
111130a a q a q a q +++=,解得12a =,
∴2
318a a q ==.
故选:C . 8.A 【分析】
根据已知条件计算12320182019a a a a a ⋅⋅⋅⋅的结果为
2020
1
b b ,再根据等比数列下标和性质求解出2020b 的结果. 【详解】 因为1
n n n
b a b +=
,所以3201920202020
24
12320182019123
201820191
b b b b b b a a a a a b b b b b b ⋅⋅⋅⋅=
⋅⋅⋅⋅
⋅=, 因为数列{}n a 为等比数列,且10102a =, 所以()()
()123
201820191201922018100910111010a a a a a a a a a a a a ⋅⋅⋅=⋅⋅⋅⋅⋅⋅
22
22019
201910101010
1010101010102a a a a a =⋅⋅⋅==
所以20192020
12b b =,又114
b =,所以201720202b =, 故选:A. 【点睛】
结论点睛:等差、等比数列的下标和性质:若(
)*
2,,,,m n p q t m n p q t N
+=+=∈,
(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2
m n p q t a a a a a ⋅=⋅=.
9.C 【分析】
由等比中项,根据a 3a 11=4a 7求得a 7,进而求得b 7,再利用等差中项求解. 【详解】 ∵a 3a 11=4a 7, ∴2
7a =4a 7, ∵a 7≠0, ∴a 7=4, ∴b 7=4, ∴b 5+b 9=2b 7=8. 故选:C 10.B 【分析】
根据11a >,66771
1,01
a a a a -><-,分0q < ,1q ≥,01q <<讨论确定q 的范围,然后再逐项判断. 【详解】
若0q <,因为11a >,所以670,0a a <>,则670a a ⋅<与671a a ⋅>矛盾, 若1q ≥,因为11a >,所以671,1a a >>,则67101a a ->-,与671
01
a a -<-矛盾, 所以01q <<,故B 正确; 因为
671
01
a a -<-,则6710a a >>>,所以()26870,1a a a =∈,故A 错误; 因为0n a >,01q <<,所以1
11n n a q a S q q
=
---单调递增,故C 错误; 因为7n ≥时,()0,1n a ∈,16n ≤≤时,1n a >,所以n T 的最大值为6T ,故D 错误; 故选:B 【点睛】
关键点点睛:本题的关键是通过穷举法确定01q <<. 11.B 【分析】
设正项等比数列{}n a 的公比为0q >,由7652a a a =+,可得2
2q q =+,解得2q
,
根据存在两项m a 、n a
14a =
14a =,6m n +=.对m ,n 分类讨论即可得出.
解:设正项等比数列{}n a 的公比为0q >, 满足:7652a a a =+,
22q q ∴=+,
解得2q
,
存在两项m a 、n a 14a =,
∴14a =,
6m n ∴+=,
m ,n 的取值分别为(1,5),(2,4),(3,3),(4,2),(5,1),
则
14m n
+的最小值为143242+=.
故选:B . 12.B 【分析】
由12340a a a a +++≥可得出1q ≥-,进而得出1q >-,再由11a >得出0q <,即可根据q 的范围判断大小. 【详解】
设等比数列的公比为q , 则(
)()()23
2
123411
1+++1+1+0a a a a a q q q
a q q +++==≥,可得1q ≥-,
当1q =-时,12340a a a a +++=,()2
1230a a a ++≠,1q ∴>-,
()2
1234123a a a a a a a +++=++,即()2
23211+++1++q q q a q q =,
()
23
12
21+++11++q q q a q q ∴=
>,整理得432++2+0q q q q <,显然0q <,
()1,0q ∴∈-,()20,1q ∈,
()213110a a a q ∴-=->,即13a a >,
()()32241110a a a q q a q q ∴-=-=-<,即24a a <.
故选:B. 【点睛】
关键点睛:本题考查等比数列的性质,解题的关键是通过已知条件判断出()1,0q ∈-,从而可判断大小. 13.D 【分析】
根据等差数列的性质得到774a b ==,数列{}n b 是等比数列,故2
687b b b ==16.
等差数列{}n a 中,31172a a a +=,故原式等价于2
7a -740a =解得70a =或74,a =
各项不为0的等差数列{}n a ,故得到774a b ==,
数列{}n b 是等比数列,故2
687b b b ==16.
故选:D. 14.D 【分析】
假设第n 轮感染人数为n a ,根据条件构造等比数列{}n a 并写出其通项公式,根据题意列出关于n 的不等式,求解出结果,从而可确定出所需要的天数. 【详解】
设第n 轮感染人数为n a ,则数列{}n a 为等比数列,其中1 3.8a =,公比为0 3.8R =,
所以 3.81000n
n a =>,解得 3.8333
log 1000 5.17lg3.8lg3810.58
n >=
=≈≈-, 而每轮感染周期为7天,所以需要的天数至少为5.17736.19⨯=. 故选:D . 【点睛】
关键点点睛:解答本题的关键点有两个:(1)理解题意构造合适的等比数列;(2)对数的计算. 15.C 【分析】
依次求出第次去掉的区间长度之和,这个和构成一个等比数列,再求其前n 项和,列出不等式解之可得. 【详解】
第一次操作去掉的区间长度为13;第二次操作去掉两个长度为19
的区间,长度和为2
9;第
三次操作去掉四个长度为
127的区间,长度和为427;…第n 次操作去掉12n -个长度为1
3
n 的区间,长度和为1
23
n n -,
于是进行了n 次操作后,所有去掉的区间长度之和为1
122213933n
n n n S -⎛⎫
=++⋅⋅⋅+=- ⎪⎝⎭
,
由题意,90
2131n
⎛⎫-≥ ⎪⎝⎭,即21lg lg
1031n ≤=-,即()lg3lg21n -≥,解得:11
5.679lg3lg 20.47710.3010
n ≥
=≈--,
又n 为整数,所以n 的最小值为6.
【点睛】
本题以数学文化为背景,考查等比数列通项、前n 项和等知识及估算能力,属于中档题. 16.A 【分析】
由等比数列的性质可得2
315a a a =⋅,且1a 与3a 同号,从而可求出3a 的值
【详解】
解:因为等比数列{}n a 中,11a =,54a =,
所以2
3154a a a =⋅=,
因为110a =>,所以30a >, 所以32a =, 故选:A 17.D 【分析】
由k a 是1a 与2k a 的等比中项及14a d =建立方程可解得k . 【详解】
k a 是1a 与2k a 的等比中项
212k k a a a ∴=,()()2
111121a k d a a k d ⎡⎤∴+-=+-⎣⎦⎡⎤⎣⎦
()()2
23423k d d k d ∴+=⨯+,3k ∴=.
故选:D 【点睛】
本题考查等差数列与等比数列的基础知识,属于基础题. 18.C 【分析】
根据等比数列的性质,由题中条件,求出72a =,即可得出结果. 【详解】
因为数列{}n a 是等比数列,由17138a a a =,得3
78a =,
所以72a =,因此2
31174a a a ==.
故选:C. 19.C 【分析】
利用等比数列的通项公式和前n 项和公式代入化简可得答案 【详解】
解:因为等比数列的公比为2,
所以313
12311(12)
7712244
a S a a a a --===⋅, 故选:C 20.D 【分析】
根据题中条件,先求出等比数列的公比,再由等比数列的求和公式与通项公式,即可求出结果. 【详解】
因为等比数列{}n a 的前n 项和为n S ,且1352
a a +=
,245
4a a +=,
所以2
4135
1
452
2
q a a a a =++==, 因此()()11
1
1111112
21112n n
n
n n n n n n
a q S q q a a q q q ---⎛⎫- ⎪
--⎝⎭=
=
==--⎛⎫ ⎪⎝⎭
. 故选:D.
二、多选题 21.无 22.无 23.无
24.AC 【分析】
由运动轨迹分析列出总路程n S 关于n 的表达式,再由表达式分析数值特征即可 【详解】
由题可知,第一次着地时,1
100S =;第二次着地时,221002003
S =+⨯;
第三次着地时,2
32210020020033S ⎛⎫
=+⨯+⨯ ⎪⎝⎭;……
第n 次着地后,2
1
222100200200200333n n S -⎛⎫
⎛⎫
=+⨯+⨯+
+⨯ ⎪ ⎪
⎝⎭
⎝⎭
则2
1
1222210020010040013333n n n S --⎛⎫⎛⎫
⎛⎫⎛⎫
⎛⎫=++++=+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭
⎝⎭⎝
⎭⎝⎭
,显然500n S <,又n S 是关于n 的增函数,2n ≥,故当2n =时,n S 的最小值为400700
10033
+=; 综上所述,AC 正确 故选:AC 25.BCD 【分析】
利用等差等比数列的定义及性质对选项判断得解. 【详解】
选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:
2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;
选项C: ()11n
n S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,
12(1)n n a -∴=⨯-是等比数列,故对;
选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*
32()n n S S n N -∈是等差数
列,故对; 故选:BCD 【点睛】
熟练运用等差数列的定义、性质、前n 项和公式是解题关键. 26.BCD 【分析】 由已知可得
11222n n n n S n S n
S n S n
++++==++,结合等比数列的定义可判断B ;可得
2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断A ;由{}n a 的通项公
式,可判断C ;
由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D . 【详解】
因为121n n S S n +=+-,所以
11222n n n n S n S n
S n S n
++++==++.
又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故B 正确;
所以2n n S n +=,则2n
n S n =-.
当2n ≥时,1121n n n n a S S --=-=-,但11
121a -≠-,故A 错误;
由当2n ≥时,1
2
1n n a -=-可得91021511a =-=,故C 正确;
因为1
222n n S n +=-,所以2
3
1
1222...2221222...22n n S S S n ++++=-⨯+-⨯++-
()()()231
22
412122 (2)
212 (22412)
2n n n n n n n n n ++--⎡⎤=+++-+++=
-+=---⎢⎥-⎣
⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:BCD . 【点睛】
关键点点睛:在数列中,根据所给递推关系,得到等差等比数列是重难点,本题由
121n n S S n +=+-可有目的性的构造为1122n n S S n n +++=+,进而得到
11222n n n n S n S n
S n S n
++++==++,说明数列{}n S n +是等比数列,这是解决本题的关键所在,
考查了推理运算能力,属于中档题, 27.BD 【分析】
设设等比数列{}n a 的公比为q ,则0q >,由已知得11121
14
a a ++=,解方程计算即可得答案. 【详解】
解:设等比数列{}n a 的公比为q ,则0q >,
因为2
153
1a a a ==,2311a a q == , 所以
511151351515111111121
11114
a a a a a a a a a a a a a ++=++=++=+=+++=, 解得1412a q =⎧⎪⎨=⎪⎩或1
142.
a q ⎧
=⎪⎨
⎪=⎩, 当14a =,12q =时,5514131
21412
S ⎛
⎫- ⎪
⎝⎭==-,数列{}n a 是递减数列;
当11
4
a =
,2q 时,531
4
S =
,数列{}n a 是递增数列; 综上,5314
S =. 故选:BD. 【点睛】
本题考查数列的等比数列的性质,等比数列的基本量计算,考查运算能力.解题的关键在于结合等比数列的性质将已知条件转化为11121
14
a a ++=,进而解方程计算. 28.AC 【分析】
由已知得1
2
n n
a 可得以21
22
n n a -=,可判断A ;又1
111122n n n a --⎛⎫
== ⎪
⎝⎭
,可判断B ;由
122log log 21n n a n -==-,可判断C ;求得10S ,20S ,30S ,可判断D.
【详解】
等比数列{}n a 中,满足11a =,2q
,所以12n n a ,所以2122n n a -=,所以数列
{}2n a 是等比数列,故A 正确;
又1
111122n n n a --⎛⎫
== ⎪⎝⎭
,所以数列1n a ⎧⎫
⎨⎬⎩⎭是递减数列,故B 不正确;
因为1
22log log 2
1n n a n -==-,所以{}2log n a 是等差数列,故C 正确;
数列{}n a 中,101010111222
S -==--,202021S =-,30
3021S =-,10S ,20S ,30S 不成
等比数列,故D 不正确; 故选:AC . 【点睛】
本题综合考查等差、等比数列的定义、通项公式、前n 项和公式,以及数列的单调性的判定,属于中档题. 29.AD 【分析】
分类讨论67,a a 大于1的情况,得出符合题意的一项. 【详解】
①671,1a a >>, 与题设
671
01
a a -<-矛盾. ②671,1,a a ><符合题意. ③671,1,a a <<与题设
671
01
a a -<-矛盾. ④ 671,1,a a <>与题设11a >矛盾.
得671,1,01a a q ><<<,则n T 的最大值为6T .
∴B ,C ,错误.
故选:AD. 【点睛】
考查等比数列的性质及概念. 补充:等比数列的通项公式:()1
*
1n n a a q n N -=∈.
30.CD 【分析】
根据数列{} n a 满足11a =,121++=+n n a a n ,得到1223+++=+n n a a n ,两式相减得:
22n n a a +-=,然后利用等差数列的定义求得数列{} n a 的通项公式,再逐项判断.
【详解】
因为数列{} n a 满足11a =,121++=+n n a a n ,*n N ∈, 所以1223+++=+n n a a n , 两式相减得:22n n a a +-=,
所以奇数项为1,3,5,7,….的等差数列; 偶数项为2,4,6,8,10,….的等差数列; 所以数列{} n a 的通项公式是n a n =, A. 令2n =时, 311111236S =++=,而 ()13
22122
⨯-⋅=,故错误; B. 令1n =时, 213122
S =+=,而 111
22S =,故错误;
C. 当1n =时, 213122
S =+
=,而 3113
2222-+=,成立,当2n ≥时,
211111...23521n n S S n =++++--,因为221n n >-,所以
11212n n >-,所以111111311...1 (352148222)
n n n ++++>++++=--,故正确; D. 因为21111...1232n n S S n n n n
-=+++++++,令()1111
...1232f n n n n n
=+++++++,因为
()11111
1()021*******f n f n n n n n n +-=+-=->+++++,所以()f n 得到递增,
所以()()1
12
f n f ≥=,故正确;
故选:CD 【点睛】
本题主要考查等差数列的定义,等比数列的前n 项和公式以及数列的单调性和放缩法的应用,还考查了转化求解问题的能力,属于较难题. 31.AD 【分析】 由已知可得
11222n n n n S n S n
S n S n
++++==++,结合等比数列的定义可判断A ;可得
2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断B ;由
1231,1,3a a a ===可判断C ;
由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D.
【详解】
因为121n n S S n +=+-,所以
11222n n n n S n S n
S n S n
++++==++. 又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故A 正确;
所以2n n S n +=,则2n
n S n =-.
当2n ≥时,1121n n n n a S S --=-=-,但11
121a -≠-,故B 错误;
由1231,1,3a a a ===可得12312,12,14a a a +=+=+=,即
322111
11
a a a a ++≠++,故C 错; 因为1
222n n S n +=-,所以2
3
1
1222...2221222 (2)
2n n S S S n ++++=-⨯+-⨯++-
()()()231
22412122 (2)
212 (22412)
2n n n n n n n n n ++--⎡
⎤=+++-+++=
-+=---⎢⎥-⎣
⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:AD . 【点睛】
本题考查等比数列的定义,考查了数列通项公式的求解,考查了等差数列、等比数列的前
n 项和,考查了分组求和.
32.BC 【分析】
先求得3a ,然后求得q ,进而求得1a ,由此求得1,,n n n n a S S S +-,进而判断出正确选项. 【详解】
由23464a a a =得33
34a =,则34a =.设等比数列{}n a 的公比为()0q q ≠,由
2410a a +=,得4
410q q
+=,即22520q q -+=,解得2q
或1
2q =
.又因为数列{}n a 单调递增,所以2q
,所以112810a a +=,解得11a =.所以12n n
a ,
()
1122112
n n n S ⨯-=
=--,所以()1121212n n n
n n S S ++-=---=.
故选:BC 【点睛】
本题考查等比数列的通项公式、等比数列的性质及前n 项和,属于中档题.
33.ACD 【分析】
若设此人第n 天走n a 里路,则数列{}n a 是首项为1a ,公比为1
2
q =
的等比数列,由6378S =求得首项,然后分析4个选项可得答案.
【详解】
解:设此人第n 天走n a 里路,则数列{}n a 是首项为1a ,公比为1
2
q =
的等比数列, 因为6378S =,所以1661(1)
2=
378112
a S -
=-,解得1
192a =,
对于A ,由于21
192962a =⨯=,所以此人第二天走了九十六里路,所以A 正确; 对于B ,由于 31481
19248,
43788
a =⨯=>,所以B 不正确; 对于C ,由于378192186,1921866-=-=,所以此人第一天走的路程比后五天走的路程
多六里,所以C 正确; 对于D ,由于45611
11924281632a a a ⎛⎫++=⨯++= ⎪⎝⎭
,所以D 正确, 故选:ACD 【点睛】
此题考查等比数的性质,等比数数的前项n 的和,属于基础题. 34.BC 【分析】
先根据题干条件判断并计算得到q 和a 1的值,可得到等比数列{a n }的通项公式和前n 项和公式,对选项进行逐个判断即可得到正确选项. 【详解】
由题意,根据等比中项的性质,可得 a 2a 3=a 1a 4=32>0,a 2+a 3=12>0, 故a 2>0,a 3>0. 根据根与系数的关系,可知
a 2,a 3是一元二次方程x 2﹣12x +32=0的两个根. 解得a 2=4,a 3=8,或a 2=8,a 3=4. 故必有公比q >0, ∴a 12
a q
=
>0. ∵等比数列{a n }是递增数列,∴q >1. ∴a 2=4,a 3=8满足题意. ∴q =2,a 12
a q
=
=2.故选项A 不正确. a n =a 1•q n ﹣1=2n . ∵S n (
)21212
n -=
=-2
n +1
﹣2.
∴S n +2=2n +1=4•2n ﹣1.
∴数列{S n +2}是以4为首项,2为公比的等比数列.故选项B 正确.
S 8=28+1﹣2=512﹣2=510.故选项C 正确.
∵lga n =lg 2n =n .
∴数列{lga n }是公差为1的等差数列.故选项D 不正确.
故选:BC
【点睛】
本题考查了等比数列的通项公式、求和公式和性质,考查了学生概念理解,转化划归,数学运算的能力,属于中档题.
35.AB
【分析】
由已知可得:43n a n =-,22n S n n =-,=21n S n n -,则数列n S n ⎧⎫⎨⎬⎩⎭
为等差数列通过公式即可求得前10项和;通过等比中项可验证B 选项;因为
11111=44341i i a a n n +⎛⎫- ⎪-+⎝⎭,通过裂项求和可求得11
1n i i i a a =+∑;由等差的性质可知12m n +=利用基本不等式可验证选项D 错误. 【详解】
由已知可得:43n a n =-,22n S n n =-,
=21n S n n -,则数列n S n ⎧⎫⎨⎬⎩⎭为等差数列,则前10项和为()10119=1002
+.所以A 正确; 1,a 3,a m a 成等比数列,则231=,m a a a ⋅81m a =,即=4381m a m =-=,解得21m =故B 正确; 因为11111=44341i i a a n n +⎛⎫- ⎪-+⎝⎭所以1111111116=1=45549413245
1n i i i n n n a a n =+⎛⎫-+-++-> ⎪++⎝⎭-∑,解得6n >,故n 的最小值为7,故选项C 错误;等差的性质可知12m n +=,所以
()()1161116116125=116172412121212n m m n m n m n m n ⎛⎫⎛⎫+++=+++≥+⨯= ⎪ ⎪⎝⎭⎝⎭,当且仅当16=n m m n 时,即48=45n m =时取等号,因为*,m n ∈N ,所以48=45
n m =不成立,故选项D 错误.
故选:AB.
【点睛】
本题考查等差数列的性质,考查裂项求和,等比中项,和基本不等式求最值,难度一般.。