密度泛函理论简介
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
密度泛函
密度泛函理论, Density functional theory (DFT) 是一种研究多电子体系电子结构的量子力学方法。密度泛函理论在物理和化学上都有广泛的应用,特别是用来研究分子和凝聚态的性质,是凝聚态物理和计算化学领域最常用的方法之一。
目录
简介
密度泛函理论(Density Functional Theory,DFT),是基于量子力学和玻恩-奥本海默绝热近似的从头算方法中的一类解法,与量子化学中基于分子轨道理论发展而来的众多通过构造多电子体系波函数的方法(如Hartree-Fock类方法)不同,这一方法构建在一个定理的基础上:体系的基态唯一的决定于电子密度的分布(Hohenberg-Kohn定理),从而使得我们可以采用最优化理论,通过KS-SCF自洽迭代求解单电子多体薛定谔方程来获得电子密度分布,这一操作减少了自由变量的数量,减小了体系物理量振荡程度,并提高了收敛速度,并易于通过应用HF定理等手段,与分子动力学模拟方法结合,构成从头算的分子动力学方法。这一方法在早期通过与金属电子论、周期性边界条件及能带论的结合,在金属、半导体等固体材料的模拟中取得了较大的成功,后来被推广到其它若干领域。目前常见的基于DFT的商业软件有:VASP,CASTEP等。
Hohenberg-Kohn第二定理
密度泛函理论中的另一条重要定理是Hohenberg-Kohn第二定理证,它证明了以基态密度为变量,将体系能量最小化之后就得到了基态能量。
最初的HK理论只适用于没有磁场存在的基态,虽然现在已经被推广了。最初的Hohenberg-Kohn定理仅仅指出了一一对应关系的存在,但是没有提供任何这种精确的对应关系。正是在这些精确的对应关系中存在着近似(这个理论可以被推广到时间相关领域,从而用来计算激发态的性质[6])。
Kohn-Sham方法
密度泛函理论最普遍的应用是通过Kohn-Sham方法实现的。在
Kohn-Sham DFT的框架中,最难处理的多体问题(由于处在一个外部静电势中的电子相互作用而产生的)被简化成了一个没有相互作用的电子在有效势场中运动的问题。这个有效势场包括了外部势场以及电子间库仑相互作用的影响,例如,交换和相关作用。处理交换相关作用是KS DFT中的难点。目前并没有精确求解交换相关能 EXC 的方法。最简单的近似求解方法为局域密度近似(LDA)。LDA近似使用均匀电子气来计算体系的交换能(均匀电子气的交换能是可以精确求解的),而相关能部分则采用对自由电子气进行拟合的方法来处理。
应用
自1970年以来,密度泛函理论在固体物理学的计算中得到广泛的应用。在多数情况下,与其他解决量子力学多体问题的方法相比,采用局域密度近似的密度泛函理论给出了非常令人满意的结果,同时固态计算相比实验的费用要少。尽管如此,人们普遍认为量子化学计算不能给出足够精确的结果,直到二十世纪九十年代,理论中所采用的近似被重新提炼成更好的交换相关作用模型。密度泛函理论是目前多种领域中电子结构计算的领先方法。尽管密度泛函理论得到了改进,但是用它来恰当的描述分子间相互作用,特别是范德瓦尔斯力,或者计算半导体的能隙还是有一定困难的。
DFT理论也有其半经验化的形式,如DAW和BASKES等所提出的EAM势模型就是将电子密度分布加以固定化,然后通过添加对势的改正函数和势的调节参数来实现减小计算模拟代价、并提高分子力学、分子动力学等基于牛顿力学的模拟方法的精度的目的,目前看来,这一努力还是取得了不小的成果,有着较为广泛的应用。
早期模型
Thomas-Fermi 模型
密度泛函理论可以上溯到由Thomas和Fermi 在1920年代发展的Thomas-Fermi模型。他们将一个原子的动能表示成电子密度的泛函,并加上原子核-电子和电子-电子相互作用(两种作用都可以通过电子密度来表达)的经典表达来计算原子的能量。
Thomas-Fermi模型是很重要的第一步,但是由于没有考虑
Hartree-Fock理论指出的原子交换能,Thomas-Fermi方程的精度受到限制。1928年Dirac在该模型基础上增加了一个交换能泛函项。
然而,在大多数应用中Thomas-Fermi-Dirac理论表现得非常不够准确。其中最大的误差来自动能的表示,然后是交换能中的误差,以及对电子相关作用的完全忽略。