数学建模-第四章-概率统计模型

合集下载

数学建模第四章 概率统计模型.ppt

数学建模第四章 概率统计模型.ppt
在这里,小说使用“快乐”“强壮”“勇敢” 这样三个形容词是否有深意?
答:①“快乐、强壮、勇敢”原指一个人乐 观,身体强健,能从容面对困难。这里写出这些 身体强壮的人平素貌似快乐和勇敢,实则在关键 时刻缺乏挑战困难、拯救族群的勇气,(内容角 度)②这与后来他们在遇到困难后的恐惧和伤心 形成鲜明对比。(结构和情节角度)
英雄!
作品主题是由作者和读者共同创造的!
小说主 读者的人
题的基 本把握 补充
多元化、 个性化的 主题解读 和感悟
没有伟大的人物出现的民族,是世 界上最可怜的生物之群;有了伟大的人 物,而不 知拥护,爱戴,崇仰的国家, 是没有希望的奴隶之邦。因鲁迅的一死, 使人自觉出了民 族的尚可以有为,也 因鲁迅之一死,使人家看出了中国还是 奴隶性很浓厚的半绝望的国 家。
《伊则吉尔老婆子》是高尔基早期浪漫主义代表 作。
“ 读伟大的小说,捧起前 与放下后你已判若两人”
为什么小说有如此大的作用? 主要是因为伟大的小说有着博大 深邃的思想内涵、深刻的主题, 它能丰富我们的思想情感,提升 我们的人生境界。
小说主题哪里去找?
1.故事情节 2.人物分析 3.环境描写
一、情节:写了哪几个场景,试加以概 括。
1.族人陷于困境,彷徨失措,丹柯挺身而出 引导鼓舞族人。
2.族人途中遭险,围攻诋毁,丹柯不计得失, 拯救族人。
3.丹柯抓开胸膛,高举心脏,引领大家走出 困境,燃烧的心最后化为草原上蓝色火星。
故事在一开头就为丹柯的出现拉开了序幕:一群 生活在草原上,快乐、强壮、勇敢的人被另一凶残的 种族赶到不宜生存的林子深处去了,惟一的出路是穿 越森林到另一片草原上寻找生机。
提示:悲剧将人生中有价值的东西毁灭给 人看。(鲁迅)

概率统计数学模型

概率统计数学模型

概率统计数学模型在数学领域,概率统计是一个非常重要的分支,它涉及到各种随机现象的数学描述和统计分析。

概率统计数学模型则是这些分析的基础,它能够准确地描述和预测各种随机现象的结果。

一、概率统计数学模型的基本概念概率统计数学模型是建立在随机试验基础上的数据分析方法。

在概率论中,随机试验的结果通常被视为不可预测的,但可以通过概率分布来描述它们。

而统计方法则是对数据进行收集、整理、分析和推断的方法,它依赖于概率论的知识。

二、概率统计数学模型的应用概率统计数学模型在各个领域都有广泛的应用,例如在金融领域中,它可以帮助我们预测股票价格的波动;在医学领域中,它可以帮助我们理解疾病的传播方式;在工程领域中,它可以帮助我们优化设计方案。

三、概率统计数学模型的建立过程建立概率统计数学模型通常包括以下几个步骤:1、确定研究问题:首先需要明确研究的问题是什么,以及我们想要从中获得什么样的信息。

2、设计随机试验:针对研究问题,设计合适的随机试验,以便收集数据。

3、收集数据:通过试验或调查等方式收集数据,并确保数据的准确性和可靠性。

4、分析数据:利用统计分析方法对收集到的数据进行处理和分析,提取有用的信息。

5、建立模型:根据分析结果,建立合适的概率统计模型,以描述数据的分布规律和预测未来的趋势。

6、验证模型:对建立的模型进行验证,确保其准确性和适用性。

7、应用模型:将建立的模型应用于实际问题的解决和预测中。

概率统计数学模型是处理和分析随机现象的重要工具,它在各个领域都有广泛的应用前景。

通过建立合适的概率统计模型,我们可以更好地理解和预测各种随机现象的结果,从而为实际问题的解决提供有力的支持。

概率统计数学模型在投资决策中的应用在投资决策的制定过程中,准确理解和应用概率统计数学模型是至关重要的。

概率统计数学模型为投资者提供了定量分析工具,帮助他们更准确地预测投资结果,从而做出更合理的决策。

一、概率模型的应用概率模型在投资决策中的应用广泛。

数学建模—概率模型 ppt课件

数学建模—概率模型 ppt课件

数学建模—概率模型
v3统计图(examp05-03) v箱线图(判断对称性) v频率直方图(最常用) v经验分布函数图 v正态概率图(+越集中在参考线附近,越近似正态分布)
v4分布检验 vChi2gof,jbtest,kstest,kstest2,lillietest等 vChi2gof卡方拟合优度检验,检验样本是否符合指定分布。它把观测数据分 组,每组包含5个以上的观测值,根据分组结果计算卡方统计量,当样本够 多时,该统计量近似服从卡方分布。 vjbtest,利用峰度和偏度检验。
3 单因素一元方差分析步骤
( example07_01.m 判断不同院系成绩均值是否相等)
数据预处理
正态性检验 lillietest (p>0.05接受)
方差齐性检验 vartestn (p>0.05接受)
方差分析
anoval (p=0 有显著差别)
多重比较:两两比较,找出存在显著差异的学院,multcompare
构造观测值矩阵,每一列对应因素A的一个水平,每一行对应因素B的一个
水平
方差分析
anova2 得到方差分析表
方差分析表把数据差异分为三部分(或四部分): 列均值之间的差异引起的变差 列均值之间的差异引起的变差 行列交互作用引起的变差 (随机误差) 后续可以进行多重比较,multcompare,找出哪种组合是最优的
Computer Science | Software Engineering & Information System
数学建模—概率模型
目的:用一个函数近似表示变量之间的不确定关系。 1 一元线性回归分析 做出散点图,估计趋势;计算相关系数矩阵; regress函数,可以得到回归系数和置信区间,做残差分析,剔除异常点,重 新做回归分析 Regstats 多重线性或广义回归分析,它带有交互式图形用户界面,可以处 理带有常数项、线性项、交叉项、平方项等模型 robustfit函数:稳健回归(加权最小二乘法)

概率统计模型决策模型教学课件

概率统计模型决策模型教学课件

THANKS FOR WATCHING
感谢您的观看
过程能力分析
通过概率统计模型分析生产过程中的能力指数,评估生产 过程的稳定性和可靠性,为生产计划的制定提供依据。
故障模式分析
使用概率统计模型对生产过程中出现的故障模式进行分析 ,找出故障原因和解决方法,提高生产效率和产品质量。
在医疗诊断中的应用
疾病预测
基于大数据和概率统计模型,可以对患者的疾病风险进行预测和分 析,为医生提供更加准确的诊断依据。
不确定决策模型
不确定决策模型的概述
不确定决策模型是指在决策过程中,各种因素的发生概率是未知的,决策者需要 根据历史数据和经验进行推断。
不确定决策模型的应用场景
不确定ห้องสมุดไป่ตู้策模型广泛应用于风险管理、预测等领域,如天气预报、市场预测等。
基于偏好关系的决策模型
基于偏好关系的决策模型的概述
基于偏好关系的决策模型是指在决策过程中,决策者根据自身偏好进行决策,这些偏好关系可以用数学模型表示 。
02
概率统计模型在科学、工程、医 学等领域有广泛的应用,为决策 提供科学依据。
概率统计模型的基本概念
01
02
03
04
随机试验
指可能出现不同结果的事件, 且每个结果的出现具有不确定
性。
随机事件
指随机试验中可能出现的观察 结果,如扔硬币的正面或反面

概率
指随机事件发生的可能性,用 介于0和1之间的实数表示。
平均数
所有变量值的和除以变量值的 个数,反映变量的集中趋势。
标准差
衡量变量值离散程度的指标, 反映变量的波动大小。
推论性统计模型
参数估计
根据样本数据推断总体参数的方法, 如点估计和区间估计。

《概率统计模型》课件

《概率统计模型》课件
回归分析在市场预测中的应用还包括价 格分析、消费者行为分析等方面。
在市场营销领域,回归分析可以用于预 测产品需求、销售量、市场份额等方面 。
通过回归分析,企业可以了解市场趋势 ,制定有针对性的营销策略,提高市场 竞争力。
THANKS FOR WATCHING
感谢您的观看
03
统计方法在医学领域的应用还包括疾病预测、诊断和治疗效果评估等 方面。
04
统计方法在医学领域的应用有助于提高医学研究的准确性和可靠性。
回归分析在市场预测中的应用
回归分析是一种常用的统计分析方法, 用于探索变量之间的关系,并对未来趋 势进行预测。
回归分析在市场预测中的应用有助于企 业做出科学合理的决策,提高市场占有 率和盈利能力。
详细描述
时间序列分析涉及对按时间顺序排列的数据 进行统计处理,以揭示其内在的规律和特性 。这种方法广泛应用于金融、气象、医学等 领域,用于预测未来趋势和进行决策分析。
06 案例研究
概率论在金融中的应用
概率论在金融领域中有着 广泛的应用,如风险评估 、投资组合优化、期权定 价等。
概率论在金融领域的应用 还包括信用评级、保险精 算、风险管理等方面。
描述随机变量取值的平均水平和分散程度。
常见的随机变量分布
二项分布、泊松分布、正态分布等。
02 统计推断
参数估计
参数估计的概念
参数估计是用样本信息来估计总体参 数的过程,是统计推断的重要内容之 一。
点估计
点估计是指用一个单一的数值来估计 总体参数,常用的方法有矩估计和极 大似然估计。
区间估计
区间估计是指用一个区间范围来估计 总体参数,常用的方法有置信区间和 预测区间。
假设检验的步骤

概率统计模型决策模型课件

概率统计模型决策模型课件

案例三:市场预测决策
பைடு நூலகம்
总结词
通过概率统计模型,可以帮助企业了解 市场趋势和消费者需求,为产品研发、 市场营销等提供决策支持。
VS
详细描述
市场预测决策需要考虑消费者行为、市场 趋势等因素。利用概率统计模型,可以对 历史数据和消费者行为进行分析,预测未 来市场趋势和消费者需求,为产品研发、 市场营销等提供决策支持。
案例二:生产计划制定决策
总结词
通过概率统计模型,可以帮助企业根据市场需求和生产能力制定合理的生产计划,提高生产效率和降 低成本。
详细描述
生产计划制定决策需要考虑市场需求、库存状况、生产能力等因素。利用概率统计模型,可以对历史 销售数据进行分析,预测未来市场需求,同时根据生产能力等因素进行生产计划安排,实现生产效益 最大化。
决策模型是指用来描述一个系统或者过程的一系列数学方程和算法,它可以帮助 我们理解和预测系统的行为。
决策模型通常包括三个主要部分:输入、处理和输出。输入部分包括所有可能影 响决策的因素,处理部分包括决策规则和算法,输出部分则是决策结果。
决策模型的应用领域
决策模型被广泛应用于各种领域,如金 融、医疗、军事、环境保护等。
案例四:质量控制决策
总结词
通过概率统计模型,可以帮助企业实现产品 质量控制和优化生产过程,提高产品质量和 生产效益。
详细描述
质量控制决策需要考虑产品质量、生产过程 等因素。利用概率统计模型,可以对生产过 程数据进行统计分析,找出影响产品质量的 关键因素,实现产品质量控制和优化生产过 程,提高产品质量和生产效益。
概率统计模型的基本概念
01
02
03
04
概率
描述随机事件发生的可能性大 小。

数学建模方法之概率统计分析法

数学建模方法之概率统计分析法
z 0.044568X1 0.039443X 2 0.106057X 3 0.56514X 4 0.959439X 5 0.0.055029X 6
Obs
Prin1 Prin2 Prin3 Prin4 Prin5 Prin6 1 -0.38118 -0.32367 -0.04450 0.30363 0.00430 0.06437 2 0.57795 -0.35416 0.49279 0.55119 -0.18726 0.17414 3 0.69219 -0.21588 0.40557 0.40041 -0.10461 0.05393 4 0.22635 -0.39419 0.27521 0.63296 0.13851 -0.06481 5 -0.82981 -0.40293 0.47330 -0.42964 -0.55401 -0.35020 6 -1.19410 -0.40627 -0.36848 0.14000 0.02221 0.01063 7 -1.63568 -0.26394 -0.67179 -0.15189 0.01702 -0.03769 8 0.95195 -0.46156 1.61851 -0.92520 0.08394 0.25530 9 0.46501 -0.14888 0.19070 0.16273 -0.30327 0.20883 10 -1.45693 -0.18670 -0.55658 -0.17088 -0.10267 -0.00922 11 -0.29401 3.71727 -0.02727 -0.02382 -0.06419 0.03517 12 0.08041 0.22542 1.71694 0.12718 0.45539 -0.26668 13 -2.11628 -0.16312 -0.90179 -0.16784 0.14422 -0.03334 14 -0.94513 -0.31477 -0.39513 0.09760 0.11375 -0.03132 15 6.74015 -0.06989 -1.12895 -0.16618 0.04080 -0.11394 16 -0.88090 -0.23673 -1.07853 -0.38025 0.29589 0.10482

数学建模案例分析4足球门的危险区域--概率统计方法建模

数学建模案例分析4足球门的危险区域--概率统计方法建模

§4 足球门的危险区域一、问题提出在足球比赛中,球员在对方球门前不同的位置起脚射门对对方球门的威胁是不一样的。

在球门的正前方的威胁要大于在球门两侧射门;近距离的射门对球门的威胁要大于远射。

已知标准球场长为104米,宽为69米;球门高为2.44米,宽为7.32米。

实际上,球员之间的基本素质可能有一定差异,但对于职业球员来讲一般可以认为这种差别不大。

另外,根据统计资料显示,射门时球的速度一般在10米/秒左右。

下面要建模研究下列问题:(1)针对球员在不同位置射门对球门的威胁度进行分析,得出危险区域;(2)在有一名守门员防守的情况下,对球员射门的威胁度和危险区域作进一步研究。

二、问题分析根据这个问题,要确定球门的危险区域,也就是要确定球员射门最容易进球的区域。

球员无论从哪个地方射门,都有进与不进两种可能,这本身就是一个随机事件,无非是哪些地方进球的可能性最大,即是最危险的区域。

影响球员射门命中率的因素很多,其中最重要的两点是球员的基本素质(技术水平)和射门时的位置。

对每一个球员来说,基本素质在短时间内是不可能改变的,因此,我们主要是在确定条件下,对射门位置进行分析研究。

也就是说,我们主要是针对同素质的球员在球场上任意一点射门时,研究其对球门的威胁程度。

某一球员在球门前某处向球门内某目标点射门时,该球员的素质和球员到目标点的距离决定了球到达目标点的概率,即命中球门的概率。

事实上,当上述两个因素确定时,球飞向球门所在平面上的落点将呈现一个固定的概率分布。

稍作分析容易断定,该分布应该是二维正态分布,这是我们解决问题的关键所在。

球员从球场上某点射门时,首先必定在球门平面上确定一个目标点,射门后球依据该概率分布落入球门所在平面。

将球门视为所在平面上的一个区域,在区域内对该分布进行积分,即可得到这次射门命中的概率。

然而,球员在选择射门的目标点时是任意的,而命中球门的概率对目标点的选择有很强的依赖性。

这样,我们遍历球门区域内的所有点,对命中概率作积分,将其定义为球场上某点对球门的威胁程度,根据威胁度的大小来确定球门的危险区域。

概率统计模型决策模型教学课件

概率统计模型决策模型教学课件

金融领域应用
风险评估与管理
概率统计模型用于评估金融风险,如股票价格波动、 信用风险等,帮助投资者制定风险管理策略。
投资组合优化
决策模型可以帮助投资者优化投资组合,实现风险和 收益的平衡。
保险精算
概率统计模型用于精算保险费和赔付概率,为保险公 司提供科学决策依据。
医学领域应用
疾病预测与预防
基于概率统计模型的疾病预测可以帮助医生 制定预防措施,降低发病率。
2
参数估计
讲解参数估计的基本原理和方法,包括 最大似然估计和最小二乘法等,通过实 例演示如何使用参数估计对未知参数进 行估计和误差分析。
3
假设检验
介绍假设检验的基本原理和常见假设检 验方法(如Z检验、t检验、卡方检验等 ),通过实例演示如何使用假设检验对 数据进行分析和推断。
决策模型案例
线性规划
介绍线性规划的基本原理和求解方法,通过实例演示如何使用线性规划解决资源分配和 生产计划等问题。
主成分分析模型
总结词
主成分分析模型是一种降维技术,通过找到数据的主要成分 来减少变量的数量。
详细描述
主成分分析模型通过将原始变量转换为新的正交变量(主成 分),使得新的变量能够最大程度地保留原始数据的变异信 息,同时减少变量的数量。该模型适用于处理高维数据集。
04
常用决策模型
决策树模型
01
决策树模型是一种常用的分类和回归方法,通过树状图的形式 展示决策过程。
决策树
讲解决策树的基本原理和构建方法,通过实例演示如何使用决策树解决分类和回归问题 ,并讨论如何评估和优化决策树的性能。
贝叶斯网络
介绍贝叶斯网络的基本原理和构建方法,通过实例演示如何使用贝叶斯网络进行概率推 理和决策分析,并讨论如何处理不确定性和不完整性。

概率统计模型 ppt课件

概率统计模型 ppt课件
如果水果店现已有n百千克水果,那么再进1百 千克水果,从而就存有n+1百千克水果。
2020/4/13
信息工程大学 韩中庚
7
1、初等概率模型
问题1:水果店的合理进货模型
首先给出以下两个概念:
边际利润(Marginal Profit):由所增加的1个
单位水果带来的纯利润,记为MP。
边际损失(Marginal Loss):由所增加的1个
1、初等概率模型
问题1:水果店的合理进货模型
某时令水果店每售出一百千克水果,可以获得 利润250元,若当天进货不能出售出去,则每一 百斤将损失325元。该水果店根据预测分析,每 天的需求量和对应的概率值如下表:
水果需求量/百千克 0
1
相应的概率值 0.05 0.1
2
3
4
5
6 78
0.1 0.25 0.2 0.15 0.05 0.05 0.05
损失,即不考虑缺货所带来的损失。 (2)水果店的纯利润为卖出水果后所获利润与
因未卖出的水果所带来的损失部分之差。
2020/4/13
信息工程大学 韩中庚
2
1、初等概率模型
问题1:水果店的合理进货模型
模型的建立与求解 :利用概率知识及经济学中边际 分析的方法,综合分析讨论这个问题。
不妨记需求量为随机变量 ,则需求量的期望值 为 E( ) 3.65 。
E () 0 .0 5 ( 6 5 0 ) 0 .1 ( 7 5 ) 0 .1 5 0 0 0 .2 5 5 0 0 0 .2 5 0 0
0 .1 5 5 0 0 0 .0 5 5 0 0 0 .0 5 5 0 0 0 .0 5 5 0 0 3 8 5
2020/4/13

《概率统计模型》PPT课件

《概率统计模型》PPT课件

价格差 x1=0.1 yˆ x10.1 30.2267 7.7558x2 0.6712x22
价格差 x1=0.3 yˆ x10.3 32.4535 8.0513x2 0.6712x22
x2 7.5357

yˆ yˆ x10.3
10.5
x10.1 10
价格优势会使销售量增加 9.5 9
)
E
2
(t
)
E 率E(t)+(t)
n1
D(t)
n0
e [e ( )t ( )t
1]
n0
E(t)-(t)
0
t
X(t)大致在 E(t)2(t) 范围内( (t) ~均方
差)
- = r
,
D(t)
D(t)
§3 牙膏的销售量
问 建立牙膏销售量与价格、广告投入之间的模型 题 预测在不同价格和广告费用下的牙膏销售量
y的90.54%可由模型确定 F远超过F检验的临界值
p远小于=0.05
模型从整体上看成立
2的置信区间包含零点 (右端点距零点很近)
x2对因变量y
的影响不太显
x22项显著
著可将x2保留在模型中
销售量预测 yˆ ˆ0 ˆ1x1 ˆ2x2 ˆ3x22
价格差x1=其它厂家价格x3-本公司价格x4
估计x3 调整x4 控制x1
通过x1, x2预测y
控制价格差x1=0.2元,投入广告费x2=650万元
yˆ ˆ0 ˆ1x1 ˆ2x2 ˆ3x22 8.2933 (百万支)
销售量预测区间为 [7.8230,8.7636](置信度95%)
上限用作库存管理的目标值 下限用来把握公司的现金流
若估计x3=3.9,设定x4=3.7,则可以95%的把握知

概率统计模型(数学建模)

概率统计模型(数学建模)
一周期内通过的钩子数 m 增加一倍,可使“效率”E 降低 一倍。(可理解为相反意义的效率)
思考: 如何改进模型使“效率”降低?
考虑通过增加钩子数来使效率降低的方法:
在原来放置一只钩子处放置的两只钩子成为一个钩对。一
周期内通过 m 个钩对,任一钩对被任意工人触到的概率
p 1/ m ,不被触到的概率 q 1 p,于是任一钩对为空的概率
工人生产周期相同,但由于各种因素的影响,经过相 当长的时间后,他们生产完一件产品的时刻会不一致, 认为是随机的,并在一个生产周期内任一时刻的可能 性一样。
由上分析,传送系统长期运转的效率等价于一周期的效 率,而一周期的效率可以用它在一周期内能带走的产品 数与一周期内生产的全部产品数之比来描述。
2 模型假设

r
Gn
n
0
a
b
r
b
c
n
r
pr
dr
n
a
b
npr
dr
计算
dG dn
a
bnpn
n
0
b
cprdr
a
bnpn
n
a
b
pr
dr
b
c n 0
pr dr
a
b n
pr dr
令 dG 0 ,得到 dn
n
0
n
pr dr pr dr
a b
b c
使报童日平均收入达到最大的购进量 n 应满足上式。
因为
0
pr dr
统计模型
如果由于客观事物内部规律的复杂性及人们认识程度的限 制,无法分析实际对象内在的因果关系,建立合乎机理规 律的模型,那么通常要搜集大量的数据,基于对数据的统 计分析建立模型,这就是本章还要讨论的用途非常广泛的 一类随机模型—统计回归模型。

数学建模 概率方法

数学建模 概率方法
1 Xi = 0 第i站有人下车 i站有人下车 第i站无人下车 i = 1,2,L,10
则由题意可知:
X = ∑ Xi
i =1
10
因为每位乘客在每一车站下车是等可能的,所 9 以每一位乘客在第i站不下车的概率为 10 , 5
9 20 于是20位乘客在第i站都不下车的概率为( ) , 9 20 10 在第i站有人下车的概率为1− ( ) ; 10
P2 由(3-4)式给出。
为了得到简明便于解释的结果,需对(3-4) 式进行简化。 因为通常n》m,n》1,取(3-4)式右端展开级 数的前两项
P2 ≈ 1 − (1 −
最后得到
λ mi
n
+ L) ≈
λ mi
n
(3 − 7)
µ=
λ mi (n − i )
n
(3 − 8)
22
1 − P2 n − λmi σ = = µ (n − i ) P λmi (n − i )
1
设A表示“第二次取出的球都是新球”的事件;
Bi (i=0,1,2,3)表示“第一次比赛时用了i个 新球”的事件
则由题意得:
3 C 9i C 3 − i p ( Bi ) = 3 C12 于是由全概率公式
p( A|Bi ) =
3
3 C 9− i 3 C12
p( A) = p( AB0 + AB1 + AB2 + AB3 ) = ∑ p( Bi ) p( A|Bi )
i
λm
n −1
)
i
(3 − 4)
健康人被感染的人数也服从二项分布,其平均 值为µ,即健康人每天平均被感染人数,利用假设 (1)显然
µ = sP2 = (n − i ) P 2

概率统计模型

概率统计模型

第五章 概率统计模型本章重点: 初等概率模型 随机性决策模型 随机型存储模型 排队模型复习要求:1.会建立简单的初等概率模型。

2.掌握随机性决策模型的建立与求解方法,了解随机性存储模型。

3.了解排队模型,会用排队模型中的简单结论求解相关问题。

一、初等概率模型初等概率模型主要介绍了可靠性模型、传染病流行估计、常染色体遗传模型等三类问题,下面复习遗传模型1.问题分析所谓常染色体遗传,是指后代从每个亲体的基因中各继承一个基因从而形成自己的基因型.如果所考虑的遗传特征是由两个基因A 和B 控制的,那么就有三种可能的基因型:AA ,AB 和BB .例如,金鱼草是由两个遗传基因决定它开花的颜色,AA 型开红花,AB 型的开粉花,而BB 型的开白花.这里的AA 型和AB 型表示了同一外部特征(红色),则人们认为基因A 支配基因B ,也说成基因B 对于A 是隐性的.当一个亲体的基因型为AB ,另一个亲体的基因型为BB ,那么后代便可从BB 型中得到基因B ,从AB 型中得到A 或B ,且是等可能性地得到.问题:某植物园中一种植物的基因型为AA ,AB 和BB .现计划采用AA 型植物与每种基因型植物相结合的方案培育植物后代,试预测,若干年后,这种植物的任一代的三种基因型分布情况.2.模型假设(1)按问题分析,后代从上一代亲体中继承基因A 或B 是等可能的,即有双亲体基因型的所有可能结合使其后代形成每种基因型的概率分布情况如表5-1.表5-1(2) 以n n b a ,和n c 分别表示第n 代植物中基因型为AA ,AB 和BB 的植物总数的百分率,)(n x 表示第n 代植物的基因型分布,即有,)(⎪⎪⎪⎭⎫ ⎝⎛=nnn n c b a x,2,1,0=n (5 .1) 特别当n =0时,Tc b a x),,(000)0(=表示植物基因型的初始分布(培育开始时所选取各种基因型分布),显然有.1000=++c b a3.模型建立注意到原问题是采用AA 型与每种基因型相结合,因此这里只考虑遗传分布表的前三列. 首先考虑第n 代中的AA 型,按上表所给数据,第n 代AA 型所占百分率为1110211---⋅+⋅+⋅=n n n n c b a a即第n-1代的AA 与AA 型结合全部进入第n 代的AA 型,第n -1代的AB 型与AA 型结合只有一半进入第n 代AA 型,第n -1代的BB 型与AA 型结合没有一个成为AA 型而进入第n 代AA 型,故有1121--+=n n n b a a (5 .2)同理,第n 代的AB 型和BB 型所占有比率分别为1121--+=n n n c b b (5 .3)0=n c (5 .4)将(5.2)、(5.3)、(5.4) 式联立,并用矩阵形式表示,得到,)1()(-=n n Mxx,2,1( =n (5 .5)其中⎪⎪⎪⎭⎫ ⎝⎛=00012/1002/11M 利用(5 .5)进行递推,便可获得第n 代基因型分布的数学模型)0()2(2)1()(xM xM Mxxn n n n ====-- (5 .6)(5.6)式明确表示了历代基因型分布均可由初始分布)0(x 与矩阵M 确定.4.模型求解这里的关键是计算n M .为计算简便,将M 对角化,即求出可逆阵P ,使Λ=-MP P 1,即有1-Λ=PP M从而可计算 1-Λ=P P Mn n),2,1( =n其中Λ为对角阵,其对角元素为M 的特征值,P 为M 的特征值所对应的特征向量.分别为,11=λ 212=λ,03=λ⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=121,011,001321p p p故有1100210111,0211-=⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎭⎫⎝⎛=ΛP P 即得⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=1002101110211100210111nnM⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=--0021210211211111n nn n于是 ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛=--00011)(0021212112111c b a c b a x n n n nn n n n 或写为⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=--=--0)21()21()21()21(101010n n n n n n nc c b b c b a 由上式可见,当∞→n 时,有0,0,1→→→n n n c b a即当繁殖代数很大时,所培育出的植物基本上呈现的是AA 型,AB 型的极少,BB 型不存在.5.模型分析(1)完全类似地,可以选用AB 型和BB 型植物与每一个其它基因型植物相结合从而给出类似的结果.特别是将具有相同基因植物相结合,并利用前表的第1、4、6列数据使用类似模型及解法而得到以下结果:000021,0,,21b c c b b a a n n n +→→+→这就是说,如果用基因型相同的植物培育后代,在极限情形下,后代仅具有基因AA 与BB ,而AB 消失了.(2)本例巧妙地利用了矩阵来表示概率分布,从而充分利用特征值与特征向量,通过对角化方法解决了矩阵n 次幂的计算问题,可算得上高等代数方法应用于解决实际的一个范例.例2 血友病也是一种遗传疾病,得这种病的人由于体内没有能力生产血凝块因子而不能使出血停止.很有意思的是,虽然男人及女人都会得这种病,但只有女人才有通过遗传传递这种缺损的能力.若已知某时刻的男人和女人的比例为1:1.2,试建立一个预测这种遗传疾病逐代扩散的数学模型.解 假设有α%的人患有血友病,并假设下一代与上一代虽人数可能不等,但所生男女比例一样.基于这样一个假设,不妨设下一代男女与上一代相同,设初始第一代男女分别占总人数的比例占总人数的比例为 a 0,b 0,由题设,a 0:b 0=1:1.2.注意到只有女人遗传血友病,由此,第一代将有%210αb 个女人及%210αb 个男人有血友病,血友病占总人数的百分比为%2.22.1%0001αα=+=b a b c同理,第二代将有%21210αb ⋅个女人及%21210αb ⋅个男人有血友病,血友病占总人数的百分比为 %2.22.121%210002αα⋅=+=b a b c依次类推,第n 代将有%)21(0αb n个女人及%)21(0αb n个男人有血友病,血友病占总人数的百分比为%2.22.1)21(%)21(10001αα⋅=+=--n n n b a b c令∞→n ,则0→n c .二、随机性决策模型决策是人们在政治、经济、军事和日常生活等多方面普遍存在的一种选择方案的行为. 决策按环境而言,可以分为确定型,不确定型和风险型,其中风险型决策的决策类型是最常见的,.所谓风险型决策是指在作出决策时,往往有某些随机性的因素影响,而决策者对于这些因素的了解不足,但是对各种因素发生的概率已知或者可估算出来,因此这种决策因存在一定的风险.1.风险决策模型的基本要素(1) 决策者 进行决策的个人、委员会或某个组织.在问题比较重大和严肃时,通常应以后者形式出现.(2) 方案或策略 参谋人员为决策者提供的各种可行计划和谋略. 如渔民要决定出海打鱼与否便是两个方案或称两个策略.(3) 准则 衡量所选方案正确性的标准.作为风险型决策,采用的比较多的准则是期望效益值准则,也即根据每个方案的数学期望值作出判断.对收益讲,期望效益值越大的方案越好;反之对于损失来讲,期望效益值越小的方案越好.(4) 事件或状态 不为决策者可控制的客观存在的且将发生的自然状态称为状态(事件),如下小雨,下大雨和下暴雨即为三个事件或称三种状态,均为人所不可控因素.(5) 结果 某事件(状态)发生带来的收益或损失值. 2.风险决策方法(1)利用树形图法表示决策过程具有直观简便的特点,将其称为决策树的方法. (2) 充分利用灵敏度分析(即优化后分析)方法对决策结果作进一步的推广和分析. 其中的决策树概念先以一实例说明如下:例3 某渔船要对下个月是否出海打鱼作出决策.如果出海后是好天,可获收益5000元,若出海后天气变坏,将损失2000元;若不出海,无论天气好坏都要承担1000元损失费.据预测下月好天的概率为0.6,天气变坏的概率为0.4,应如何选择最佳方案?这里使用决策树方法进行决策. 先来说明决策树的画法 .先画一方块“囗”称为决策结点,由决策结点向右引出若干条直线表示不同的策略(方案)--称为策略分枝,策略分枝的右端画一个圆圈“○”称为状态结点,由它引出表示不同状态及其发生的概率的分枝称为概率分枝,最后在概率分枝的终点画“△”符号表示这一分枝的最终结果的效益值(期望值),正值表收益,负值表示损失.本例对应的决策树如图5-1.图5-1值得指出的是,画决策树是从左向右画出,画的过程中将各种已知数据标于相应的位置上. 但在决策树上进行决策计算却是从右向左进行的:先计算最右端每个状态结点的期望值. 由于本例仅有两个从决策结点A 发出的状态结点——称为一级决策问题,故只需利用结果点效益值计算各状态结点的期望效益值即可. 当有两级以上决策时则需从右向左逐级计算.2200)4.0()2000(6.05000=⨯-+⨯=-X将此结果标记在状态结点B 的上方.同理,将不出海的效益值作为随机变量,可算得期望值为-1000,将其标记在结点C 的上方,便得到图5-2.图5-2比较这两个值,显然出海收益的数学期望值大.从而剪去不出海决策枝(见图5-2)而选择出海作为最终决策,效益期望值为2200元. 实际中常会遇到多阶段决策.例4 假设有一笔1000万元的资金于依次三年年初分别用于工程A 和B 的投资.每年初如果投资工程A ,则年末以0.4的概率回收本利2000万元或以0.6的概率分文不收;如果投资工程B ,则年末以0.1的概率回收2000万元或以0.9的概率回收1000万元.假定每年只允许投资一次,每次只投1000万元;试确定第3年末期望资金总数为最大的投资策略. 解 建立决策树(如图3).图3在投资A 的决策树中,第一年投资A ,第二年投资B ,第三年投资B 的期望值最大. 在投资B 的决策树中(只在A 的决策树中②节点中的0.4,0.6分别换成0.1,0.9即可),可算得第一年投资B ,第二年投资B ,第三年投资B 的期望值是两个决策树中的最大者.三、随机型存储模型存储问题的数学模型涉及以下的主要经济变量:1.需求量:某种物资在单位时间内的需求量,以D 表示,如年需求量、月需求量、日需求量.需求量有时是常量,而在许多情况下则是随机变量,这时它的变化规律应当是能够掌握的.对需求量进行科学地预测和估计是解决存储问题的重要依据.2.批量:为补充存储而供应一批物资的数量称为批量,以Q 表示.由外部订货供应的批量称为订货批量;由内部生产供应的批量称为生产批量.3. 货点;为补充存储而发生订货时的存储水平,以R 表示.4.备运期:发生订货的时间与实际收到订货入库的时间的间隔.5.存储费:保管存货的费用,包括存储所占用资金的利息、仓库和场地费用、物资的存储损耗2000 0 20001000 2000 4000 4000 3000 1000 30003000 2000费用、物资的税金、保险费用等,以1C表示.6.订货费:为补充存储而订货所支付的费用,包括准备和发出订货单的费用、货物的堆放和装运的费用等,以K表示.7.缺货损失费:发生需求时,存储不能提供而引起的费用,包括利润的损失、信誉的损失、停工待料的损失以及没有履行交货合同的罚款等,以2C表示.存储费、订货费和缺货损失费构成了库存的总费用,即总费用=存储费+订货费+缺货损失费. 使总费用最小是建立和求解存储模型的主要目标.为实现该目标,需要确定批量和订货点,这就是所谓存储决策.批量与订货点即决策变量.因而存储模型的主要形式有:总费用=f(批量)或总费用=f(批量,订货点),即F=f(Q)或F=f(Q,R).为了更具体理解随机性存储模型,先来看一个具体实例.例5 考察报童问题.报童每日早晨从报社以每份报纸0.30元的批发价购得当日的日报,然后以每份0.45元的零售价售出.若卖不完,则每份报纸的积压损失费为0.30元;若不够卖,则缺一份报纸造成潜在损失的缺货损失费为0.15元.该报童对以往的销量作了连续一个月的统计,其记录如表5-2所示.表5-2那么,报童每日应订多少份报纸,才能使总损失费最小?假定报童每日订报Q份,并设当日需求量为D,则当DQ≥时,积压损失费为)(30.0DQF-=;当DQ<时,缺货损失费为)(15.0QDF-=.于是可以将报童订报的决策与相应的总费用如表5-3所示表5-32.1元.下面建立这一报童问题模型的数学解析式,用求极值的方法求解最小损失总费用.设平均总费用为)(QTF,则∑∑≤>-+-=QD QDDPQDDPDQQTF)()(15.0)()(30.0)(.(5.41)为求使)(QTF最小的Q值,解下列不等式组:⎪⎩⎪⎨⎧≤+-≤--.0)()(0)()(d Q TF Q TF d Q TF Q TF 其中 ,10|}{|min =-=≠D Q d DQ 且 }.160,150,140,130,120{=∈±S d Q上式等价于⎪⎩⎪⎨⎧≥-≤-∑∑∑∑≤>-≤->QD Q D d Q D d Q D D P D P D P D P .0)(15.0)(30.00)(15.0)(30.0即⎪⎩⎪⎨⎧≥-⋅+≤-⋅+∑∑≤-≤Q D dQ D D P D P .015.0)()15.030.0(015.0)()15.030.0( 故∑∑≤-≤≤≤QD dQ D D P D P ).(31)( (5.7)亦即).()120(3333.0)()120(Q P P d Q P P ++≤≤-++由于 130,35.0)130()120(15.0)120(==+=Q P P P 因此且. 可以看到,上述结果与通过列表得到的结果是一致的.报童问题是一个离散型问题.若考虑相应的连续型问题,则类似于(5.7)式的总费用公式为⎰⎰+∞---=QQx d x P Q x x d x P x Q Q TF 0).()()(15.0)()()(30.0)(这里,)(x P 为一定时期内销售量的概率密度.为求总费用的最小值,令.0)(=dQQ dTF得⎰=-+Qx d x P 0.015.0)()()15.030.0(于是.31)()(*⎰=Qx d x P问题的关键成为如何从这个积分等式中求出*Q ,其求法通常用迭代法利用求极值的数学方法求解存储模型,这是解决存储问题的主要思路.尤其对于连续型存储模型,用求极值的方法求解模型就显得更为有效和更为重要.存储问题中的随机性主要由以下两个因素产生;第一,对物资的需求量经常发生随机波动;第二,订货的到达时间经常发生随机性的提前或推迟.下面将给出需求不确定的随机性存储模型.(一)允许缺货情形由于需求量是随机的,所以,可考虑其平均需求量,而且不允许缺货也只是指在一定置信度下的不允许缺货.设D 为年平均需求,则类似于确定性存储的EOQ 模型,可得到相应的最佳批量*Q 如下:.21*C KD Q =(5.8)这里,K 为一次定购费,1C 为该种物资一个单位存储一年的费用.为在一定置信度下对不缺货提供安全保证,可将安全库存量加到正常存货中以提供所希望达到的服务水平(即不缺货的概率).这时,有βσ+=l R . (5.9)式中,R 为订货点,σ和l 分别为备运期内的销售量L 的均值与均方差,β为安全库存系数,βσ为安全库存量.安全库存系数β即为给定置信度α-1下的上100α百分位点,其值满足等式αβ=>)(X P ,可通过查概率分布表得到.因此,订货策略为,当备运期大于零时,若存储量降低到R ,则以*Q 为订货量进行订货. 例6. 设某公司订购一种备件,一次订货费为60元,年平均需求量为500件,每件年存储费为40元,备运期8天,备运期中的销售量服从均值为15、均方差为2的正态分布.为使不缺货的概率达到99.9%且总费用最小,问订货点是多少,每次订多少件?注意到 D=500件/年,K=60元,1C =40元,则3940500602*≈⨯⨯=Q 件.根据不缺货的概率达到99.9%,查正态分布表得β=3,订货点为212315=⨯+=R 件.故订货点为21件,每次订货39件. (二)允许缺货情形设1,,C K D 同前,2C 为单位缺货损失费,并设存储量降到R 时订货,订货数量为Q ,备运期中的需求量x 服从密度为)(x f 的分布函数)(x F ,则在缺货要补的情况下,订货刚到之前的平均存储量(平均最小存储量)与订货刚到之后的平均存储量(平均最大存储量)分别为⎰⎰-+-RRdx x f x R Q dx x f x R 0)()()()(与,则年平均存储量为⎰-+Rdx x f x R Q 0)()(2.年平均存储费为 ⎪⎭⎫⎝⎛-+⎰Rdx x f x R Q C 01)()(2.年平均订货费为KD/Q.当备运期中的需求量超过订货点R 时,就发生缺货,因此,缺货量的均值为⎰∞-Rdx x f R x )()(.故年平均缺货损失费为⎰∞-Rdx x f R x QD C )()(2.于是年总费用),(Q R TF 为⎰⎰∞-+⎪⎭⎫⎝⎛-++=RRdx x f R x QD C dx x f x R Q C Q KDQ R TF .)()()()(2),(201 (5.10)为求),(Q R TF 的最小值,令⎰⎰∞=-=∂∂RRdx x f QD C dx x f C RQ R TF 0210)()(),(. (5.11)可得⎰-=RDC Q C dx x f 0211)(. (5.12)由(5.12)得12)()(2C dx x f R x C K D Q R ⎪⎭⎫ ⎝⎛-+=⎰∞.故解得最佳批量*Q 与订货点*R 满足如下方程组:{}())14.5()13.5()](1[)(21)(1221⎪⎪⎩⎪⎪⎨⎧--+=-=⎰∞C R F R dx x xf C KD Q DC Q C R F R最佳批量*Q 和订货点*R 可按以下步骤解出:(1)取112C KD Q =;(2) 将1Q Q =代入(5.13)求R 1; (3) 将R =1R 代入(5.14)求2Q ; (4) 将2Q 代入(5.13)。

数学建模简明教程课件:概率模型

数学建模简明教程课件:概率模型
33
31
图 7-4
32
5.决策树的优缺点
•决策树方法的优点:可以生成可以理解的规则;计 算量相对来说不是很大;可以处理连续和种类字段;决策 树可以清晰地显示哪些字段比较重要.
•决策树方法的缺点:对连续性的字段比较难预测; 对有时间顺序的数据,需要很多预处理的工作;当类别太 多时,错误可能就会增加得比较快;一般算法分类的时候 ,只是根据一个字段来分类.
(a b)np(r) d r
0
n
计算
(7.2.2)
d G (a b)np(n)
n
(b c) p(r) d r (a b)np(n)
(a b) p(r) d r
dn
0
n
n
(b c)0 p(r) d r (a b)n p(r) d r
18
令 d G 0 ,得到 dn
n
0
p(r)d r p(r)d r
14
2.问题的分析及假设
众所周知,应该根据需求量确定购进量.需求量是随机 的,假定报童已经通过自己的经验或其它的渠道掌握了需 求量的随机规律,即在他的销售范围内每天报纸的需求量 为r份的概率是f(r)(r=0,1,2,…).有了f(r)和a,b,c,就 可以建立关于购进量的优化模型了.
假设每天的购进量为n份,因为需求量r是随机的,故r 可以小于n、等于n或大于n,致使报童每天的收入也是随 机的.所以作为优化模型的目标函数,不能是报童每天的收 入,而应该是他长期(几个月或一年)卖报的日平均收入.
26
(4)设定变量: A——试销成功,——试销失败 B——大量销售成功,——大量销售失败
27
3.建立模型 先来计算两个概率,注意到P(A|B)=0.84,P(B)=0.6 ,P(A|)=0.36,代入贝叶斯概率公式:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


学 1)提前加班,确保工程在15天内完成,实施此方案需增加额外支付 建 18 000元。
模 2)先维持原定的施工进度,等到15天后根据实际出现的天气状况再
作对策:
a)若遇阴雨天,则维持正常进度,不必支付额外费用。
b)若遇小风暴,则有下述两个供选方案:一是抽空(风暴过后)施 工,支付工程延期损失费20 000元,二是采用应急措施,实施此措施 可能有三种结果:有50%的可能减少误工期1天,支付延期损失费和 应急费用24 000元;30%的可能减少误工期2天,支付延期损失费和 应急费用18 000元;有20%的可能减少误工期3天,支付延期损失费 和应急费用12 000元。



步骤如下:

1.画一个方框□作为出发点,称为决策点。 从决策点画出若干条直线或折线,每一条 代表一个行动方案,这样的直(折)线,称 为方案分枝。分枝数表示可能的行动方案 数。
2.在各方案分枝的末端画一个圆圈○,称 为状态节点或方案节点。从状态节点引出 若干条直线或折线,此分枝称为概率分枝。 每条线表示一种自然状态,在线旁边标出 相应状态发生的概率。


建 模
下面采用决策树法求解展销会选址问题
甲地
4.1
晴 P(N1)=0.2
△+4
A1
阴 P(N2)=0.5
△+6
多雨 P(N3)=0.1
△+1
4.1
3.45
晴 P(N1)=0.2
△+5
决 策
乙地 A2
阴 P(N2)=0.5
△+4
多雨 P(N3)=0.1
△+1.5
丙地
2.56 A3
晴 P(N1)=0.2 阴 P(N2)=0.5


1.最大可能准则
由概率论知识,一个事件的概率就是该事
件在一次试验中发生的可能性大小,概率越 大,事件发生的可能性就越大。基于这种思 想,在风险决策中我们选择一种发生概率最 大的自然状态来进行决策,而不顾及其他自 然状态的决策方法,这就是最大可能准则。 这个准则的实质是将风险型决策问题转化为 确定型决策问题的一种决策方法。
日常生活中经常遇到的一类问题。它是现代
企业管理的核心问题,贯穿于整个企业管理
的始终。本节将首先简要说明决策的概念和
分类,然后介绍风险型和不确定型决策模型
及其应用。


4.1.1 决策的概念和类型


所谓决策,就是从多个备选方案中,选择一个
最优的或满意的方案付诸实施。
例4.1.1(展销会选址问题) 某公司为扩大市场,要举办一个产品展销




3.在各概率分枝的末端画一个三角△,称为末稍
节点。把各方案在各种状态下的益损值标记在末
稍节点右边
4.在决策树上由右向左计算各状态点出的数学期 望值,并将结果标在状态节点上。遇到决策点则 比较各方案分枝的效益期望值以决定方案的优劣, 并且双线“++”划去淘汰掉的方案分枝,选出 收益期望值最大(或损失值最小)的方案作为最优 方案,将最优方案的期望值标在决策点的上方。
数学建模
(Mathematical Modeling)
数 学 建 模
概率统计模型



概率统计模型

决策模型
报纸零售商最优购报问题
经济轧钢模型
线性回归模型
排队论模型 建模举例
重点:概率统计模型的建立和求解 难点:概率统计模型的基本原理及数值计算

学 建
4.1 决策模型

决策问题是人们在政治、经济、技术和
4
6
1
A2(乙地)
5
4
1.5
A3(丙地)
6
2
1.2


建 模
决策的分类:1.确ຫໍສະໝຸດ 型决策——自然状态只有一种,即n=1;
2.风险型决策——n>1且各种自然状态出现的概率 Pj(j=1,2,…,n)可通过某种途径获得;
3.不确定型决策——各种自然状态下发生的概率 既不知道,也无法预先估计。

学 4.1.2 风险型决策问题
会,会址打算选择甲、乙、丙三地,获利情 况除了与会址有关外,还与天气有关,天气 分为晴、阴、多雨三种,据天气预报,估计 三种天气情况可能发生概率为0.2,0.5,0.3 其收益情况见表4.4.1,现要通过分析,确定 会址,使收益最大。
数 学
建 决策问题通常包含以下要素:

1.决策者 2.决策的备选方案或策略A1 , A2,…,Am 3.决策准则,即衡量所选方案正确性的标准。对
同一个决策问题,不同的决策准则将导致不同 的方案选择。 4.事件或自然状态N1 , N2 , …,Nn 5.结果,即某事件(状态)发生带来的收益或损失值




表 4.4.1
自然状态




收益值 概 率 选址方案
N1(晴) P1=0.20
N2(阴) P2=0.50
N3(多雨) P3=0.30
A1(甲地)
△+6 △+2
多雨 P(N3)=0.1
△+1.2

学 例4.4.1只包括一个决策点,称为单级决策问 建 题。在有些实际问题中将包括两个或两个以 模 上的决策点,称为多级决策问题,可利用同
样的思路进行决策。
例4.1.2 某工程采用正常速度施工,若无坏天气的 影响,可确保在30天内按期完成工程,但据天气预 报,15天后天气肯定变坏,有40%的可能出现阴雨 天气,但这不会影响工程进度,有50%的可能遇到 小风暴,而使工期推迟15天;另有10%的可能遇到 大风暴而使工期推迟20天。对于以上可能出现的情 况,考虑两种方案:


建 模
例如4.4.1投资决策问题若采用最大可能准则可得
P2 m1 jax3{Pj} 0.5
a12 m1iax3 {ai2} 6
因此方案A1最优。
应该指出的是:如果各种自然状态出现的概率比较 接近,此决策方法不宜采用。




2.期望值准则
如果把每个行动方案看作随机变量,在每个自 然状态下的效益值看作随机变量的取值,其概率 为自然状态出现的概率,则期望值准则就是将每 个行动方案的数学期望计算出来,视其决策目标 的情况选择最优行动方案。
数 学
建 例如,对例4.1.1按期望值准则进行决策,则需要 模 计算各行动方案的期望收益值,事实上
E(A1) 4 0.2 6 0.5 1 0.3 4.1 E(A2 ) 5 0.2 4 0.5 1.5 0.3 3.45 E(A3 ) 6 0.2 2 0.5 1.2 0.3 2.56
显然,E(A1) 最大,所以采取行动方案A1最佳, 即选择甲地举办展销会效益最大。
有些实际问题中,为了获得收益,还必须增加一定的投资, 这时,需从投资和收益两个方面综合考虑选择最优行动方案。




3. 决策树法
决策树法就是把各种备选方案、可能出现的状 态和概率以及产生的后果用树状图画出来(形象 地称为决策树或决策树图),然后根据期望值准 则进行决策的一种方法。
相关文档
最新文档