BP神经网络概述与程序说明
BP神经网络详解-最好的版本课件(1)
![BP神经网络详解-最好的版本课件(1)](https://img.taocdn.com/s3/m/3acd16013a3567ec102de2bd960590c69ec3d8b4.png)
月份 1
销量 月份 销量
2056 7
1873
2
2395 8
1478
3
2600 9
1900
4
2298 10
1500
5
1634 11
2046
6
1600 12
1556
BP神经网络学习算法的MATLAB实现
➢%以每三个月的销售量经归一化处理后作为输入
P=[0.5152
0.8173 1.0000 ;
0.8173
计算误差函数对输出层的各神经元的偏导
数
。 o ( k )
p
e e yio w ho y io w ho
(
yio(k) h who
whohoh(k)bo)
who
hoh(k)
e
yio
(12oq1(do(k)yoo(k)))2 yio
(do(k)yoo(k))yoo(k)
(do(k)yoo(k))f(yio(k)) o(k)
1.0000 0.7308;
1.0000
0.7308 0.1390;
0.7308
0.1390 0.1087;
0.1390
0.1087 0.3520;
0.1087
0.3520 0.0000;]';
➢%以第四个月的销售量归一化处理后作为目标向量
T=[0.7308 0.1390 0.1087 0.3520 0.0000 0.3761];
BP神经网络模型
三层BP网络
输入层 x1
x2
隐含层
输出层
-
y1
z1
1
T1
y2
z2
-
2
bp神经网络实例分析
![bp神经网络实例分析](https://img.taocdn.com/s3/m/c9dae3a6112de2bd960590c69ec3d5bbfc0ada6b.png)
数据集划分
01
02
03
训练集
用于训练神经网络,占总 数据的70%-90%。
验证集
用于调整超参数和选择最 佳模型,占估模型的性能,占 总数据的10%-30%。
03
BP神经网络模型构建
神经元模型
神经元模型
神经元是神经网络的基本单元, 它模拟了生物神经元的基本功能,
误差计算
根据实际输出与期望输出计算误差。
权值调整
根据误差反向传播算法调整各层的权值和阈值。
迭代训练
重复前向传播和权值调整过程,直到达到预设的迭代次 数或误差要求。
02
BP神经网络实例选择与数据准备
实例选择
选择一个具有代表性的问题
为了展示BP神经网络的应用,选择一个具有代表性的问题,例如 分类、回归或聚类等。
成。
节点数量
02
每一层的节点数量需要根据具体问题来确定,过多的节点可能
导致过拟合,而节点过少则可能无法充分提取数据特征。
连接权重
03
连接权重是神经网络中非常重要的参数,它决定了神经元之间
的连接强度和信息传递方式。
激活函数选择
激活函数的作用
激活函数用于引入非线性特性,使得神经网络能够更好地处理复 杂的非线性问题。
误差反向传播
当实际输出与期望输出不符时,进入 误差反向传播阶段,误差信号从输出 层开始逐层向输入层传播,并根据误 差调整各层的权值和阈值。
训练过程
数据准备
准备训练数据和测试数据,并对数据进行预 处理,如归一化等。
网络初始化
为各层神经元设置初始权值和阈值。
前向传播
输入样本数据,通过正向传播计算每一层的输出 值。
3
bp神经网络算法的基本流程
![bp神经网络算法的基本流程](https://img.taocdn.com/s3/m/ec0e8e20f56527d3240c844769eae009591ba269.png)
bp神经网络算法的基本流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!BP 神经网络算法的基本流程如下:1. 数据准备:收集和整理用于训练和测试神经网络的数据。
BP神经网络算法步骤
![BP神经网络算法步骤](https://img.taocdn.com/s3/m/5fa39698cf2f0066f5335a8102d276a2002960b0.png)
BP神经网络算法步骤
<br>一、概述
BP神经网络(Back Propagation Neural Network,BPNN)是一种经
典的人工神经网络,其发展始于上世纪80年代。
BP神经网络的原理是按
照误差反向传播算法,以及前馈神经网络的模型,利用反向传播方法来调
整网络各层的权值。
由于其具有自动学习和非线性特性,BP神经网络被
广泛应用在很多和人工智能、计算智能紧密相关的诸如计算机视觉、自然
语言处理、语音识别等领域。
<br>二、BP神经网络的结构
BP神经网络经常使用的是一种多层前馈结构,它可以由输入层,若
干隐藏层,以及输出层三部分组成。
其中,输入层是输入信号的正向传输
路径,将输入信号正向传送至隐藏层,在隐藏层中神经元以其中一种复杂
模式对输入信号进行处理,并将其正向传送至输出层,在输出层中将获得
的输出信号和设定的模式进行比较,以获得预期的输出结果。
<br>三、BP神经网络的学习过程
BP神经网络的学习过程包括正向传播和反向传播两个阶段。
其中,
正向传播是指从输入层到隐藏层和输出层,利用现有的训练数据,根据神
经网络结构,计算出网络每一层上各结点的的激活值,从而得到输出结果。
正向传播的过程是完全可以确定的。
BP神经网络概述
![BP神经网络概述](https://img.taocdn.com/s3/m/1f4b69f91b37f111f18583d049649b6648d70936.png)
BP神经网络概述BP神经网络由输入层、隐藏层和输出层组成。
输入层接收外界输入的数据,隐藏层对输入层的信息进行处理和转化,输出层输出最终的结果。
网络的每一个节点称为神经元,神经元之间的连接具有不同的权值,通过权值的调整和激活函数的作用,网络可以学习到输入和输出之间的关系。
BP神经网络的学习过程主要包括前向传播和反向传播两个阶段。
前向传播时,输入数据通过输入层向前传递到隐藏层和输出层,计算出网络的输出结果;然后通过与实际结果比较,计算误差函数。
反向传播时,根据误差函数,从输出层开始逆向调整权值和偏置,通过梯度下降算法更新权值,使得误差最小化,从而实现网络的学习和调整。
BP神经网络通过多次迭代学习,不断调整权值和偏置,逐渐提高网络的性能。
学习率是调整权值和偏置的重要参数,过大或过小的学习率都会导致学习过程不稳定。
此外,网络的结构、激活函数的选择、错误函数的定义等也会影响网络的学习效果。
BP神经网络在各个领域都有广泛的应用。
在模式识别中,BP神经网络可以从大量的样本中学习特征,实现目标检测、人脸识别、手写识别等任务。
在数据挖掘中,BP神经网络可以通过对历史数据的学习,预测未来的趋势和模式,用于市场预测、股票分析等。
在预测分析中,BP神经网络可以根据历史数据,预测未来的房价、气温、销售额等。
综上所述,BP神经网络是一种强大的人工神经网络模型,具有非线性逼近能力和学习能力,广泛应用于模式识别、数据挖掘、预测分析等领域。
尽管有一些缺点,但随着技术的发展,BP神经网络仍然是一种非常有潜力和应用价值的模型。
BP算法程序实现
![BP算法程序实现](https://img.taocdn.com/s3/m/b194d45e58eef8c75fbfc77da26925c52dc5916b.png)
BP算法程序实现BP(Back Propagation)神经网络是一种常见的人工神经网络模型,是一种监督学习算法。
在BP算法中,神经网络的参数通过反向传播的方式得到更新,以最小化损失函数。
BP神经网络的实现主要分为前向传播和反向传播两个步骤。
首先,我们需要定义BP神经网络的结构。
一个典型的BP神经网络包括输入层、隐藏层和输出层。
输入层接收原始数据,隐藏层进行特征提取和转换,输出层进行最终的预测。
在实现BP神经网络时,我们首先需要进行初始化。
初始化可以为神经网络的权重和偏置添加一些随机的初始值。
这里我们使用numpy库来处理矩阵运算。
前向传播的过程实际上就是将输入数据通过神经网络的每一层,直到输出层。
在每一层中,我们将对应权重和输入数据进行点乘运算,并加上偏置项,然后通过一个激活函数进行非线性转换。
这里我们可以选择sigmoid函数作为激活函数。
在反向传播中,我们根据损失函数对权重和偏置进行调整。
首先,我们计算输出误差,即预测值与真实值之间的差异。
然后,我们根据链式法则来计算每一层的误差,并将误差传递回前一层。
根据误差和激活函数的导数,我们可以计算每个权重和偏置的更新量,然后使用梯度下降法对权重和偏置进行更新。
实现BP算法的程序如下:```pythonimport numpy as npclass NeuralNetwork:def __init__(self, layers):yers = layersself.weights = [np.random.randn(y, x) for x, y inzip(layers[:-1], layers[1:])]self.biases = [np.random.randn(y, 1) for y in layers[1:]] def forward(self, x):a = np.array(x).reshape(-1, 1)for w, b in zip(self.weights, self.biases):z = np.dot(w, a) + ba = self.sigmoid(z)return adef backward(self, x, y, lr=0.01):a = np.array(x).reshape(-1, 1)targets = np.array(y).reshape(-1, 1)# forward passactivations = [a]zs = []for w, b in zip(self.weights, self.biases):z = np.dot(w, a) + bzs.append(z)a = self.sigmoid(z)activations.append(a)# backward passdeltas = [self.loss_derivative(activations[-1], targets) * self.sigmoid_derivative(zs[-1])]for l in range(2, len(yers)):z = zs[-l]sp = self.sigmoid_derivative(z)deltas.append(np.dot(self.weights[-l + 1].T, deltas[-1]) * sp)deltas.reverse# update weights and biasesfor l in range(len(yers) - 1):self.weights[l] += -lr * np.dot(deltas[l], activations[l].T) self.biases[l] += -lr * deltas[l]def sigmoid(x):return 1 / (1 + np.exp(-x))def sigmoid_derivative(x):return NeuralNetwork.sigmoid(x) * (1 -NeuralNetwork.sigmoid(x))def loss_derivative(y_pred, y_true):return y_pred - y_true```上述代码中,首先我们定义一个NeuralNetwork类,包含两个主要方法:forward(和backward(。
BP神经网络的基本原理_一看就懂
![BP神经网络的基本原理_一看就懂](https://img.taocdn.com/s3/m/84c3c0c482d049649b6648d7c1c708a1294a0a42.png)
BP神经网络的基本原理_一看就懂BP神经网络(Back Propagation Neural Network)是一种常用的人工神经网络模型,用于解决分类、回归和模式识别问题。
它的基本原理是通过反向传播算法来训练和调整网络中的权重和偏置,以使网络能够逐渐逼近目标输出。
1.前向传播:在训练之前,需要对网络进行初始化,包括随机初始化权重和偏置。
输入数据通过输入层传递到隐藏层,在隐藏层中进行线性加权和非线性激活运算,然后传递给输出层。
线性加权运算指的是将输入数据与对应的权重相乘,然后将结果进行求和。
非线性激活指的是对线性加权和的结果应用一个激活函数,常见的激活函数有sigmoid函数、ReLU函数等。
激活函数的作用是将线性运算的结果映射到一个非线性的范围内,增加模型的非线性表达能力。
2.计算损失:将网络输出的结果与真实值进行比较,计算损失函数。
常用的损失函数有均方误差(Mean Squared Error)和交叉熵(Cross Entropy)等,用于衡量模型的输出与真实值之间的差异程度。
3.反向传播:通过反向传播算法,将损失函数的梯度从输出层传播回隐藏层和输入层,以便调整网络的权重和偏置。
反向传播算法的核心思想是使用链式法则。
首先计算输出层的梯度,即损失函数对输出层输出的导数。
然后将该梯度传递回隐藏层,更新隐藏层的权重和偏置。
接着继续向输入层传播,直到更新输入层的权重和偏置。
在传播过程中,需要选择一个优化算法来更新网络参数,常用的优化算法有梯度下降(Gradient Descent)和随机梯度下降(Stochastic Gradient Descent)等。
4.权重和偏置更新:根据反向传播计算得到的梯度,使用优化算法更新网络中的权重和偏置,逐步减小损失函数的值。
权重的更新通常按照以下公式进行:新权重=旧权重-学习率×梯度其中,学习率是一个超参数,控制更新的步长大小。
梯度是损失函数对权重的导数,表示了损失函数关于权重的变化率。
BP神经网络算法程序
![BP神经网络算法程序](https://img.taocdn.com/s3/m/2a96c434f56527d3240c844769eae009581ba2ed.png)
BP神经网络算法程序一、BP神经网络算法原理BP神经网络算法包括输入层、隐藏层和输出层三个层次。
每个层次的神经元节点与下一层次的神经元节点之间存在权重系数。
神经元节点通过输入信号经过激活函数的处理得到输出信号,并将输出信号传递给下一层次的神经元节点。
反向传播过程中,首先根据误差评估结果计算输出层的误差信号,再根据该误差信号分别计算隐藏层和输入层的误差信号。
然后根据误差信号的计算结果,逐层更新网络的权重系数。
二、BP神经网络算法步骤1.初始化网络权重:随机初始化网络各层次之间的权重系数。
2.设置学习率和最大迭代次数。
3.迭代训练网络:重复以下步骤直到满足停止条件为止。
a)根据当前样本的输入信号,通过前向传播算法计算输出结果。
c)根据误差信号,通过反向传播算法更新网络的权重系数。
4.测试网络:使用独立的测试数据集,通过前向传播算法计算网络的输出结果,评估网络的泛化能力。
三、BP神经网络算法示例程序下面给出一个简单的使用Python编写的BP神经网络算法示例程序。
```pythonimport numpy as npclass BPNeuralNetwork:def __init__(self, input_dim, hidden_dim, output_dim): self.input_dim = input_dimself.hidden_dim = hidden_dimself.output_dim = output_dimself.W1 = np.random.randn(input_dim, hidden_dim)self.W2 = np.random.randn(hidden_dim, output_dim)def sigmoid(self, x):return 1 / (1 + np.exp(-x))def sigmoid_derivative(self, x):return x * (1 - x)def forward_propagation(self, X):self.z2 = np.dot(X, self.W1)self.a2 = self.sigmoid(self.z2)self.z3 = np.dot(self.a2, self.W2)self.y_hat = self.sigmoid(self.z3)return self.y_hatdef backward_propagation(self, X, y, lr):self.loss = y - self.y_hatdelta3 = self.loss * self.sigmoid_derivative(self.y_hat) dW2 = np.dot(self.a2.T, delta3)delta2 = np.dot(delta3, self.W2.T) *self.sigmoid_derivative(self.a2)dW1 = np.dot(X.T, delta2)self.W2 += lr * dW2self.W1 += lr * dW1def train(self, X, y, lr=0.1, epochs=1000):for i in range(epochs):y_hat = self.forward_propagation(X)self.backward_propagation(X, y, lr)def predict(self, X):return np.round(self.forward_propagation(X))#示例用法X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])y = np.array([[0], [1], [1], [0]])nn = BPNeuralNetwork(2, 2, 1)print("预测结果:")print(nn.predict(X))```以上是一个简单的BP神经网络算法示例程序,用于训练一个XOR逻辑门的分类模型。
bp神经网络
![bp神经网络](https://img.taocdn.com/s3/m/e918375a2a160b4e767f5acfa1c7aa00b52a9d0e.png)
BP神经网络框架BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。
BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。
它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。
BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。
1BP神经网络基本原理BP神经网络的基本原理可以分为如下几个步骤:(1)输入信号Xi→中间节点(隐层点)→输出节点→输出信号Yk;(2)网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y 和期望输出值t之间的偏差。
(3)通过调整输入节点与隐层节点的联接强度取值Wij和隐层节点与输出节点之间的联接强度取值Tjk,以及阈值,使误差沿梯度方向下降。
(4)经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练到此停止。
(5)经过上述训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线性转换的信息。
2BP神经网络涉及的主要模型和函数BP神经网络模型包括输入输出模型、作用函数模型、误差计算模型和自学习模型。
输出模型又分为:隐节点输出模型和输出节点输出模型。
下面将逐个介绍。
(1)作用函数模型作用函数模型,又称刺激函数,反映下层输入对上层节点刺激脉冲强度的函数。
一般取(0,1)内的连续取值函数Sigmoid函数:f x=11+e^(−x)(2)误差计算模型误差计算模型反映神经网络期望输出与计算输出之间误差大小的函数:Ep=12(tpi−Opi)2其中,tpi为i节点的期望输出值;Opi为i节点的计算输出值。
(3)自学习模型自学习模型是连接下层节点和上层节点之间的权重矩阵Wij的设定和修正过程。
bp神经网络原理
![bp神经网络原理](https://img.taocdn.com/s3/m/6b6604610622192e453610661ed9ad51f01d54e6.png)
bp神经网络原理
BP神经网络,全称为反向传播神经网络,是一种常用的前馈
神经网络,通过反向传播算法来训练网络模型,实现对输入数据的分类、回归等任务。
BP神经网络主要由输入层、隐藏层
和输出层构成。
在BP神经网络中,每个神经元都有自己的权重和偏置值。
数
据从输入层进入神经网络,经过隐藏层的计算后传递到输出层。
神经网络会根据当前的权重和偏置值计算输出值,并与真实值进行比较,得到一个误差值。
然后,误差值会反向传播到隐藏层和输入层,通过调整权重和偏置值来最小化误差值。
这一过程需要多次迭代,直到网络输出与真实值的误差达到可接受的范围。
具体而言,BP神经网络通过梯度下降算法来调整权重和偏置值。
首先,计算输出层神经元的误差值,然后根据链式求导法则,将误差值分配到隐藏层的神经元。
最后,根据误差值和激活函数的导数,更新每个神经元的权重和偏置值。
这个过程反复进行,直到达到停止条件。
BP神经网络的优点是可以处理非线性问题,并且具有较强的
自适应能力。
同时,BP神经网络还可以通过增加隐藏层和神
经元的数量来提高网络的学习能力。
然而,BP神经网络也存
在一些问题,如容易陷入局部最优解,训练速度较慢等。
总结来说,BP神经网络是一种基于反向传播算法的前馈神经
网络,通过多次迭代调整权重和偏置值来实现模型的训练。
它
可以应用于分类、回归等任务,并具有较强的自适应能力。
但同时也有一些问题需要注意。
BP神经网络ppt
![BP神经网络ppt](https://img.taocdn.com/s3/m/05c17800814d2b160b4e767f5acfa1c7ab008218.png)
人工神经网络 是生物神经网络的某种模型(数学模型) 是对生物神经网络的模仿 基本处理单元为人工神经元
1. 生物神经系统与生物神经元
大量生物神经元的广泛、复杂连接,形成生
物神经网络 (Biological Neural Network, BNN)。
实现各种智能活动
生物神经元(neuron)是基本的信息处理单元
(1)生物神经系统
生物神经元(neuron)是基本的信息处理单元, 其组成:
➢ 树突(dendrites), 接收来自外接的信息 ➢ 细胞体(cell body), 神经细胞主体,信息加工 ➢ 轴突(axon), 细胞的输出装置,将信号向外传递,
与多个神经元连接 ➢突触 (synapsse), 神经元经突触向其它神经元(胞体 或树突)传递信号
2 1m =
2 j1
dj f
net
L1 j
2
样本集内所有样本关于该网络的总输出误差
Etotal E
输出层l L 1节点j的净输入
实际输出
nL2
net
L1 j
O L1 L2
ij i
i 1
O L1 j
1
1+e-
net
L1 j
II
输出层的权值iLj 1调整
隐含层 L 2 输出层 L 1
nL2
net
L1 j
=
O L1 L2 ij i
i 1
权值iLj 1对误差E的影响
E
iLj 1
E
net
L1 j
net
L1 j
iLj 1
O L1 L2
j
i
输出层的权值iLj 1调整 iLj 1修正应使误差E最快减小
BP神经网络算法
![BP神经网络算法](https://img.taocdn.com/s3/m/2e5df4f60740be1e640e9a54.png)
1
目
录
一、BP神经网络算法概述
二、BP神经网络算法原理
三、BP神经网络算法特点及改进
2
一.BP神经网络算法概述
BP神经网络(Back-Propagation Neural Network),即误差
后向传播神经网络,是一种按误差逆向传播算法训练的多层前馈网
络,是目前应用最广泛的网络模型之一。
11
二.BP神经网络算法原理
图5 Tan-Sigmoid函数在(-4,4)范围内的函数曲线
12
二.BP神经网络算法原理
激活函数性质:
① 非线性
② 可导性:神经网络的优化是基于梯度的,求解梯度需要确保函
数可导。
③ 单调性:激活函数是单调的,否则不能保证神经网络抽象的优
化问题转化为凸优化问题。
④ 输出范围有限:激活函数的输出值范围有限时,基于梯度的方
= 1
=1
7
,
= 1,2,3 … , q
二.BP神经网络算法原理
输出层节点的输出为:
j = 2 ,
= 1,2,3. . . ,
=1
至此,BP网络完成了n维空间向量对m维空间的近似映射。
图2 三层神经网络的拓扑结构
8
二.BP神经网络算法原理
BP神经网络是多层前馈型神经网络中的一种,属于人工神经网
络的一类,理论可以对任何一种非线性输入输出关系进行模仿,因
此 被 广 泛 应 用 在 分 类 识 别 ( classification ) 、 回 归
(regression)、压缩(compression)、逼近(fitting)等领域。
在工程应用中,大约80%的神经网络模型都选择采用BP神经网
BP神经网络算法
![BP神经网络算法](https://img.taocdn.com/s3/m/d9cf041f814d2b160b4e767f5acfa1c7ab008279.png)
BP神经网络算法BP神经网络算法(BackPropagation Neural Network)是一种基于梯度下降法训练的人工神经网络模型,广泛应用于分类、回归和模式识别等领域。
它通过多个神经元之间的连接和权重来模拟真实神经系统中的信息传递过程,从而实现复杂的非线性函数拟合和预测。
BP神经网络由输入层、隐含层和输出层组成,其中输入层接受外部输入的特征向量,隐含层负责进行特征的抽取和转换,输出层产生最终的预测结果。
每个神经元都与上一层的所有神经元相连,且每个连接都有一个权重,通过不断调整权重来优化神经网络的性能。
BP神经网络的训练过程主要包括前向传播和反向传播两个阶段。
在前向传播中,通过输入层将特征向量引入网络,逐层计算每个神经元的输出值,直至得到输出层的预测结果。
在反向传播中,通过计算输出层的误差,逐层地反向传播误差信号,并根据误差信号调整每个连接的权重值。
具体来说,在前向传播过程中,每个神经元的输出可以通过激活函数来计算。
常见的激活函数包括Sigmoid函数、ReLU函数等,用于引入非线性因素,增加模型的表达能力。
然后,根据权重和输入信号的乘积来计算每个神经元的加权和,并通过激活函数将其转化为输出。
在反向传播过程中,首先需要计算输出层的误差。
一般采用均方差损失函数,通过计算预测值与真实值之间的差异来衡量模型的性能。
然后,根据误差信号逐层传播,通过链式法则来计算每个神经元的局部梯度。
最后,根据梯度下降法则,更新每个连接的权重值,以减小误差并提高模型的拟合能力。
总结来说,BP神经网络算法是一种通过多层神经元之间的连接和权重来模拟信息传递的人工神经网络模型。
通过前向传播和反向传播两个阶段,通过不断调整权重来训练模型,并通过激活函数引入非线性因素。
BP 神经网络算法在分类、回归和模式识别等领域具有广泛的应用前景。
bp神经网络的使用流程
![bp神经网络的使用流程](https://img.taocdn.com/s3/m/03755291dc3383c4bb4cf7ec4afe04a1b071b006.png)
bp神经网络的使用流程什么是bp神经网络?bp神经网络,全称为Back Propagation Neural Network,是一种常见的人工神经网络模型。
它是一种有向无环的多层前馈神经网络,通过反向传播算法进行优化,可以用于解决分类和回归问题。
bp神经网络的使用流程使用bp神经网络进行分类或回归任务通常需要按照以下步骤进行:1.数据准备:首先,我们需要准备用于训练和测试的数据集。
数据集应该包括输入和输出的特征向量。
例如,如果我们要训练一个用于分类任务的bp神经网络,我们需要将输入数据和对应的类别标签组织成训练集和测试集。
2.数据预处理:在训练神经网络之前,我们通常需要对数据进行预处理。
这包括数据清洗、数据归一化、数据平衡等。
数据预处理的目的是提高神经网络的训练效果和泛化能力。
3.神经网络结构设计:接下来,我们需要确定神经网络的结构。
这包括确定神经网络的层数、每层的神经元个数、激活函数的选择等。
通常,我们会使用一种层次结构设计,比如输入层、隐藏层和输出层。
4.网络训练:在神经网络结构确定后,我们可以开始进行网络训练。
训练的目标是通过调整神经网络的权重和偏置,使网络的输出与真实值的差距最小化。
常用的优化算法包括随机梯度下降(SGD)和Adam等。
5.网络评估:训练完成后,我们需要对神经网络进行评估。
这可以通过使用测试集计算预测准确率、回归误差或其他评价指标来完成。
评估结果将帮助我们了解神经网络的性能和泛化能力。
6.网络优化:根据评估结果,我们可以进一步优化神经网络。
这可能包括调整网络结构、调整超参数(学习率、迭代次数等)或增加训练数据等。
通过不断优化,我们可以提高神经网络的性能。
7.网络应用:最后,我们可以将训练好的神经网络应用于实际问题中。
这包括对新数据进行预测、分类或回归等任务。
使用训练好的神经网络可以快速且准确地完成这些任务。
总结bp神经网络是一种强大的人工神经网络模型,可以用于解决分类和回归问题。
BP神经网络模型概述
![BP神经网络模型概述](https://img.taocdn.com/s3/m/3b09dc0df6ec4afe04a1b0717fd5360cbb1a8d5e.png)
BP神经网络的应用领域
1 图像识别
2 预测与预警
3 信号处理
BP神经网络可以用于图 像识别,如人脸识别、物 体识别等。
BP神经网络可应用于预 测和预警系统,如市场预 测、天气预报等。
BP神经网络可用于信号 处理,如语音识别、音频 降噪等。
BP神经网络的优缺点
优点
• 具有较强的非线性拟合能力 • 能够处理大量输入和输出数据 • 适用于复杂的模式识别和预测问题
BP神经网络发展,BP神经网络模型将进一步完善和广泛应用。
BP神经网络模型概述
BP神经网络模型是一种广泛应用的人工神经网络模型, 它由多个神经元组成,具备卓越的模式识别和预测能力 。
BP神经网络模型的定义
基本概念
BP神经网络是一种前馈型神经网络,采用误差反向传播算法进行训练,适合处理非线性 问题。
主要组成
BP神经网络由输入层、隐藏层和输出层组成,每一层都包含多个神经元,它们之间通过 连接权值进行信息传递。
BP神经网络的结构
输入层
接收外部输入并将其传递给隐 藏层。
隐藏层
对输入进行处理并将结果传递 给输出层。
输出层
输出最终的预测结果。
BP神经网络的训练过程
1
前向传播
通过计算权值,将输入从输入层传递到输出层,产生预测结果。
2
计算误差
将预测结果与真实结果进行比较,计算误差值。
3
反向传播
根据误差值,调整连接权值,以减小误差。
缺点
• 训练时间较长 • 需要大量的训练数据和计算资源 • 容易出现过拟合的问题
BP神经网络模型的改进方法
正则化技术
通过加入正则化项,降低模 型的复杂度,防止过拟合。
阐述bp神经网络的原理
![阐述bp神经网络的原理](https://img.taocdn.com/s3/m/e0bc3d15bc64783e0912a21614791711cc79790b.png)
阐述bp神经网络的原理
BP神经网络全称为反向传播神经网络,是一种常用的人工神经网络模型。
其原理基于两个基本思想:前向传播和反向误差传播。
前向传播:BP神经网络是一个多层感知器,由输入层、隐藏层和输出层组成。
输入层接收外部输入的数据,隐藏层负责处理输入,并传递给输出层,输出层根据处理结果生成输出。
隐藏层和输出层的每个神经元都有一个权重向量,用于对输入数据进行线性组合。
然后,通过激活函数对线性组合结果进行非线性变换,得到该神经元的输出。
隐藏层和输出层的每个神经元的输出都会作为下一层神经元的输入。
反向误差传播:当神经网络的输出与期望输出之间存在差异时,需要通过反向传播算法来调整权重,以减小这个误差。
算法的基本思想是将误差从输出层向隐藏层逐层传递,通过调整每个神经元的权重,最终使得网络的输出与期望输出尽可能接近。
具体实现时,首先计算输出层的误差,然后根据误差调整输出层的权重。
接下来,将误差反向传播到隐藏层,再根据误差调整隐藏层的权重。
这个过程会不断迭代,直到网络的输出与期望输出的误差足够小。
通过反向误差传播算法,BP神经网络可以学习到输入-输出的映射关系,从而能
够对未知输入进行预测或分类。
然而,BP神经网络也存在一些问题,例如容易陷入局部极小值、对初始权重较敏感等,因此在实际应用中需要进行一定的调优和训练策略。
BP人工神经网络
![BP人工神经网络](https://img.taocdn.com/s3/m/828be786f18583d048645956.png)
因此构建(6,13,1)型网络。 (3)编辑程序开始训练
利用MATLAB训练结果如表2所示。 所建立的网络对原样本进行模拟得出结果与原数据之比
LOGO
BP人工神经网络
TDR测试技术
概述 数学描述
应用 改进
LOGO
Page 2
BP人工神经网络——概述
人工神经网络,又称人工神经元网络(ANN),它通过 模仿人脑神经的活动来建立脑神经活动的数学模型。
BP人工神经网络是一种有监督的反馈运行的人工神经 网络,其核心是网络的误差反向传播。
LOGO
表1 原始样本表
LOGO
Page 15
BP人工神经网络——应用
表中1-15组为露天矿边坡积累的资料,根据以上15组样本,对第16组 边坡稳定性预测。
LOGO
Page 16
BP人点数 根据选取的输入向量和输出向量,确定了边坡稳定性预测模型中各
层的节点数,其中输入层的节点数为 6,网络输出层的节点数为 1, (2)确定隐含层的结点数
向后传播
LOGO
求出误差
调整阀值
NO E<e
YES 学习结束
图3 算法流程
Page 13
BP人工神经网络——应用
BP人工神经网络的基本特征: (1)并行分布处理 (2)非线性映射 (3)信息处理和信息存储合的集成 (4)具有联想存储功能 (5)具有自组织自学习能力 (6)软件硬件的实现
LOGO
Page 14
1948年,他在研究工作中比较了人脑结构与存储程序式计算机的根本 区别,提出了以简单神经元构成的再生自动机网络结构。
BP神经网络 百度百科
![BP神经网络 百度百科](https://img.taocdn.com/s3/m/e649c9ef900ef12d2af90242a8956bec0975a58c.png)
BP神经⽹络 百度百科 在⼈⼯神经⽹络发展历史中,很长⼀段时间⾥没有找到隐层的连接权值调整问题的有效算法。
直到误差反向传播算法(BP 算法)的提出,成功地解决了求解⾮线性连续函数的多层前馈神经⽹络权重调整问题。
BP (Back Propagation)神经⽹络,即误差反传误差反向传播算法的学习过程,由信息的正向传播和误差的反向传播两个过程组成。
输⼊层各神经元负责接收来⾃外界的输⼊信息,并传递给中间层各神经元;中间层是内部信息处理层,负责信息变换,根据信息变化能⼒的需求,中间层可以设计为单隐层或者多隐层结构;最后⼀个隐层传递到输出层各神经元的信息,经进⼀步处理后,完成⼀次学习的正向传播处理过程,由输出层向外界输出信息处理结果。
当实际输出与期望输出不符时,进⼊误差的反向传播阶段。
误差通过输出层,按误差梯度下降的⽅式修正各层权值,向隐层、输⼊层逐层反传。
周⽽复始的信息正向传播和误差反向传播过程,是各层权值不断调整的过程,也是神经⽹络学习训练的过程,此过程⼀直进⾏到⽹络输出的误差减少到可以接受的程度,或者预先设定的学习次数为⽌。
BP神经⽹络模型BP⽹络模型包括其输⼊输出模型、作⽤函数模型、误差计算模型和⾃学习模型。
(1)节点输出模型 隐节点输出模型:Oj=f(∑Wij×Xi-qj) (1) 输出节点输出模型:Yk=f(∑Tjk×Oj-qk) (2) f-⾮线形作⽤函数;q -神经单元阈值。
图1 典型BP⽹络结构模型 (2)作⽤函数模型 作⽤函数是反映下层输⼊对上层节点刺激脉冲强度的函数⼜称刺激函数,⼀般取为(0,1)内连续取值Sigmoid函数:f(x)=1/(1+e) (3) (3)误差计算模型 误差计算模型是反映神经⽹络期望输出与计算输出之间误差⼤⼩的函数: Ep=1/2×∑(tpi-Opi) (4) tpi- i节点的期望输出值;Opi-i节点计算输出值。
(4)⾃学习模型 神经⽹络的学习过程,即连接下层节点和上层节点之间的权重拒阵Wij的设定和误差修正过程。
(完整版)BP神经网络原理及应用
![(完整版)BP神经网络原理及应用](https://img.taocdn.com/s3/m/ab51d88dbed5b9f3f90f1cdd.png)
BP神经网络原理及应用1 人工神经网络简介1.1生物神经元模型神经系统的基本构造是神经元(神经细胞),它是处理人体内各部分之间相互信息传递的基本单元。
据神经生物学家研究的结果表明,人的大脑一般有1011个神经元。
每个神经元都由一个细胞体,一个连接其他神经元的轴突1010和一些向外伸出的其它较短分支——树突组成。
轴突的功能是将本神经元的输出信号(兴奋)传递给别的神经元。
其末端的许多神经末梢使得兴奋可以同时送给多个神经元。
树突的功能是接受来自其它神经元的兴奋。
神经元细胞体将接受到的所有信号进行简单地处理后由轴突输出。
神经元的树突与另外的神经元的神经末梢相连的部分称为突触。
1.2人工神经元模型神经网络是由许多相互连接的处理单元组成。
这些处理单元通常线性排列成组,称为层。
每一个处理单元有许多输入量,而对每一个输入量都相应有一个相关联的权重。
处理单元将输入量经过加权求和,并通过传递函数的作用得到输出量,再传给下一层的神经元。
目前人们提出的神经元模型已有很多,其中提出最早且影响最大的是1943年心理学家McCulloch和数学家Pitts在分析总结神经元基本特性的基础上首先提出的M-P 模型,它是大多数神经网络模型的基础。
)()(1∑=-=ni j i ji j x w f t Y θ (1.1)式(1.1)中,j 为神经元单元的偏置(阈值),ji w 为连接权系数(对于激发状态,ji w 取正值,对于抑制状态,ji w 取负值),n 为输入信号数目,j Y 为神经元输出,t 为时间,f()为输出变换函数,有时叫做激发或激励函数,往往采用0和1二值函数或S形函数。
1.3人工神经网络的基本特性人工神经网络由神经元模型构成;这种由许多神经元组成的信息处理网络具有并行分布结构。
每个神经元具有单一输出,并且能够与其它神经元连接;存在许多(多重)输出连接方法,每种连接方法对应一个连接权系数。
严格地说,人工神经网络是一种具有下列特性的有向图:(1)对于每个节点存在一个状态变量xi ;(2)从节点i 至节点j ,存在一个连接权系数wji ; (3)对于每个节点,存在一个阈值j ;(4)对于每个节点,定义一个变换函数(,,),j i ji j f x w i j θ≠,对于最一般的情况,此函数取()j ji i j if w x θ-∑形式。
BP 神经网络
![BP 神经网络](https://img.taocdn.com/s3/m/7b99b034b4daa58da0114ad3.png)
二、BP神经网络的结构
BP神经网络采用误差反向传播算法 (Back-Propagation Algorithm)进 行学习。在BP网络中,数据从输入 层经隐含层逐层向后传播,训练网络 权值时,则沿着减少误差的方向,从 输出层经过中间各层逐层向前修正网 络的连接权值。
达数万次迭代。根据网络的大小,训练过程可能需要主机时间几个到几十个小
时。 (2)需大量训练数据:人工神经网络在很大程度上取决于训练时关于问题的输
入-输出数据,若只有少量输入-输出数据,一般不考虑使用人工神经网络。
(3)不能保证最佳结果:反向传播是调整网络的一个富有创造性的方法,但它 并不能保证网络能恰当地工作。训练可能导致网络发生偏离,使之在一些操作 区域内结果准确,而在其他区域则不准确。此外,在训练过程中,有可能偶尔 陷入“局部最小”。
够在训练过程中自动调节步长。
当误差以减小的方式趋于目标时,说明正方向是正确的,可以增加学习率; 当误差增加超过一定范围时,说明前一步修正进行的不正确,应减小步长,并 撤销前一步修正过程。
六、BP神经网络的优化
3.数据的归一化处理 BP神经网络在训练前对数据进行归一化处理,隐含层的数量通常不宜过多, 虽然将数据映射到更小的数据区间,有效提高学习速度。
2 1 m (3)网络关于第p个样本的误差: Ep d pj Ypj 2 j 1
(4) 网络关于整个样本集的误差:
E Ep
p
三、BP神经网络的学习算法 2.误差传播分析:
Ⅰ 输出层权的调整 ANp wpq ∆wpq 第L-1层 wpq= wpq+∆wpq 反向传播时,把误差信号按照原来正向传播的通路反向传回,并对每个神 经元的权数进行修改,以望误差信号趋向最小。 权值调整量=学习率*局部梯度*上一层信号输出 第L层 ANq
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
神经网络概述与程序说明
管文烨李叶磊孟新星田博李荣瑾
.神经网络概述
典型的网络是三层网络,包括输入层、隐含层和输出层。
各层之间实行全连接。
图三层神经网络结构
网络的学习由四个过程组成,即:
输入模式由输入层经中间层向输出层的“模式顺传播”过程;
网络的希望输出与网络实际输出之差的误差信号由输出层经中间层向输入层逐层修正连接权的“误差逆传播”过程;
由“模式顺传播”与“误差逆传播”的反复交替进行的网络“记忆训练”过程;
网络趋向收敛即网络的全局误差趋向极小值的“学习收敛”过程。
简言之,就是由“模式顺传播”→“误差逆传播”→“记忆训练”→“学习收敛”的过程。
传递函数一般为(,)型函数
() ( )
网络通常有一个或多个隐层,隐层中的神经元均采用型交换函数,输出层的神经元采用纯线性变换函数。
更详细的介绍请参考岳老师课件或其他相关文献。
.神经网络参数学习参数
神经网络算法流程图
图 神经网络算法流程图
本程序要实现的功能
本程序要用神经网络来逼近二元函数
1-x 122f (,)200e sin()x x x π=
在定义域2111.2,[0,5]x x x =∈ 上,即定义域是一条直线。
图 曲线12f (,)x x 在平面211.2x x 上的投影
横坐标表示到原点的距离(下同)
2.2.1 选择个隐层神经元 050100150图 个隐层神经元在不同训练次数下的总的误差曲线
图个隐层神经元在训练次数下的拟合曲线
2.2.1 选择个隐层神经元
050100150
图个隐层神经元在不同训练次数下的总的误差曲线
图个隐层神经元在训练次数下的拟合曲线
比较图和图,我们可以得出结论:对于拟合非线性函数,为了得到较好的结果,我们可能需要更多的隐层神经元。