水平井生产测井技术

合集下载

水平井测井工艺演示

水平井测井工艺演示

水平井测井工艺演示1. 引言水平井是一种特殊的井型,其井身倾斜角度接近于水平。

水平井的应用范围广泛,可以用于提高油井的产能、延长油藏寿命等方面。

而测井作为油田勘探开发中重要的技术手段,对于水平井的测井也有着重要的意义。

本文将介绍水平井测井的工艺流程以及所需的仪器设备。

2. 水平井测井工艺流程水平井测井的工艺流程包括以下几个步骤:2.1 井筒清洗在进行水平井测井前,需要先对井筒进行清洗,以清除井筒内的沉积物、游离泥浆等杂质。

清洗井筒可以使用高压泵将清洗液注入井筒,通过冲刷的方式将井筒内的杂质清除。

2.2 井眼修整井眼修整是指在水平井的建立过程中,对井眼进行修整,使井眼直径均匀、光滑。

井眼修整可以提高后续操作的顺利进行,降低测井过程中的摩阻。

2.3 安装测井仪器在水平井测井过程中,需要选择合适的测井仪器进行测量。

常用的测井仪器有电阻率测井仪、自旋共振测井仪等。

将测井仪器沿着井筒低点方向安装入井。

2.4 进行测井操作测井操作包括测量电阻率、自旋共振等参数。

根据实际需求,可以选择不同的测井方法进行测量。

在测井过程中,仪器会通过发送信号并记录返回信号,根据信号的变化来推算地下岩石的性质。

2.5 数据处理与分析完成测井操作后,需要对所得的数据进行处理与分析。

根据测井仪器的测量结果,可以确定地下岩石的电阻率、自旋共振特征等。

通过对数据的处理与分析,可以得出有关油井的地质特征、油藏储量等重要信息。

3. 水平井测井所需的仪器设备进行水平井测井需要使用一系列的仪器设备,常用的设备包括:•高压泵:用于清洗井筒,将清洗液注入井筒。

•井眼修整工具:用于修整井眼,提高井筒光滑度。

•电阻率测井仪:用于测量地下岩石的电阻率特征。

•自旋共振测井仪:用于测量地下岩石的自旋共振特征。

•数据处理与分析软件:用于对测井数据进行处理与分析。

4. 结论水平井测井工艺是油田勘探开发过程中的重要环节,通过测井可以获取有关油井地质特征、油藏储量等信息。

水平井生产测井中国石油大学

水平井生产测井中国石油大学
从地面新钻的井,水平井段长度为300~1300m 2.侧钻井
从现有的井横向侧钻出来,长度为30~210m
水平井生产测井中国石油大学
水平井按曲率半径分为四类: (1)超短曲率水平井 (2)短曲率水平井 (3)中曲率半径水平井 -----是钻水平井的主要方法
特征: 半径为300~800ft, 造斜角为6°~20°/100ft。 水平井段长度1000~4000ft
NLV = 液体速度,无因次;
d、e、f、g的取值见参数取值表,与流型和
流动方向有关。 计算出c 值后,若c<0,则令c = 0
水平井生产测井中国石油大学
持液率的确定 计算参数取值表
水平井生产测井中国石油大学
计算持液率
水平井生产测井中国石油大学
水平井中的仪器响应及图版制作
水平井中,由于油、气 、水里层状分离流动,因 此流量计、持水率计的响 应结果具有一定的纵向片 面性:
水平井生产测井中国石油大学
伞 式 流 量 计 的 响 应
与水平井类似,伞式流量计的响应 直线的斜率为:0.025RPS/(bbl/d)
水平井生产测井中国石油大学
流体密度响应图版
说明:
每一条曲线对应一个流 量值,分别为: 308、514、857、 1028、1543和 2055bbl/d
持水率的值可用测得的 混合密度和油、水密度 确定。
水平井生产测井中国石油大学
一 水平井技术
1 水平井概述 2水平井的分类 3水平井完井技术 4水平井入井技术
水平井生产测井中国石油大学
生产测井仪器入井技术
在直井或倾斜角不大的斜井中: 靠仪器重力下入井底目的层进行测井。
在水平井中:依靠重力仅能下入到井斜约为40°

连续管水平井测井工艺技术及装置

连续管水平井测井工艺技术及装置

连续管水平井测井工艺技术及装置随着石油行业的发展,水平井技术在油气开发中得到了广泛应用。

水平井的测井工艺技术和装置对于油气田的开发和生产具有重要意义。

本文将针对连续管水平井测井工艺技术及装置进行深入探讨,以期为相关研究和应用提供参考。

一、连续管水平井基本概念连续管水平井是指井眼整个水平段都由防喷器包围,通过连续管方式将注入或回灌液体输送到水平井井眼的地面顶部。

连续管水平井是一种新型油气开采方式,可以提高采收率、降低生产成本,因此备受石油行业的关注。

相比于传统的水平井,连续管水平井在测井工艺技术和装置方面有着独特的需求和挑战。

二、连续管水平井测井工艺技术1. 测井目的连续管水平井的测井目的是通过测量井眼内不同位置的物性参数,以获取油气藏地质信息,指导开发和生产的决策。

具体包括井眼直径、井眼内流体速度、油气水分布特征等。

2. 测井方法3. 测井装置由于连续管水平井的特殊结构,传统的测井装置无法直接应用于其测井过程。

需要设计专门的连续管水平井测井装置,以确保测量的准确性和可靠性。

这种测井装置需要能够在连续管的环境下进行测量,并且能够适应各种工作条件。

连续管水平井测井装置是指在连续管水平井内进行测井的设备。

这种装置通常由测井传感器、数据采集系统、数据处理系统等部分组成。

测井传感器是核心部件,它需要能够在连续管内进行测量,并将数据传输到地面。

测井传感器是连续管水平井测井装置的核心部件,其作用是实时监测井眼内的物性参数,并将这些数据传输到地面。

传感器需要能够适应连续管的高温高压环境,并且能够进行精确的测量。

目前,一些先进的传感器技术已经应用于连续管水平井的测井装置中,如超声波测井传感器、电磁感应传感器等。

2. 数据采集系统数据采集系统是用于接收和存储传感器传输过来的数据的设备。

它需要能够实现对传感器数据的实时采集,并且具有足够的存储空间和传输带宽。

现代的数据采集系统通常采用数字化技术,可以实现对大量数据的高速采集和处理。

侧钻井-大斜度井和水平井测井技术

侧钻井-大斜度井和水平井测井技术

(三)钻杆(油管)输送水平井测井工艺的应用
3、郭斜11井是国内首次采用水平位移方法,立足陆
地向海底延伸的重点探井,也是我国施工难度最大 的一口斜井,表层套管205米,出套管井斜就已达六 十多度且全裸眼井段稳斜,井底位移达1626米,垂 深与位移的比例为1:1.16,远高于当时1:1.02的 全国记录,采用湿接头工艺,在井下反复对接十余 次,取全取准了全部资料。 4、临盘地区临2-平1井,是我国第1口双水平井段阶 梯式水平井,该井包含两个水平段,最大井斜97° ,累计穿越油层达423.9米,由于方法得当,测井一次 成功。

侧钻水平井技术是侧钻井技术和水平井技术相结 合的结晶,不仅使老井重钻焕发青春,而且可以大幅度
提高单井产量和采收率。

分支水平井也称多底水平井,即在一口主井眼中钻
出两个或多个井眼,可以更大地增加泄油面积,提高油
藏的采收率,也有利于充分利用施工占地,减少环境污 染,对降低原油生产成本有相当好的结果。
一、水平井测井技术
大位移水平井能够钻穿更长的油层井段,可以较大 范围地探明和控制含油面积,大幅度地提高单井产量.
目前世界上水平位移超过万米的大位移水平 井已有三口,最大水平位移已达10728米(英国
WytchFarm油田的M-16spz井).
与国外相比,我国的大位移水平井技术还存在较大 差距,第一口试验井埕北21-平1井井深4837.4米,井底水 平位移3167.9米,是我国目前陆上水平位移最大的一口 大位移水平井。
一、水平井测井技术

随着定向井钻井技术水平的不断提 高,大斜度定向井、开窗侧钻井、水平 井等数量迅速增多,采用水平井测井工 艺的次数也在不断增加,推动了早期水 平井测井工艺的发展和完善,以至形成 了目前多种水平井测井工艺互相依存互 相促进互为补充的局面,为我们进行各 种不同类型的大斜度定向井、水平井、 复杂井等的测井提供了强有力的保障。

水平井测井技术中关键工艺及应用_1

水平井测井技术中关键工艺及应用_1

水平井测井技术中关键工艺及应用发布时间:2022-04-01T07:01:48.889Z 来源:《科学与技术》2021年第32期作者:杨礼节[导读] 近年来,随着油气勘探开发实践的不断深入,以美国为首的致密油勘探开发取得了巨大的经济效益。

杨礼节中国石油集团测井有限公司辽河分公司 124010摘要:近年来,随着油气勘探开发实践的不断深入,以美国为首的致密油勘探开发取得了巨大的经济效益。

通过多年的实践和探索,我们发现如何有效地提高优质储层的钻遇率,主要在于开展钻进储层的构造深度和厚度预测,明确储层变化规律并灵活设计直井和水平井井轨迹。

然而,对于中浅层的低渗透非常规致密油藏来说,受制于地震资料的分辨率,对于优质储层的构造深度误差较大(一般超过5m),一般难以完全按照原设计轨迹钻进。

因此,在地质导向过程中,及时提供精确的地质预判成为提高储层钻遇率的关键。

目前,常用的随钻地质导向技术成本较高,且往往仅应用于水平井的水平段而非着陆段。

因此通过整合行业常用的地质分析软硬件工具,研发相对低成本、操作便捷、适用性强的随钻地质导向方法显得尤为重要。

基于此,本篇文章对水平井测井技术中关键工艺及应用进行研究,以供参考。

关键词:水平井测井技术;关键工艺;应用分析引言煤层是重要的非传统能源,目前煤矿开采主要采用直角劈裂井、水平破碎井和水平井的开采方法。

水平井与煤层天然缝大范围连通,形成煤层气流通道,通过分解瓦斯提高煤层产量。

近年来由于地质工程及地表条件限制,一批超深、大斜度井逐渐开始部署,且由于岩层在钻进中卡钻事故频发,导致部分井采取回填侧钻的方法继续钻进,由此可见岩层井筒条件尤为复杂,同时,斜井水平井测井时存在岩层蠕变,泥浆密度大、粘度高带来的作业难度大等难点,这些技术难点都将制约着斜井水平井传输测井工艺。

基于此,本文建议应结合实际工程特点的提高斜井水平井传输测井工艺,取得良好的应用效果。

1水平井测井技术中的关键工艺1.1井下牵引器输送技术根据水平井生产的具体情况,研究人员设计出一种测井技术,它就是井下牵引器输送技术,它的技术优势在于不会对整个油气田的产量产生直接性的影响,而且与其他类型的输送技术相比,施工的流程操作简单、精准度高,能够极大的节约工作时间。

水平井测井技术在油田生产中的应用

水平井测井技术在油田生产中的应用

浅议水平井测井技术在油田生产中的应用关键词:水平井测井技术工艺原理随着定向井技术的发展,水平井测井技术逐步走向成熟,这一技术可以显著提高边际经济油田的产能,降低综合成本,提高油层的开采量。

由于水平井井眼轨迹能够穿过更大面积的含油层系,极大地发挥出储层的潜力,提高油气的采收率,能比垂直井获得更高的产能,弥补垂直井的不足,因此近几年被广泛应用于油、气田的勘探开发中。

随着水平井钻井技术的日益成熟,水平井测井技术也得到了飞速发展。

本文分析了我国水平井测井技术的工艺原理、应用效果及注意事项。

一、水平井测井技术工艺原理目前国内外比较成熟的水平井测井工艺技术主要有2种,一种是保护套式,一种是湿接头式。

由于保护套式存在较多难以克服的缺点,目前已被淘汰。

湿接头式水平井测井工艺技术是目前世界上最先进的水平井测井工艺技术,可以满足各类大斜度井及水平井的测井需要。

其主要工作原理如下:一套大满贯仪器中间配备合适的辅助工具(用以保证仪器测量状态和适应井眼曲率),通过过渡短节联接到钻具底部,用钻具将仪器送到待测地层顶部,仪器到达测量位置后,电缆由旁通短节穿过,连加重和泵下接头下放,泵下接头与井下接头在泥浆中完成电气和机械联接,因此称此联接为湿接头。

电缆通过旁通短节侧孔引出,旁通短节以上的电缆在钻具外部,通过一套导向装置引向绞车,旁通短节不能下出套管,以免损坏电缆,因此,每次测量井段不能大于套管长度。

湿接头联接好后,给仪器供电,检查仪器状态,一切正常后,钻井与测井同步下钻具和电缆,下测至测量井段底部,然后再同步上提测井,至旁通到达井口,测井完毕。

湿接头式水平井设备主要构成有:旁通短节、过渡短节、井下快速接头、泵下接头。

辅助工具有:张力短节、旋转短节、偏心短节、调整短节、柔性短节、井台张力显示器、井眼搜寻器、加强保护套、防灌短节。

二、水平井测井技术的应用及效果分析结合国内外水平井测井方法,在使用湿接头式水平井测井工艺方面,进行了一些研究和探索,积累了一些成功经验,解决了水平井测井中的工程和地质问题。

水平井测井工艺

水平井测井工艺

二)湿接头式水平井测井主要工具
1. 旁通总成 辽 河 石 油 勘 探 局 测 井 公 司
2. 过渡短节
3. 公头总成
4. 泵送接头总 成
1. 旁通总成
辽 河 石 油 勘 探 局 测 井 公 司
密封总成 电缆夹
旁通短节
上面的槽是用来放置电缆卡子的地方。 带有丝扣的通道口使电缆 进入钻杆内并具有密封作 用。 槽两侧的小孔是用剪切 螺栓把电缆卡子固定到 旁通上的地方。
四、泵出法水平井测井工艺介绍
辽 河 石 油 勘 探 局 测 井 公 司
2、能完成的测井项目 1)声感组合 2)放射性 3、泵出法水平井测井工艺的优缺点 1 )优点:设备成本低、操作简单,解决仪器 故障时间短。 2 )缺点:测井仪器从钻具水眼中穿过,所以 对钻具要求太高,还很容易使仪器卡在钻具 中;无法在仪器串中加装扶正器、偏心器等 辅助设备,无法满足仪器的居中、偏心等要 求;只能完成上述的测量项目。所以说泵出 法水平井测井技术无论在测量项目、测井安 全上还是在施工质量上都存在很大的局限性。 在这种情况下应运而生,就出现了钻杆输送 时水平井测井系统。
油层
四)TPL系统工作原理
仪器串通过一个公头外壳连
演示中
辽 河 石 油 勘 探 局 测 井 公 司
到钻杆上,然后由钻杆把仪 器送到目的层的顶部。
仪器下井演示
当仪器到达目的层顶部后,
套管 钻杆 公头总 成 测井仪器
电缆通过湿接头装置与仪器 串相连。由于这个连接一直 是在钻井液中完成的,因而 通常称为“湿连接”。
水平井测井工艺介绍
前言 辽 河 石 油 勘 探 局 测 井 公 司
一、水平井的类型 二、水平井测井工艺要解决的难题 三、水平井测井技术的发展与现状 四、泵出法水平井测井工艺简介 五、钻杆输送测井系统介绍

水平井生产测井工艺技术与应用

水平井生产测井工艺技术与应用

第二十五页,共44页。
5、 非自喷状况下的水平井产液剖面测井工艺技术及应用
◆ “双管柱”应用实例——氧活化找水测井
出 水 部 位
1 、 本 井 在 泵 抽 的 条 件 下 测 量 , 测 量 时 地 面 流 量 为 110 m3/d,氧活化测井测得总量为120 m3/d。 2、测量出水结果: 1905.9-1910.1m:出水约45 m3/d,占总量的37.5%。 1963.3-1968.3m:出水约15 m3/d,占总量的12.5%; 1991.9-2111.6m:出水约60 m3/d,占总量的50%;
套管阀门 安全下接头
测井电缆
油管 安全上接头
扶正器 模拟柱塞泵
双向卡瓦封隔器
模拟抽油机坐封卡瓦
第二十七页,共44页。
爬行器
测井仪器
模拟抽油机工作原理
5、 非自喷状况下的水平井产液剖面测井工艺技术及应用
(3) “模拟抽油机” 应用实例——产液剖面测井
测井资料处 理成果图
作业机提液状态
曲9-平10井产液剖面测井实际应用


可进行电磁探伤套管质量检查测井。



可进行同位素示踪等注水剖面项目测井。



测井前井下管柱一次设置完成,测井过程中不再动用管 具作业,测井与作业人员劳动强度大大降低。井口轻易实
现电缆密封,可带压进行作业。
第七页,共44页。
2、 “水力输送法”水平井测井工艺技术及应用
❖ 设计研制了水力输送工艺技术及专用工具;
坨x-平x井电磁探伤测井成果图
第十七页,共44页。
1607米 处测得一 处破损点
3、 “爬行器输送法”水平井测井工艺技术及应用

美国页岩气藏水平井生产测井技术

美国页岩气藏水平井生产测井技术

1 引 言
页 岩油 气作 为非 常规 能源 之一 ,正 在全球 能 源 结 构 中扮 演着 重要 角 色 。水 平井 开采 方 式在 页岩 油 气藏 开发 中优 势 明显 ,精准 的水 平井 生产 测井 技术
2 水 平 井 生产 测 井 组 件
生产 测井 的 目的是为 油气 藏工程 分 析提供 基础 信息 ,通 常通 过测 量 流动井 段来 辨别 流入 水或 烃类

法 。分 析其仪 器部 署和测 量 实践表 明,两种
方法各 具优 势 ,在 气、水 层 与 裂 缝 的 识 别 、
个 压力 瞬变 现象 ,能 够使致 密 地层 的微 达西流 动
持 率测 量等 方 面精 度 更 高 ;降低 了仪 器在 油
管 中发 生 阻塞 的 机 率 ; 增 强 了抵 抗 井 内 流 体
大特 色 。 B r et 页 岩 气 藏 水 平 井 生 产 an t 组
测 井 中主要 采 用 l i 管输送 和过 2 i n油 n
油 管 井 牵 引 器 输 送 测 量 仪 器 的 两 种 测 井 方
mm) 或 5 i 管 和 2 i n套 % n油管 ,油 管装 有气 举 心轴 用 以辅助 排水 。压裂处 理后 的页岩气 层会 有 ]
段 ,图 1 示 为 水平井 中多相 生产 状况 。 所
映 储 层 实 际情 况 。 目前 ,我 国 多 用 钻 杆 传 输 的 测 井 方 式 , 而 连 续 油 管 输 送 的 测 井技 术 涉
及 尚 浅 , 因此 , 美 国 页 岩 气 藏 生 产 测 井 实 践
不仅 对我 国水 平 井测 井技 术 的发展 有指 导 作 用 ,更可 为我 国处 于起 步阶段 的 页岩 油气 藏

SY-T%206030-2003%20水平井测井作业技术规范

SY-T%206030-2003%20水平井测井作业技术规范
6 测前安全会议
6.1 召开安全会议 水平 井 测 井作业前,应召开安全会议 使钻井队配合测井作业的人员了解作业流程及注意事项
保证 测井作业 的安全 、顺利进行。 6.2 参加会议人员
健康 、 安 全和环境管理人员、测井队长 (或操作工程师)、测井监督、现场地质监督、钻井队队 长 、技术 员、司钻、钻工 、泥浆工 以及与水平井测井作业有关 的其他人员 。 6.3 安全会议程序及 内容 6.3.1 地质监督介绍井下地质情况,并提供测井所需数据;钻井队长或技术员说明最后一次起下钻 过程中的井下情况 、钻井过程 中曾经出现的复杂情况以及 目前钻机系统运行状况 。 6.3.2 测井队长或操作工程师收集井斜数据,并根据水平井测井作业的特点及施工方法,对钻井队 配合施工人 员提出相应的要求。 6.3.2.1 钻井队应协助测井队安装天、地滑轮,并固定牢靠。 6.3.2.2 钻井队技术员应根据测井操作 工程师提供的仪器串和水平井工具长度或仪器保护套长度, 计算并设计好输 送工具的输送程序及相对应的深度。 6.3.2.3 旁通短节以下的所有输送工具在下井前,钻井队应用大于泵下枪外径或下井仪器外径的通 径规通一遍 ,清除输 送工具内的岩屑和污物 ,以利湿接头的对接或下井仪器下入保护套 中。 6.3.2.4 旁通短节和电缆人井后进行水平井测井作业时,钻井队应将游动滑车大钩和井 口方转盘锁 死;特殊情况应经测井队长同意并采取一定的防范措施后,方可解锁使用,完毕后立即锁死。
83用作业机配合测井施工时需有水泥车配合并有吊车配合吊天滑轮吊车吊挂力应大于50kno84电缆穿过天地滑轮通过马笼头连接在下井仪器上供电检查仪器工作情况并对相关仪器无法在井中校验的仪器做测前校验校验结果应符合sy15132的规定
ICS 73.020 D 13

精选水平井生产测井技术

精选水平井生产测井技术

fn
0.0056
0.5N
0.32 Re n
(7-19)
(2)计算校正因素es
s
0.0523 3.182X
X 0.8725X
2
0.01853x 4
(7-20)
其中,
Y
L [H L ()]2
X ln(Y )
(7-21) (7-22)
(3)计算压力降落
dP dP dP dZ ( dZ )el ( dZ ) fr
对于高含水率情况,涡轮和持水率计主要暴 露在下部的水中,反映水的流动情况。测量时, 油气水必须通过金属集流伞,然后进入集流通道, 所以涡轮测得的RPS值反映了油气水总的流动情 况。
图7-9 低含水情况下的分层流体
图7-10 高含水情况下的分层流体
图7-11 水平井生产测井组合仪示意图
一、涡轮流量计和密度计的响应
水的表观速度较低时(小于0.1英尺/秒), 为均质泡状流动。随着油相表观速度的增加,油 泡开始聚集形成大油泡流动(段塞流),最后形 成雾状流。
1.油水两相流形图
图8-4 18.0厘泊,比重0.834的油与水在0.806英寸管道中的流型
2.气水两相流形图
图8-4a 空气-水混合物在1.026英寸管道中的流型
一、流型实验及流型图
1.流型实验
利用实验模型进行水平井流型实验,观察相应流体 的流型并测量持水率,各参数的变化范围为: (1) 气体流量,0~300MSCF/d; (2) 水的流量,0~30gal/min; (3) 平均系统压力,35~95Psi; (4) 管子直径,1英寸和1.5英寸; (5) 持水率,0~0.87; (6) 压力梯度,0~0.8Psi/ft; (7) 倾斜度,-90°~90°; ( 8 ) 水平流型。

水平井测井技术-全

水平井测井技术-全

按造斜率划分
1、大曲率半径水平井:造斜率为2°~6°/100ft, 相应的曲率半径为3000~1000ft,大曲率半径水平井 在钻达目的层之前就能达到一个很大的水平位移,水 平段一般为2000~5000ft。 2、中曲率半径水平井:造斜率为8°~50°/100ft, 相应的曲率半径为700~125ft,水平段长度一般为 1500~2000ft。 3、小曲率半径水平井:造斜率为1.5°~3°/ft, 相应的曲率半径为40~20ft。小曲率半径水平井的造 斜率很大,可在20~60ft的距离内迅速达到90°的斜 度。水平井段一般仅有300~400ft。
水平井测井技术-使用条件
随着井斜角的逐渐增大, 井下仪器与井壁的摩擦力Ff也 不断增大,井下仪器向井底方 向运动的分力FB逐渐减小(图 3)。当井斜角增大到约65° 时,井下仪向井底方向运动的 分力FB减小到一个临界值,即 该分力约等于井下仪器与井壁 的磨擦力,这时,井下仪器再 也无法借助于自身重力向井底方向运动,测井电缆下放井 下仪器的作用消失。因此在井斜角大于65°的大斜度井和 水平井中,必须借助外力将井下仪器推至井底,以便进行 测井。
裸 眼 井 水 平 井 测 井 技 术
裸眼井水平井测井技术
水平井概况及类型
水平井测井技术
湿接头式水平井测井技术 裸眼井水平井测井技术提供的服务 应用实例
水平井概况-国外
什么叫水平井?概括地讲,就是部分井段的井斜角为90° 左右的井。 从钻第一口井起 ,人们一直钻垂直井,并严格规定每1000 米井段井斜角不能超过2°~3°。1954年,前苏联打成第一口 90的分支水平井,20世纪50年代,前苏联共钻43口水平井,进 行水平井试验,其结论是技术上可行但无经济效益。50年代中 期至60年代中期,这十余年间曾是水平钻井比较流行的时期, 特别是分支水平井,作为一种提高产量的方法曾在前苏联以及 美国、加拿大、意大利等国的许多油田受到重视,然而,由于受 当时技术条件的限制,这种钻井方法是不经济的,尤其是与低 成本的压裂处理相比更是如此。因此,60年代后期至70年代中 期,水平井钻井急剧减少,仅在美国和前苏联少数油田钻了一 些水平井。

水平井测井工艺技术分析及应用探讨

水平井测井工艺技术分析及应用探讨

水平井测井工艺技术分析及应用探讨水平井测井是一种应用广泛的地球物理测井方法。

该方法适用于油气井、水井等地下水文地质工程领域,并且已经在石油勘探、采油中得到大量的应用。

本文将对水平井测井工艺技术进行分析及应用探讨。

1. 水平井测井方法水平井测井是指在油井、水井等垂直井中斜向钻进水平孔道,通过在孔道内发送特定的测井信号,测定地层的电性、物理性质和流体特性等参数。

水平井测井技术主要有以下几种方法:(1)电测井:根据测量电阻率的方法,通过连接电极一次性测量电阻率,然后将其转换为电导率。

水平井电测井常用的是侧壁电阻率测井和同轴电阻率测井。

(2)声波测井:该方法是通过测量回声时间和波速来确定地层性质。

水平井常用的是多普勒声波测井和压力波测井。

(3)核磁共振测井:该方法主要是通过测量磁场并对沿着水平井轴向的核磁共振信号进行处理,获得地层信息。

常用的水平井测井中,核磁共振测井是一种新兴的方法。

水平井测井在石油勘探、开采中得到广泛应用。

其主要应用有以下几个方面:(1)评价沉积环境:水平井测井可以在水平井轴向上提供大量的地层信息,为沉积环境分析提供了有力的工具。

沉积环境包括地层岩性、压力分布、地下水、裂缝等信息。

(2)判别油气:水平井测井可以提供油气地层中流体特性的信息,如饱和度、相对渗透率、孔隙度、渗透率等。

通过测量油气成分和属性,可以帮助识别油气层, 而且可以进一步了解油气藏的分布情况和有效充满程度。

(3)评估储量:水平井测井可以评估油气藏的储量,通过测量地下油气藏的物理性质、流体特性和流动状态,得出油气储量的预测信息,为油气勘探提供有力依据。

3. 水平井测井的技术发展趋势(1)多测参数综合利用:随着水平井测井技术的不断发展,多参数测量的技术方式已经得以实现。

通过综合多参数测量结果,可以更加深入地刻画储层物理性质、流场复杂性和聚集状态等一系列有关储层的细节信息。

(2)数学模型及人工智能:水平井测井珂以通过数学建模方法和人工智能等技术手段对测数据进行分析和处理,使其更加准确、客观、自动化等特点。

水平井测井解释技术综述

水平井测井解释技术综述

水平井测井解释技术综述随着石油勘探技术的发展,水平井技术(Horizontal Well Technology,HWT)已经发展成为一种重要的勘探、开采和生产技术,广泛应用于国内外的各种油田。

水平井技术的应用,提升了油田的油气收集效率,实现了越来越多的技术进步,而解释水平井测井数据则是实现这些技术进步的重要组成部分。

水平井测井解释技术,是在使用普通测井技术所获得的测井曲线和其他相关信息的基础上,根据管芯、液体、气体和固体自由表面之间可观测特性的变化,采用诸如岩石物理学、放射学、无激振地资料等多种定量和定性手段,对水平井测井数据进行解释,进而确定油藏层位及其类型、物性及储层特征的方法。

水平井测井解释技术的实施,包括两个阶段,以此来逐步确定水平井的物性分布:第一阶段是曲线解释,指的是采用孤立的测井信息对水平井的岩性、储层层位及藏量等信息进行解释;第二阶段是反演解释,即利用详细的测井、物理和地球物理资料,遵循岩石物理学和储层模型的原理,反演数据获得油气地层的实际物性及空间分布。

曲线解释是实施水平井测井解释的基本环节,它的目的是尽量准确地确定油藏的岩性、储层层位及藏量等信息。

在水平井测井曲线解释中,首先对测井曲线进行分析和解释,包括井段层位、藏量、岩性、流体等信息,根据各种测井曲线,确定油藏拟合层位、藏量和油层厚度,进而推算有回收率的油藏总规模。

此外,利用反演解释可以更加准确地解释水平井测井数据。

反演解释是基于岩石物理学和储层模型的原理,从测井曲线、放射性曲线和地球物理曲线中提取有效信息,反演数据以获得油气地层的实际物性和空间分布。

另外,需要根据解释结果,建立、优化储层模型,可以更详细地解释油藏的原油物性、地层构造、孔隙结构和水含量等信息,以更好地进行产能测评和资源估算。

总之,水平井测井解释技术是实现油田勘探开发进度和效率的重要保障,它既可以提升油气收集效率,又可以帮助获取更准确的地质信息,为油气开发提供科学依据。

大斜度水平井生产测井技术(斯伦贝谢)

大斜度水平井生产测井技术(斯伦贝谢)
ቤተ መጻሕፍቲ ባይዱ
1.668 [42.9] 16.0 [4.9] 108 [49] 302 [150] 15,000 [103,425] NACE Standard MR0175 90% in 6-in. ID ±10% ±10% 2.875–9 [73.0–228.6] 1.813 [46.0]
Schlumberger Private
实例: 科威特
Schlumberger Private
面临问题: 初产13,000 STB/D 纯油,无水; 生产3周后,含水率达90%; 解决方案: 应用Flow Scanner测量产液剖 面,找水并堵水 措施及效果: 封堵下部主要产水段,含水 率从90%下降到75%,产量 2500BOPD & 7500BWPD
Schlumberger Private
Schlumberger Private
实例: 科威特
全井眼转子和微转子对比 -微转子工作更好
面临问题: 初产13,000 STB/D 油,无水; 生产3周后,含水率达90%; 解决方案: 应用Flow Scanner测量产液剖 面,找水并堵水
SPE 105327 - Horizontal Well Production Logging Experience in Heavy Oil Environment With Sand Screen : A Case Study From Kuwait
Flow Scanner* 持气率探针
持气率-GHOST
GHOST* 光学探针技术; 6个探针垂直于井轴方向分布; 电动短节扫描各探针,
精确测定低速气液界面。
GHOST – 持气率光学探针
光在气中的反射大于液体
探针

水平井生产测井解释技术研究

水平井生产测井解释技术研究

少,下倾趋势相反。
➢筛管实验段的压降比常规压降大。
13
四、实验研究
2、研究成果---模拟测井仪流型总结
常规管道流动实验 筛管管道流动实验 实验证明:在空气/水或稀油两相流动情况下模拟测井仪对流型的影响 可以忽略;空气/稠油两相流动时测井仪对流型有影响,但不很大;测 井仪的存在增加了压降损失,上倾时的压降较大。
Vsl/(m.s-1)
0.1
光滑流
环状流
波浪流
0.1
光滑流
环状流
波浪流
0.01 0.1
1 Vsg/(m.s-1) 10
100
无注入
0.01 0.1
1 Vsg/(m.s-1) 10
100
注入0.1m/s
Vsl/(m.s -1)
随着注入比例增大, 段塞流和气团流的边 界向下偏移。
Vsl/(m.s-1)
气团流
动态监测技术是解决该问题最有效的手段之一。近年来国 内外水平井的动态监测技术方面取得的成果仅局限于仪器方面 的进展,如Schlumberger(FlowScan)、Atlas(MCFM)、 Sondex(SAT、RAT、CAT),而资料解释方法方面在国内外还 没有相应的报道。水平井生产测井解释技术已经提上了日程!
4
四、实验研究
1、实验设计——物理模拟实验
在综合考虑水平井测量过程中仪器运动、完井方式、井眼轨迹、仪器 偏心等对井筒中流态的影响因素,设计了两类实验:
不同管径、起伏管路物理模拟实验
➢40mm、50mm ➢11种井斜角度:水平管路(0º)、±2º、±5°、±15°、±30°、±45° ➢油水、气水两相、油气水三相
(5)测速(m/min):0,3,6,9,12,15(井斜90°)

水平井生产测井技术

水平井生产测井技术

水平井生产测井技术引言水平井是一种在地下开采油、气等能源资源的常用技术。

在水平井的生产过程中,测井技术被广泛应用于评估井筒中的地层性质、确定井底油层产能及优化采收方案。

本文将详细介绍水平井生产测井技术的原理、方法以及其在油田开发中的应用。

水平井的特点水平井是一种沿水平方向延伸的井筒,与传统的垂直井相比,具有如下特点:1. 增加了地层暴露面积,提高了油、气的产能; 2. 压裂压力分布均匀,能够有效刺激油、气分布; 3. 横向排采对比垂直排采有更高的产量。

水平井测井技术的原理水平井生产测井技术的原理是通过测量井筒中的物理参数,判断地层状况并评估产能。

常用的水平井测井技术包括测井工具测量、井底气体采收及注入、井内压力监测等。

测井工具测量测井工具是用于测量地层性质、孔隙度、饱和度等参数的设备。

在水平井中,测井工具通常是通过井筒下放,然后绕曲率补偿器通过井筒弯曲段进入水平段。

测井工具的测量数据将用于判断油、气分布情况,并确定进一步开采和压裂的方案。

井底气体采收及注入井底气体采收和注入技术能够通过收集井底的气体样品,以确定地层中的气体类型和含量。

采收和注入过程通常是通过在井筒中设置气体收集器或注入器,配合相应的气体分析设备完成的。

通过分析收集的气体样品,可以有效评估地层中的气体资源潜力,为后续的生产和压裂决策提供依据。

井内压力监测井内压力监测是水平井生产测井中的重要环节。

通过在井筒中布置压力传感器,并定期测量和记录井内压力变化情况,可以获得井底和井口的压力数据。

井内压力数据的分析和监测可以帮助评估地层性质、油、气产能以及压裂效果,为生产操作提供参考。

水平井测井技术的应用水平井测井技术在油田开发中有着广泛的应用。

以下是一些常见的应用场景:地层评估和优化水平井测井技术可以提供地层性质的详细数据,包括孔隙度、饱和度、渗透率等,从而更准确地评估地层的产能潜力。

根据测井数据,可以调整井下水平段的位置和长度,优化开采方案,提高产量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向 上 0.011 –3.768 3.539 – 向上 2.96 0.305 –0.4473 0.0978
均布流 向上 无校正 c=0 1 HL f()
全部流体
0.5056
流动类型
向 下 4.70 0.1244 –0.3692 –
三、摩擦系数的确定
两相流体间的摩擦系数ftp是用无滑动摩擦系数fn
水的表观速度较低时(小于0.1英尺/秒), 为均质泡状流动。随着油相表观速度的增加,油 泡开始聚集形成大油泡流动(段塞流),最后形 成雾状流。
1.油水两相流形图
图8-4 18.0厘泊,比重0.834的油与水在0.806英寸管道中的流型
2.气水两相流形图
图8-4a 空气-水混合物在1.026英寸管道中的流型
5.不同的钻井技术示意图
a—超短曲率(R=1~2ft,L=100~200ft); b—短曲率(R=20~40ft,L=100~800ft);
c— 中 等 曲 率 ( R=300 ~ 800ft , L=100 ~ 4000ft);
d— 长 曲 率 ( R1000ft , L=1000~4000ft)
2、提高采收率,特别是在热采提高采收率开 采时,水平井段可与油藏大面积接触,因此注汽 井可提高采收率。
3、水平井可用于低渗气田开采,也可用于高 渗气藏开采。
二、水平井的几个概念
水平井的形成可分为两类:一是从地面新 钻的井,通常水平井段长度为300~1300米长; 另一类井为侧钻井,是从现有的井,横向侧钻 出来,长度为30~210米。
NRen
124nVmD n
(7-18)
式中, n 和 n 分别是无滑动混合密度和混合粘度。 NRen是无滑动雷诺数。D是单位为英寸的管子内径。 NRen求出后,可利用下式求出fn值:
fn0.00 50.5 6N R 0.n 3 e2
(7-19)
(2)计算校正因素es
s
X
(7-20)
0 .05 3 2 .13 8 X 2 0 .87 X 2 2 0 5 .01x4 853
3.中曲率半径水平井
半径300~800ft,造斜角为6°~20°/100ft。此方 法是钻水平井的主要方法,水平井段长度可达 2000~4000ft。通常用裸眼、割缝衬管或衬管加管外 封隔器完井,有时也用水泥固井射孔方法完井。
4.长曲率半径水平井
曲率半径为1000~3000ft,造斜角为2°~ 60°/100ft。这一钻井方法所形成的水平距离可达 4000ft以上。
Ql Ql Qg
Vsl Vm
1
NLV1.93Vs8l(L L)4
(7-4) (7-6)
L1 3160L.302
L3
0.1
1.4516 L
(7-7) (7-9)
L20.00092 L25.46284
L4
0.5
6.738 L
(7-8) (7-10)
2. 各参数的意义
Qg—气体流量(bbl/d);Ql—液体流量(bbl/d); Vsg—表观气体速度,ft/s; Vsl—表观液体速度,ft/s;
一、流型实验及流型图
1.流型实验
利用实验模型进行水平井流型实验,观察相应流体 的流型并测量持水率,各参数的变化范围为: (1) 气体流量,0~300MSCF/d; (2) 水的流量,0~30gal/min; (3) 平均系统压力,35~95Psi; (4) 管子直径,1英寸和1.5英寸; (5) 持水率,0~0.87; (6) 压力梯度,0~0.8Psi/ft; (7) 倾斜度,-90°~90°; ( 8 ) 水平流型。
NFR—费劳德数,无因次; NLV—液体速度,无因次;
L —含液率,无因次; Li—流型范围,无因次;
D—管子内径,英寸; g —重力常数,32.2ft/s2 ; L —液体密度,1b/ft3; L—液体表面引力,达因/厘米。
二、持液率(持水率)HL的确定
从水平位置开始,角度为的持液率等于水平
水平井生产测井技术
图7-1 垂直层面直井与平行 层面水平井示意图
图7-2 垂直油藏层面的水平井
一、水平井应用
水平井完井方式通常采用下套管注水泥射孔完 井、裸眼井完井或割缝衬管完井,完井方式主要 取决于油藏物性和该地区的实际经验。水平井主 要适用于以下情况:
1、在近海地区、边远地区及环境敏感的区域, 钻水平井既可以提高产量也可以节约钻井费用。
其中,
Y
L [HL ()]2
XlnY()
(7-21) (7-22)
(3)计算压力降落
dP dP dP dZ(dZ)el(dZ)fr
s H L ()L [1 H L ()]g
dP
( d
Z)el
g gc
(s
)
式中 gc —32.2ft ·1bm/(1bf·s2) g —当地重力加速度,ft/s2
(7-23) (7-24) (7-25)
二、斜井中的仪器响应与图版制作
解释图版在模拟井中制作完成。模拟井筒内 径为2.5英寸,倾斜角为45°。把流体电容持水率 计、流体密度计和伞式流量计下入倾斜的模拟井 筒中,如图所示
图7-9 低含水情况下的分层流体
图7-10 高含水情况下的分层流体
图7-11 水平井生产测井组合仪示意图
一、涡轮流量计和密度计的响应
把伞式流量计和放 射性密度计下入测试管 中。改变总流量,在每 一伞 式流量计在水平井中 (内径为4英寸)的响 图8-12 内径为4in的水平管内流量计对油水两 应曲线。
水平井产出剖面
由于水平井中油气水呈层状分离流动,故流 量计、持水率计的响应结果具有一定的纵向偏面 性,由于涡轮和持水率计暴露在油中,因此所测 信号主要反映油的流量及油的电容响应,而很少 反映另一相水的流动及含量。
对于高含水率情况,涡轮和持水率计主要暴 露在下部的水中,反映水的流动情况。测量时, 油气水必须通过金属集流伞,然后进入集流通道, 所以涡轮测得的RPS值反映了油气水总的流动情 况。
2.钻井方法 用短曲率半径钻成的井可采用裸眼或采用割缝衬
管完井。对于采用中长曲率半径的水平井,既可采用 裸眼办法,又可采用割缝衬管或水泥射孔完井。
3.钻井液 为了减少钻井时的地层伤害,可以采用负压钻井。
同时也可以用一些特殊的泥浆,如低固相或无固相的 聚合物泥浆。
水平井中的流型
在水平井和斜井中,由于轻质相与重质相的 分离,流型与垂直井中有较大差异.
管子的持液率乘以校正管子倾斜角度的因数y:
HL()HL(0)y
(7-11)
首先根据下列公式求出HL(0):
HL (0)
aLb
NFcR
(7-12)
根据适当的水平流动类型,从参数表7-1中
得出的参数a、b和c的值。
二、持液率(持水率)HL的确定
表8-1参数a、b和c的值
水平流动类型
a
b
c
分相流 间断流 均布流
4. 水相流动中等时的流型
在水相流量中等的情况下,此时,气体流速较低, 不连续的变形气泡浮在管子上部,气体流速增加时, 这些气泡聚集形成气体段塞,称为段塞状流动,这一 流型是从泡状流向环雾状流型过度的一种流型。
气体的流量进一步增加时最后形成环雾状流动,泡 状和段塞状流动中,气液之间存在着较大的滑脱速度, 环雾状流动中,气体和雾滴的流速近似相等。
或 L ≥0. 4和 L3 <NFR≤L4 (4) 均布流 L <0. 4和NFR ≥ L1
或 L ≥0. 4和NFR > L4
1.计算 L 和 NFR需要的参数
Vsl
Ql 84D2
(7-1)
Vsg
Qg 84 D2
(7-2)
Vm Vl Vg
N FR
12Vm2 gD
(7-3) (7-5)
L
图7-3 不同的钻井技术示意图
三、水平井完井技术
在致密岩石地层中,可采用裸眼方式完井, 裸眼完井的缺点是不能实施增产措施,难于控制 注入量和产量。
割缝衬管完井的主要做法是在水平井段下入割 缝衬管以防止井眼坍塌,通常使用的三种衬管是 穿孔衬管、割缝衬管和砾石充填衬管。割缝衬管 的主要缺点是难以进行有效的增产措施。
相流的响应
1.密度测井仪响应
图8-13 密度测井仪响应
纵坐标表示仪器响应
的百分数
Fr
fm fo fw fo
fw、fo分别表示水、油的频
率响应。横坐标为含水率,
四条曲线对应不同的总流量。
随着流量增加,曲线接近
45°线,说明大于该流量油
水呈乳状混合流动状态,低
于该流量油水呈层状分离状态。
2.电容法持水率计响应与含水率关系
5. 水平井中流型的分类
水平井中的流型分为三

种流动:
7

(1)分相流;


(2)间断流;
平 管
(3)均布流。
道 中
分相流包括层状流、波
的 流 型
状流和环状流; 间断流 包括段塞流和段状流;
均布流包括泡状流和雾
状流。
6.各流型出现的条件
当气体的流量较小时,气体和水分层流动,气体 在上半部,水在下半部,界面为平面接触。随着气 相流量的逐渐增加,气体使水面形成波动;气体流 量进一步增加形成段塞流和段状流;之后随着气体 流量的进一步增加,依次形成泡状流、环状流和雾 状流。同一口井中不可能同时出现上述各类流型, 具体情况取决于气和水的流量。
0.98 0.845 1.065
0.4846 0.5351 0.5824
0.0868 0.0173 0.0609
如果HL(0)< L , 则令HL(0)= L ;反之使用式 (8-12)中计算出的 HL(0)的值。
1. 校正系数的计算
校正系数可以根据下列公式计算:
相关文档
最新文档