锐角三角函数讲义

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锐角三角函数

第一课时:三角函数定义与特殊三角函数值

知识点一:锐角三角函数的定义: 一、 锐角三角函数定义:

在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c ,

则∠A 的正弦可表示为:sinA= , ∠A 的余弦可表示为cosA=

∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数

例1.如图所示,在Rt △ABC 中,∠C =90°.

①斜边

)(sin =A =______,

斜边

)

(sin =

B =

______;

②斜边

)(

cos =A =______,

斜边

)

(cos =

B =

______;

③的邻边

A A ∠=)

(

tan =______,

)

(tan 的对边

B B ∠=

______.

例2. 锐角三角函数求值:

在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______,

sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______.

例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3.

求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR .

对应练习:

1、 在Rt △ABC 中,a =5,c =13,求sinA ,cosA ,tanA .

2、 如图,△ABC 中,AB=25,BC=7,CA=24.求sinA 的值.

25

24

7C B

A

3、 已知α是锐角,且cos α=34

,求sin α、tan α的值.

4、在Rt ABC △中,90C ∠=o ,5AC =,4BC =,则tan A = .

5、在△ABC 中,∠C=90°,sinA=5

3,那么tanA 的值等于

( ).

A .35

B.

4

5

C.

34

D.

43

6、 在△ABC 中,∠C =90°,cosA

=,c =4,则a =_______.

7、如图,P 是∠α的边OA 上一点,且P 点坐标为(2,3), 则sinα=_______,cosα=_________,tanα=______ _.

知识点二:

特殊角的三角函数值

当 时,正弦和正切值随着角度的增大而

余弦值随着角度的增大而

例1.求下列各式的值. (1).计算:︒

-︒+︒60tan 45sin 230cos 2.

(2)计算:︒-︒+︒30cos 245sin 60tan 2.

例2.求适合下列条件的锐角α .

(1)2

1cos =α

(2)3

3tan =

α

(3)已知α 为锐角,且3)30tan(0=+α,求αtan 的值

例3. 三角函数的增减性

1.已知∠A 为锐角,且sin A <

2

1,那么∠A 的取值范围是

A. 0°< A < 30°

B. 30°< A <60°

C. 60°< A < 90°

D. 30°< A < 90°

2. 已知A 为锐角,且030sin cos

A. 0°< A < 60°

B. 30°< A < 60°

C. 60°< A < 90°

D. 30°< A < 90°

类型一 特殊三角函数值与计算 1、(1)计算:3-

1+(2π-1)0-3

3tan30°-tan45°

(2)计算:0

30tan 2345sin 60cos 221

⎪⎪⎭

⎫ ⎝⎛︒-︒+︒+.

(3)计算:

tan 45sin 301cos 60︒+︒

-︒

(4)2

22sin =α (5)33)16cos(6=-οα

(6)在ABC ∆中,若0)2

2(sin 2

1cos 2

=-

+-B A ,B A ∠∠,都是锐角,求C ∠.

类型二:利用网格构造直角三角形

1、 如图所示,△ABC 的顶点是正方形网格的格点,则sinA

C

B

A

2、如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______.

3、如图,A 、B 、C 三点在正方形网络线的交点处,若将ABC ∆绕着点A 逆时针旋转得到''B AC ∆,则'tan B 的值为

A.4

1 B. 3

1 C.2

1 D. 1

4、正方形网格中,AOB ∠如图放置,

则tan AOB ∠的值是( ) A . 5

5 B.

2 5

5

C.1

2

D. 2

类型三:直角三角形求值

1、已知Rt △ABC 中,,12,4

3

tan ,90==︒=∠BC A C 求AC 、

AB 和cos B .

2、如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,⋅

=∠4

3sin AOC 求AB 及OC 的长.

A

B

O

相关文档
最新文档