聚类分析原理及步骤.pdf
聚类分析原理

聚类分析原理
聚类分析是一种无监督学习算法,它将数据集中的对象分
成相似的组或簇。
其原理基于以下几个关键步骤:
1. 选择合适的相似性度量:聚类算法需要定义一个衡量对
象之间相似性的度量方式。
常用的度量方法包括欧氏距离、曼哈顿距离、余弦相似度等。
2. 初始化聚类中心:聚类算法通常需要提前指定簇的数量K。
然后可以随机选取K个样本作为初始的聚类中心,或者通过某种启发式方法选择初始聚类中心。
3. 分配样本到簇:将每个样本分配到最接近的聚类中心所
属的簇。
这个过程可以通过计算每个样本与每个聚类中心
之间的距离,并选择距离最小的聚类中心来完成。
4. 更新聚类中心:根据当前簇中的样本重新计算聚类中心
的位置,通常是取簇内所有样本的均值作为新的聚类中心。
5. 重复步骤3和步骤4,直到簇的分配结果不再变化或达
到预定的停止条件。
6. 输出最终的聚类结果。
聚类分析的目标是在不知道样本的真实标签的情况下,将
样本聚类成相似的组。
它可以帮助发现数据的内在结构,
识别相似的样本和异常值,以及进行数据压缩和预处理等
任务。
聚类分析_精品文档

1聚类分析内涵1.1聚类分析定义聚类分析(Cluste.Analysis)是一组将研究对象分为相对同质的群组(clusters)的统计分析技术.也叫分类分析(classificatio.analysis)或数值分类(numerica.taxonomy), 它是研究(样品或指标)分类问题的一种多元统计方法, 所谓类, 通俗地说, 就是指相似元素的集合。
聚类分析有关变量类型:定类变量,定量(离散和连续)变量聚类分析的原则是同一类中的个体有较大的相似性, 不同类中的个体差异很大。
1.2聚类分析分类聚类分析的功能是建立一种分类方法, 它将一批样品或变量, 按照它们在性质上的亲疏、相似程度进行分类.聚类分析的内容十分丰富, 按其聚类的方法可分为以下几种:(1)系统聚类法: 开始每个对象自成一类, 然后每次将最相似的两类合并, 合并后重新计算新类与其他类的距离或相近性测度. 这一过程一直继续直到所有对象归为一类为止. 并类的过程可用一张谱系聚类图描述.(2)调优法(动态聚类法): 首先对n个对象初步分类, 然后根据分类的损失函数尽可能小的原则对其进行调整, 直到分类合理为止.(3)最优分割法(有序样品聚类法): 开始将所有样品看成一类, 然后根据某种最优准则将它们分割为二类、三类, 一直分割到所需的K类为止. 这种方法适用于有序样品的分类问题, 也称为有序样品的聚类法.(4)模糊聚类法: 利用模糊集理论来处理分类问题, 它对经济领域中具有模糊特征的两态数据或多态数据具有明显的分类效果.(5)图论聚类法: 利用图论中最小支撑树的概念来处理分类问题, 创造了独具风格的方法.(6)聚类预报法:利用聚类方法处理预报问题, 在多元统计分析中, 可用来作预报的方法很多, 如回归分析和判别分析. 但对一些异常数据, 如气象中的灾害性天气的预报, 使用回归分析或判别分析处理的效果都不好, 而聚类预报弥补了这一不足, 这是一个值得重视的方法。
聚类分析原理及步骤

聚类分析道理及步调之杨若古兰创作——将未知数据按类似程度分类到分歧的类或簇的过程1》传统的统计聚类分析方法包含零碎聚类法、分解法、加入法、动态聚类法、有序样品聚类、有堆叠聚类和模糊聚类等.采取k-均值、k-中间点等算法的聚类分析工具已被加入到很多闻名的统计分析软件包中,如SPSS、SAS等.典型利用1》动植物分类和对基因进行分类2》在网上进行文档归类来修复信息3》帮忙电子商务的用户了解本人的客户,向客户提供更合适的服务次要步调1》数据预处理——选择数量,类型和特征的标度((根据特征选择和抽取)特征选择选择次要的特征,特征抽取把输入的特征转化为一个新的明显特征,它们经常被用来获取一个合适的特征集来为防止“维数灾”进行聚类)和将孤立点移出数据(孤立点是不凭借于普通数据行为或模型的数据)2》为衡量数据点间的类似度定义一个距离函数——既然相类似性是定义一个类的基础,那么分歧数据之间在同一个特征空间类似度的衡量对于聚类步调是很次要的,因为特征类型和特征标度的多样性,距离度量必须谨慎,它经常依附于利用,例如,通常通过定义在特征空间的距离度量来评估分歧对象的相异性,很多距离度都利用在一些分歧的领域一个简单的距离度量,如Euclidean距离,经常被用作反映分歧数据间的相异性,一些有关类似性的度量,例如PMC和SMC,能够被用来特征化分歧数据的概念类似性,在图像聚类上,子图图像的误差更正能够被用来衡量两个图形的类似性3》聚类或分组——将数据对象分到分歧的类中【划分方法(划分方法普通从初始划分和最优化一个聚类尺度开始,Cris p Clustering和Fuzzy Clusterin是划分方法的两个次要技术,Crisp Clustering,它的每一个数据都属于单独的类;Fuzzy Clustering,它的每个数据可能在任何一个类中)和条理方法(基于某个尺度发生一个嵌套的划分系列,它可以度量分歧类之间的类似性或一个类的可分离性用来合并和分裂类)是聚类分析的两个次要方法,另外还有基于密度的聚类,基于模型的聚类,基于网格的聚类】4》评估输出——评估聚类结果的质量(它是通过一个类无效索引来评价,,普通来说,几何性质,包含类间的分离和类内部的耦合,普通都用来评价聚类结果的质量,类无效索引在决定类的数目时经常饰演了一个次要角色,类无效索引的最好值被期望从真实的类数目中获取,一个通常的决定类数目的方法是选择一个特定的类无效索引的最好值,这个索引能否真实的得出类的数目是判断该索引是否无效的尺度,很多曾经存在的尺度对于彼此分离的类数据集合都能得出很好的结果,但是对于复杂的数据集,却通常行欠亨,例如,对于交叠类的集合.)聚类分析的次要计算方法道理及步调划分法1》将数据集分割成K个组(每个组至多包含一个数据且每一个数据纪录属于且仅属于一个分组),每个构成为一类2》通过反复迭代的方法改变分组,使得每一次改进以后的分组方案都较前一次好(尺度就是:同一分组中的记录越近越好,而分歧分组中的纪录越远越好,使用这个基本思想的算法有:K-MEANS算法、K-MEDOIDS算法、CLARANS算法)条理法1》“自底向上”方案——将每个数据单独作为一组,通过反复迭代的方法,把那些彼此邻近的组合并成一个组,直到所有的记录构成一个分组或者某个条件满足为止,代表算法有:BIRCH算法、CURE算法、CHAMELEON算法等2》“自顶向下”方案次要算法道理及步调K-MEANS算法k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象类似度较高;而分歧聚类中的对象类似度较小.聚类类似度是利用各聚类中对象的均值所获得一个“中间对象”(引力中间)来进行计算的. k-means 算法的工作过程说明如下:1》从n个数据对象任意选择 k 个对象作为初始聚类中间;而对于所剩下其它对象,则根据它们与这些聚类中间的类似度(距离),分别将它们分配给与其最类似的(聚类中间所代表的)聚类;2》计算每个所获新聚类的聚类中间(该聚类中所有对象的均值);不竭反复这一过程直到尺度测度函数开始收敛为止.普通都采取均方差作为尺度测度函数.k个聚类具有以下特点:各聚类本人尽可能的紧凑,而各聚类之间尽可能的分开.K-MEDOIDS算法K-MEANS有其缺点:发生类的大小相差不会很大,对于脏数据很敏感.改进的算法:k—medoids 方法:拔取一个对象叫做mediod来代替上面的中间的感化,如许的一个medoid就标识了这个类.步调:(1)、任意拔取K个对象作为medoids(O1,O2,…Oi…Ok).以下是轮回的:(2)、将余下的对象分到各个类中去(根据与medoid最附近的准绳);(3)、对于每个类(Oi)中,顺序拔取一个Or,计算用Or代替Oi后的耗费—E(Or).选择E最小的那个Or来代替Oi.如许K个medoids就改变了,上面就再转到2.(4)、如许轮回直到K个medoids固定上去.这类算法对于脏数据和异常数据不敏感,但计算量明显要比K均值要大,普通只适合小数据量Clara算法K-medoids算法不适合于大数据量的计算,Clara算法的思想就是用实际数据的抽样来代替全部数据,然后再在这些抽样的数据上利用K-medoids算法得到最好的medoids.Clara算法从实际数据中抽取多个采样,在每个采样上都用K-medoids算法得到响应的(O1,O2…Oi…Ok),然后在这当中拔取E最小的一个作为终极的结果.Clarans算法Clara算法的效力取决于采样的大小,普通不太可能得到最好的结果在Clara算法的基础上,又提出了Clarans的算法,与Clara算法分歧的是:在Clara算法寻觅最好的medoids的过程中,采样都是不变的.而Clarans算法在每一次轮回的过程中所采取的采样都是纷歧样的.与上次课所讲的寻觅最好medoids的过程分歧的是,必须人为地来限制轮回的次数。
第五讲聚类分析

第五讲聚类分析聚类分析是一种无监督学习方法,旨在将样本数据划分为具有相似特征的若干个簇。
它通过测量样本之间的相似性和距离来确定簇的划分,并试图让同一簇内的样本点相似度较高,而不同簇之间的样本点相似度较低。
聚类分析在数据挖掘、模式识别、生物信息学等领域有着广泛的应用,它可以帮助我们发现隐藏在数据中的模式和规律。
在实际应用中,聚类分析主要包含以下几个步骤:1.选择合适的距离度量方法:距离度量方法是聚类分析的关键,它决定了如何计算样本之间的相似性或距离。
常用的距离度量方法包括欧氏距离、曼哈顿距离、切比雪夫距离等。
2.选择合适的聚类算法:聚类算法的选择要根据具体的问题和数据特点来确定。
常见的聚类算法有K-means算法、层次聚类算法、DBSCAN算法等。
3.初始化聚类中心:对于K-means算法等需要指定聚类中心的方法,需要初始化聚类中心。
初始化可以随机选择样本作为聚类中心,也可以根据领域知识或算法特点选择合适的样本。
4.计算样本之间的相似度或距离:根据选择的距离度量方法,计算样本之间的相似度或距离。
相似度越高或距离越小的样本越有可能属于同一个簇。
5.按照相似度或距离将样本划分为不同的簇:根据计算得到的相似度或距离,将样本划分为不同的簇。
常用的划分方法有硬聚类和软聚类两种。
硬聚类将样本严格地分到不同的簇中,而软聚类允许样本同时属于不同的簇,并给出属于每个簇的概率。
6.更新聚类中心:在K-means等迭代聚类算法中,需要不断迭代更新聚类中心,以找到最优划分。
更新聚类中心的方法有多种,常用的方法是将每个簇内的样本的均值作为新的聚类中心。
7.评估聚类结果:通过评估聚类结果的好坏,可以判断聚类算法的性能。
常用的评估指标有轮廓系数、Dunn指数、DB指数等。
聚类分析的目标是让同一簇内的样本点尽量相似,而不同簇之间的样本点尽量不相似。
因此,聚类分析常常可以帮助我们发现数据中的分组结构,挖掘出数据的内在规律。
聚类分析在市场细分、社交网络分析、基因表达数据分析等领域都有广泛的应用。
第九章聚类分析

• 例:下表是同一批客户对经常光顾的五座商场在购物环境和
服务质量两方面的平均得分,现希望根据这批数据将五座商
7、如果参与聚类分析的变量存在数量级上的差异, 应在Transform Values框中的Standardize选项 中选择消除数量级差的方法。并指定处理是针对变 量的还是针对样本的。By variable表示针对变量, 适于 Q 型聚类分析;By case 表示针对样本,适 于R型聚类分析。
8、单击Statistics按钮指定输出哪些统计量
R型聚类:对变量进行聚类,使具有相似性的变量聚集在 一起,差异性大的变量分离开来,可在相似变量中选择 少数具有代表性的变量参与其他分析,实现减少变量个 数,达到变量降维的目的。
凝聚方式聚类:其过程是,首先,每个个体自成一类; 然后,按照某种方法度量所有个体间的亲疏程度,并将 其中最“亲密”的个体聚成一小类,形成n-1个类;接下 来,再次度量剩余个体和小类间的亲疏程度,并将当前 最亲密的个体或小类再聚到一类;重复上述过程,直到 所有个体聚成一个大类为止。可见,这种聚类方式对n个 个体通过n-1步可凝聚成一大类。
平方欧式距离(Squared Euclidean distance ) 切比雪夫(Chebychev)距离
max xi yi max( 7366 , 6864 )
Block距离
k
xi yi 73 66 68 64 i1
2、计数变量个体间距离的计算方式
卡方(Chi-Square measure)距离 Phi方(Phi-Square measure)距离
聚类分析原理及步骤

聚类分析原理及步骤
一,聚类分析概述
聚类分析是一种常用的数据挖掘方法,它将具有相似特征的样本归为
一类,根据彼此间的相似性(相似度)将样本准确地分组为多个类簇,其中
每个类簇都具有一定的相似性。
聚类分析是半监督学习(semi-supervised learning)的一种,半监督学习的核心思想是使用未标记的数据,即在训
练样本中搜集的数据,以及有限的标记数据,来学习模型。
聚类分析是实际应用中最为常用的数据挖掘算法之一,因为它可以根
据历史或当前的数据状况,帮助组织做出决策,如商业分析,市场分析,
决策支持,客户分类,医学诊断,质量控制等等,都可以使用它。
二,聚类分析原理
聚类分析的本质是用其中一种相似性度量方法将客户的属性连接起来,从而将客户分组,划分出几个客户类型,这样就可以进行客户分类、客户
细分、客户关系管理等,更好地实现客户管理。
聚类分析的原理是建立在相似性和距离等度量概念之上:通过对比一
组数据中不同对象之间的距离或相似性,从而将它们分成不同的类簇,类
簇之间的距离越近,则它们之间的相似性越大;类簇之间的距离越远,则
它们之间的相似性越小。
聚类分析的原理分为两类,一类是基于距离的聚类。
聚类分析

步骤:
• • • • • • • 1、对数据进行变换处理,消除量纲 2、构造n个类,每个类只包含一个样本计算 3、n个样本两两间的距离{dij} 4、合并距离最近的两类为一新类 5、计算新类与当前各类的距离,重复(4) 6、画聚类图 7、决定类的个数和类
12
类与类间距离的确定
一、最短距离法 二、最长距离法 三、中间距离法 四、重心距离法 五、类平均法 六、离差平方和
聚类分析
(Cluster Analysis)
1
聚类分析(Cluster Analysis)
• 一、聚类分析基本原理 • 二、层次聚类法(Hierarchical Cluster) • 三、K-均值聚类法(K-means cluster)
2
一、聚类分析(Cluster analysis)基本原理 • 聚类分析又称群分析或点群分析,它是研
G8={G1,G2}
17
d78=min{d71,d72}=12.80 7 D4= 7 8 河南3 甘肃4 青海5 辽宁1 浙江2 0 12.8 0 8
18
最长距离法(furthest neighbor)
• 用两类之间最远点 的距离代表两类之 间的距离。
例2:对例1的数据以最长距离法聚类。
19
d13=13.80 d14=13.12 d15=12.80 d23=24.63 d24=24.06 d25=23.54 d34=2.2 d35=3.51 d45=2.21 1 D1= 1 2 3 4 5 0 11.67 0 13.80 24.63 0 13.12 24.06 2.20 0 0 12.80 23.54 3.51 2.21 2 3 4 5 河南与甘肃的距离最近, 先将二者(3和4)合 为一类G6={G3,G4}
聚类分析(共8张PPT)

聚类分析
三、聚类分析中的测度与标准化
在聚类分析技术的发展过程中,形成了很多种测度相似性的方法。每一种方法 都从不同的角度测度了研究对象的相似性。
在数据采集过程中,一般可以用三种方式采集数据:二分类型数据、等级类型 数据和连续类型数据。在进行聚类分析时可以根据不同的数据特点采用相应的测度 方法。
尽量避免绝对数据。
研究个案 A B C
受教育年限 10 16 6
年收入(万元) 2
1.5 1
年收入(元) 20000 15000 10000
A、B、C在不同距离单位时的距离图
A
B
B
10.01
C
A
10000
C
单位:万元
第6页,共8页。
单位:元
聚类分析
四、常用两种聚类分析方法
1.快速聚类法
快速聚类过程是初始分类的有效方法。适用于大容量样本的情形,由用户指定须聚类的 类数之后,系统采用标准迭代算法进行运算,把所有的个案归并在不同的类中。
m维空间中点与点之间的某种距离就可用来描述样品之间的亲疏程度。 而聚类分析则较常使用于将变量属性相似程度较高的观察值,加以分类,使类与类间的异质性达到最大,而同一类的几个观察值同质性很高。 ③对数据进行变换处理,(如标准化或规格化);
mm维维空 空间间中中点点与与点点实之之际间间的的应某某用种种距距时离离,就就可可两用用者来来描描的述述主样样品品要之之差间间的的别亲亲在疏疏程程于度度因。。子分析是针对“变量”予以分组,而聚类分析 按照这种方则法是不断将进“行合观并察,直值到个把所体有”的样予品以合为分一组个,大类亦为即止。因子分析时,根据因变量(题项)间关系密切与 四⑦、最常 后用绘两制否种系,聚统类聚将分类变析谱方系量法图予,按以不分同的类分(类标分准为或不几同个的层分类面原因则,子得)出不;同而的分聚类类结果分。析则较常使用于将变量属性相似 从数据结构程和度统计较形高式上的看观,因察子值分析,是加一种以“横分向类合并,”的使方类法,与聚类类分间析的则是异一质种“性纵向达合到并”最的方大法,。 而同一类的几个观察值 适每用一于 种大方容法同量都质样从本不性的同很情的形角高,度。由测用度户了指研定究须对聚象类的的相类似数性之。后,系统采用标准迭代算法进行运算,把所有的个案归并在不同的类中。 研究学生学业差异、因教师素教分学水析平:等等横,向都需简要化对研,究聚对象类进分行分析类:。纵向分组
聚类分析PDF

为布分的G体总态正一知已 1例
85610000.0=)1-,1(f和7512.0=)1,1(f
.远较者后,近较值均离当应者前明说 是别分度密的B点和A点
�{pxe
2 1
}] 2 x �
2
2
x 1x 8. 1 �
2
1
x[
8 3. 0 1
) 9 1. 0 ( � 2 1
� ) 2 x , 1x ( f
)1(
2D
0 5 260 .93
8G 7G
0
2D
8G 7G
)3(
0
52 . 21 0
52 .02
7G
46 0
8G
9G 7G
8G
9G
)2(
2D
D
5. 2 1
4
2
8G
}01{=6G }9{=5G
01G 11G
9G
}7{=4G }5{=3G
7G
}2{=2G }1{=1G
qG 5.
3. 4.
1. 2 . pG
5 .0
5.4 0.2
5 .21 0 .8 0 .2
0 .23 5 .42 5 .21 5 .4
2G
5 .04 0 .23 0 .81 0 .8 5 .0
1G
6G 5G
4G 3G
5G
4G
3G
2G
量加增的S的后类并
。止为理合较比类分到直去下代迭次依法方种这 照按�心中类的代迭次二第是就这�点个K成形又中间 空维N在值均个n的中类一每�值均量变各算计量测观 的类一每成组据根。类K的成形代迭次一第成形�去中 类的在所心中类各到分量测观把则原小最离距的心中类 个几这距照按�点聚凝、心中类始初称也�子种的类聚 为作量测观个K择选先首统系由以可么那�K数类聚求 要后最�析分类聚与参量变型值数个N了择选果如
聚类分析解析课件

类间距的度量
类:一个不严格的定义
定义9.1:距离小于给定阀值的点的集合 类的特征
◦ 重心:均值 ◦ 样本散布阵和协差阵 ◦ 直径
类间距的定义
最短距离法 最长距离法 重心法 类平均法 离差平方和法 等等
最小距离法(single linkage method)
极小异常值在实际中不多出现,避免极 大值的影响
类的重心之间的距离
对异常值不敏感,结果更稳定
离差平方和法(sum of squares
method或ward method)
W代表直径,D2=WM-WK-WL
即
DK2L
nL nk nM
XK XL XK XL
Cluster K
Cluster M
Cluster L
◦ 对异常值很敏感;对较大的类倾向产生较大的距 离,从而不易合并,较符合实际需要。
如表9.2所示,每个样品有p个指标,共 有n个样品
每个样品就构成p维空间中的一个点
:第i个样品的第k个指标对应的取值
◦ i=1……n; k=1……p
:第i个样品和第j个样品之间的距离
◦ i=1……n; j=1……n
点间距离测量问题
样品间距离与指标间距离 间隔尺度、有序尺度与名义尺度 数学距离与统计距离 相似性与距离:一个硬币的两面
类图上发现相同的类
饮料数据
16种饮料的热量、咖啡因、钠及价格四种变量
SPSS实现
选择Analyze-Classify-Hierarchical Cluster, 然 后 把 calorie ( 热 量 ) 、 caffeine ( 咖 啡
因)、sodium(钠)、price(价格)选入 Variables, 在Cluster选Cases(这是Q型聚类:对观测 值聚类),如果要对变量聚类(R型聚类) 则选Variables, 为 了 画 出 树 状 图 , 选 Plots , 再 点 Dendrogram等。 可以在Method中定义点间距离和类间距 离
聚类分析

含义
ID
主键
Tiredness
熬夜
familial medical history
家族心血 管病史
Sex
性别
Exercise
运动锻炼习 惯
fatness
肥胖情况
Age
年龄
Diet
个人饮食偏 好
hypertension
血压
Profess 工作压力 sitting-
ion
状况
up
早起习惯
blood sugar
19
三、k-means算法
07:41:04
《医学信息分析与决策》课程组
20
三、k-means算法
这种分法有意 义吗?
07:41:04
《医学信息分析与决策》课程组
21
三、k-means算法
从前面的例子可以看出主要存在如下两点不足:
k-Means方法只有在簇的平均值被定义的情况 下才能使用。这可能不适用于某些应用。要求 用户必须事先给出k(要生成的簇的数目)可以 算是该方法的一个缺点。
12
三、k-means算法
07:41:04
《医学信息分析与决策》课程组
13
三、k-means算法
07:41:04
《医学信息分析与决策》课程组
14
三、k-means算法
07:41:04
《医学信息分析与决策》课程组
15
三、k-means算法
07:41:04
《医学信息分析与决策》课程组
16
三、k-means算法
07:41:04
《医学信息分析与决策》课程组
25
四、EM算法
EM算法基本思想: EM算法不是为每一个维选择一个点,然后计算 距离,而是把每一维作为一个钟型曲线,并计 算平均值和标准差。当某一个点落到一个钟型 曲线内时,它以某一概率分配给某一聚类。
聚类分析法的原理及应用

聚类分析法的原理及应用1. 引言聚类分析法是一种常见的无监督学习方法,它可以将数据集中的个体划分成若干个互不重叠的簇,使得同一个簇内的个体相似度较高,不同簇内的个体相似度较低。
本文将介绍聚类分析法的原理及应用。
2. 聚类分析法的原理聚类分析法的原理是基于数据个体之间的相似性或距离进行聚类。
其主要步骤如下:2.1 数据预处理在进行聚类分析之前,需要对数据进行预处理,包括数据清洗、数据标准化等操作。
这些操作旨在保证数据的准确性和可比性。
2.2 相似度度量在聚类分析中,需要选择合适的相似度度量方法来衡量个体之间的相似性或距离。
常见的相似度度量方法包括欧式距离、曼哈顿距离、余弦相似度等。
选择合适的相似度度量方法对于聚类结果的准确性有着重要的影响。
2.3 聚类算法根据相似度度量的结果,可以使用不同的聚类算法进行聚类操作。
常用的聚类算法有层次聚类、K均值聚类、密度聚类等。
不同的聚类算法适用于不同的数据特征和聚类目的。
2.4 簇个数确定在聚类分析中,需要确定合适的簇个数。
簇个数的确定对于聚类结果的解释和应用有着重要的影响。
常见的簇个数确定方法有肘部法则、轮廓系数法等。
3. 聚类分析法的应用聚类分析法在各个领域都有广泛的应用。
以下列举了一些常见的应用场景:3.1 市场细分在市场营销中,聚类分析法可以根据消费者的购买行为和偏好将市场细分成不同的消费群体。
这有助于企业精准定位和个性化营销。
3.2 社交网络分析在社交网络分析中,聚类分析法可以根据用户之间的社交关系和兴趣爱好将用户划分成不同的社区或兴趣群体。
这有助于发现社交网络中的重要节点和推荐系统的个性化推荐。
3.3 图像分割在计算机视觉领域,聚类分析法可以根据图像像素之间的相似度将图像进行分割。
这有助于物体识别、图像检索等应用。
3.4 城市交通规划在城市交通规划中,聚类分析法可以根据交通网络的拓扑结构和交通流量将城市划分成不同的交通区域。
这有助于优化交通规划和交通管理。
聚类分析讲义范文

聚类分析讲义范文一、聚类分析的基本原理聚类分析的基本原理是通过计算数据点之间的相似性度量,将相似性高的数据点归为一类,从而形成簇(cluster)。
相似性度量方法主要包括欧几里得距离、曼哈顿距离、切比雪夫距离、闵可夫斯基距离等。
欧几里得距离是最常用的相似性度量方法,其计算公式为:d(x, y) = sqrt((x1-y1)^2 + (x2-y2)^2 + ... + (xn-yn)^2)聚类分析的基本步骤包括:1.选择合适的相似性度量方法和聚类算法。
2.初始化聚类中心,将数据点分配到最近的聚类中心。
3.更新聚类中心,重新计算每个聚类中心的位置。
4.重复第2步和第3步,直到聚类中心的位置不再变化为止。
5.输出聚类结果。
二、聚类分析的常用算法1. K-means算法:K-means算法是最常用的聚类算法之一、其核心思想是在每次迭代中,计算每个数据点到所有聚类中心的距离,并将每个数据点分配到距离最近的聚类中心。
然后,重新计算每个聚类中心的位置。
重复执行这两个步骤,直到聚类中心的位置不再变化。
K-means算法的优势是简单快速,但对初始聚类中心的选择较为敏感。
2.层次聚类算法:层次聚类算法通过计算所有数据点之间的相似性,构建一个层次性的聚类结果。
这个结果可以表示为一个树状结构,其中每个节点代表一个聚类。
层次聚类算法的优势是不需要预先指定聚类个数,但计算复杂度较高。
3.密度聚类算法:密度聚类算法将聚类看作是在数据空间中找到高密度区域的过程。
该算法通过计算每个数据点在其邻域内的密度,将高密度区域作为簇的候选。
然后,通过在高密度区域之间构建连接来将簇进行合并。
密度聚类算法的优势在于可以发现任意形状和大小的簇,对于噪声和异常点具有较好的鲁棒性。
三、聚类分析的评估方法四、聚类分析的应用聚类分析在市场调研中可以帮助企业识别相似的顾客群体,从而定制合适的产品和推广策略。
在社交网络分析中,聚类分析可以用来发现具有相似兴趣和行为的用户群体,从而进行精准广告投放。
聚类分析原理

聚类分析原理
聚类分析是一种将相似的数据点分组的数据挖掘技术。
它通过计算数据点之间的相似度或距离来确定彼此之间的相似性,并根据相似性将数据点划分为不同的聚类或群组。
聚类分析的原理基于以下几个步骤:
1. 选择距离度量方法:在聚类分析中,我们需要选择一种距离度量方法,以便计算数据点之间的相似度或距离。
常用的距离度量方法包括欧氏距离、曼哈顿距离和余弦相似度等。
2. 初始化聚类中心:在开始聚类分析之前,需要初始化一些聚类中心,可以随机选择数据点作为聚类中心,也可以使用其他初始化方法。
3. 计算数据点与聚类中心的相似度:对于每个数据点,计算它与每个聚类中心之间的相似度或距离。
相似度可以使用之前选择的距离度量方法计算。
4. 将数据点分配到最近的聚类中心:根据数据点与各个聚类中心之间的相似度或距离,将数据点分配到与其最相似的聚类中心所属的聚类中。
5. 更新聚类中心:对于每个聚类,重新计算其聚类中心,可以通过计算聚类中所有数据点的均值来得到。
6. 重复步骤4和5,直到聚类结果不再改变或达到预定的迭代
次数。
7. 输出聚类结果:最后,将每个数据点分配到相应的聚类中心,从而得到最终的聚类结果。
聚类分析的目标是尽可能使同一聚类中的数据点相似度较高,而不同聚类之间的数据点相似度较低。
聚类分析在许多领域都有广泛的应用,如市场细分、社交网络分析和图像处理等。
聚类分析的原理和应用

聚类分析的原理和应用1. 聚类分析原理聚类分析是一种无监督学习的方法,它通过将相似的数据点分组在一起,形成具有相似特征的聚类。
聚类的目标是使得同一聚类内的数据点之间的相似度尽可能高,而不同聚类之间的数据点相似度尽可能低。
聚类分析的原理基于以下几个主要步骤:1.1 数据预处理数据预处理是聚类分析中非常重要的一步。
它包括数据清洗、数据归一化以及特征选择等过程。
数据清洗的目的是去除数据集中的异常值和噪声,保证数据的质量。
数据归一化则是将不同特征的取值范围统一,避免不同特征之间的差异对聚类结果产生影响。
特征选择则是从原始数据中选择最具有代表性的特征,减少数据维度。
1.2 距离度量距离度量是聚类分析中一个非常关键的概念。
它用于衡量数据点之间的相似度或差异度。
常用的距离度量方法包括欧氏距离、曼哈顿距离和闵可夫斯基距离等。
选择合适的距离度量方法对聚类结果的准确性具有重要影响。
1.3 聚类算法聚类算法根据聚类目标的不同,可以分为层次聚类和划分聚类两大类。
其中层次聚类是一种自底向上或自顶向下的逐步聚类方法,它将数据点逐渐分组形成聚类树。
划分聚类则是将所有数据点划分成K个不相交的聚类,每个聚类中包含尽量相似的数据点。
常用的聚类算法包括K-means、层次聚类、密度聚类等。
1.4 聚类评价聚类评价用于评估聚类结果的质量。
常用的聚类评价指标包括轮廓系数、DB 指数、兰德指数等。
这些指标可以帮助我们判断聚类算法选择的合理性,以及聚类结果的准确性和稳定性。
2. 聚类分析的应用聚类分析在实际中有着广泛的应用,下面将介绍一些典型的应用领域。
2.1 市场细分市场细分是聚类分析中的一个重要应用领域。
通过对具有相似需求和购买行为的消费者进行聚类,可以将市场划分为不同的细分市场。
这有助于企业更好地了解不同细分市场的需求和特征,以制定针对性的营销策略。
2.2 图像分析图像分析是利用聚类算法对图像进行分类和识别的一种应用。
通过将图像中的像素点进行聚类,可以将具有相似特征的像素点分组在一起,从而实现图像分割和目标识别。
数据分析中的聚类算法原理及实现

数据分析中的聚类算法原理及实现随着互联网和人工智能技术的发展,大量的数据被不断产生和存储。
如何从这些数据中提取有用的信息和技巧是数据分析的目标之一。
而聚类作为数据分析的一种重要方法,可以将大量的无标签数据划分为不同的类别,为数据挖掘和信息检索提供有力支持。
一、聚类算法的基本原理聚类算法的主要任务是根据给定的数据集,将其中的样本划分为若干个不同的簇(cluster),使得同一个簇中的样本之间具有较高的相似度,而不同簇之间的样本相似度较低。
因此,簇内的相似度越高,簇间的相似度越低,聚类的效果越好。
聚类算法的基本流程:1.初始化簇的个数和中心;2.计算每个样本与每个簇的距离(相似度);3.根据计算得到的距离将样本分配到对应的簇中;4.重新计算簇中心;5.重复步骤2-4,直到满足停止条件。
聚类算法的停止条件:1.簇的数量已经达到指定的值;2.迭代次数超过了设定的最大值;3.簇中心的变化量小于设定的阈值。
聚类算法的评价指标:当出现多个簇时,可以使用SSE(sum of squares for error)来评价聚类的效果,SSE越小,聚类效果越好。
二、常见的聚类算法1.KMeans算法K-Means算法是经典的聚类算法之一,也是使用最广泛的算法之一。
K-Means算法的基本思想是:先随机选取k个初始的簇中心,将每个样本点与这些簇中心进行计算,将该样本点分配到距离该样本点最近的簇中心的簇中,然后通过重新计算簇中心的方法,重新计算簇的中心,不断重复上述过程,直到满足一定的停止条件。
2.层次聚类算法层次聚类是一种自下而上的聚类算法,旨在纵向建立一棵树形的聚类关系。
层次聚类算法的基本思想是:将每个样本点视为一棵单独的树,不断将距离最近的两个树的合并起来,直到所有的树都被合并到一棵树中,该树的末端就是簇的集合。
3.DBSCAN算法DBSCAN算法是基于密度的聚类算法,能够发现任意形状、任意大小的簇。
DBSCAN算法的基本思想是:首先将所有样本点标记为未访问,然后随机选取一个样本点,将其标记为已访问,将该点的密度直达距离内的所有样本点标记为已访问,如果该密度直达距离内的样本点数量达到设定的阈值,则生成一个簇,否则标记为噪声点,继续寻找下一个密度直达点。
聚类分析ppt课件

第一节 引言 第二节 相似性的量度 第三节 系统聚类分析法 第四节 K均值聚类分析 第五节 两步聚类分析
1
第一节 引言
什么是聚类分析? ❖ 聚类分析是根据“物以类聚”的道理,对样本或指
标进行分类的一种多元统计分析方法,它们讨论的 对象是大量的样本,要求能合理地按各自的特性进 行合理的分类,没有任何模式可供参考或依循,即 在没有先验知识的情况下进行的。
1.明考夫斯基距离
p
dij (q) (
X ik X jk )q 1/ q
k 1
明考夫斯基距离简称明氏距离。
(7.1)
13
按q的取值不同又可分成下面的几个式子
(1)绝对距离( q 1)
p
dij (1) X ik X jk k 1
பைடு நூலகம்
(7.2)
(2)欧氏距离( q 2)
p
dij (2) (
X ik X jk )2 1/ 2
22
第三节 系统聚类分析法
一 系统聚类的基本思想 二 类间距离与系统聚类法
23
一、系统聚类的基本思想
❖ 系统聚类的基本思想是:距离相近的样品(或变量)先聚成 类,距离相远的后聚成类,过程一直进行下去,每个样品( 或变量)总能聚到合适的类中。系统聚类过程是:假设总共 有n个样品(或变量),第一步将每个样品(或变量)独自 聚成一类,共有n类;第二步根据所确定的样品(或变量) “距离”公式,把距离较近的两个样品(或变量)聚合为一 类,其它的样品(或变量)仍各自聚为一类,共聚成n 1类 ;第三步将“距离”最近的两个类进一步聚成一类,共聚成 n 2类;……,以上步骤一直进行下去,最后将所有的样品 (或变量)全聚成一类。为了直观地反映以上的系统聚类过 程,可以把整个分类系统画成一张谱系图。所以有时系统聚 类也称为谱系分析。除系统聚类法外,还有有序聚类法、动 态聚类法、图论聚类法、模糊聚类法等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚类分析原理及步骤——将未知数据按相似程度分类到不同的类或簇的过程
1》传统的统计聚类分析方法包括系统聚类法、分解法、加入法、动态聚类法、有序样品聚类、有重叠聚类和模糊聚类等。
采用
k-均值、k-中心点等算法的聚类分析工具已被加入到许多著名
的统计分析软件包中,如SPSS、SAS等。
典型应用
1》动植物分类和对基因进行分类
2》在网上进行文档归类来修复信息
3》帮助电子商务的用户了解自己的客户,向客户提供更合适的服务
主要步骤
1》数据预处理——选择数量,类型和特征的标度((依据特征选择和抽取)特征选择选择重要的特征,特征抽取把输入的特征转化
为一个新的显著特征,它们经常被用来获取一个合适的特征集来为避免“维数
灾”进行聚类)和将孤立点移出数据(孤立点是不依附于一般数
据行为或模型的数据)
2》为衡量数据点间的相似度定义一个距离函数——
既然相类似性是定义一个类的基础,那么不同数据之间在同一个特
征空间相似度的衡量对于聚类步骤是很重要的,由于特征类型和特
征标度的多样性,距离度量必须谨慎,它经常依赖于应用,例如,
通常通过定义在特征空间的距离度量来评估不同对象的相异性,很
多距离度都应用在一些不同的领域一个简单的距离度量,如
Euclidean距离,经常被用作反映不同数据间的相异性,一些有关相
似性的度量,例如PMC和SMC,能够被用来特征化不同数据的概
念相似性,在图像聚类上,子图图像的误差更正能够被用来衡量两
个图形的相似性
3》聚类或分组——将数据对象分到不同的类中【划分方法
(划分方法一般从初始划分和最优化一个聚类标准开始,Crisp
Clustering和Fuzzy Clusterin是划分方法的两个主要技术,Crisp
Clustering,它的每一个数据都属于单独的类;Fuzzy Clustering,它的
每个数据可能在任何一个类中)和层次方法(基于某个标准产生一
个嵌套的划分系列,它可以度量不同类之间的相似性或一个类的可分
离性用来合并和分裂类)是聚类分析的两个主要方法,另外还有基于
密度的聚类,基于模型的聚类,基于网格的聚类】
4》评估输出——评估聚类结果的质量(它是通过一个类有效索引来
评价,,一般来说,几何性质,包括类间的分离和类内部的耦合,一般
都用来评价聚类结果的质量,类有效索引在决定类的数目时经常扮演
了一个重要角色,类有效索引的最佳值被期望从真实的类数目中获取,
一个通常的决定类数目的方法是选择一个特定的类有效索引的最佳
值,这个索引能否真实的得出类的数目是判断该索引是否有效的标准,
很多已经存在的标准对于相互分离的类数据集合都能得出很好的结
果,但是对于复杂的数据集,却通常行不通,例如,对于交叠类的集
合。
)
聚类分析的主要计算方法原理及步骤
划分法
1》将数据集分割成K个组(每个组至少包
含一个数据且每一个数据纪录属于且
仅属于一个分组),每个组成为一类2》通过反复迭代的方法改变分组,使得每
一次改进之后的分组方案都较前一次
好(标准就是:同一分组中的记录越近
越好,而不同分组中的纪录越远越好,
使用这个基本思想的算法有:。