风电并网对电网电能质量的影响

合集下载

风电并网对电网的影响及风电利用的优化

风电并网对电网的影响及风电利用的优化

风电并网对电网的影响及风电利用的优化摘要:整个世界的经济正处于持续发展的状态中,其能源的需求量也在持续的增大,可是化石类能源越来越稀少,因此可再生类的能源成为了发展的主流。

风电并网后,电网的各个节点电压都会受到影响,从而间接影响整个电力系统网络的正常运转,同时对电能质量也产生了影响。

基于此,本文对风电并网对电网的影响因素以及改善风电并网影响的措施进行了分析。

关键词:风电并网;电压;影响1 风电并网对电网的影响因素1.1 对电网频率的影响风速是一项不可控的因素,而风速的不稳定性也决定了风力的随机性。

风电并网后可能会出现电源稳定性差的问题,并网后可能出现的问题也是难以预测的,需要提前对相关问题做好防范。

系统中的风电容量处于较大比重时,如果出现了功率的随机性波动,将会对系统电量和功率的稳定性产生影响,不利于电力资源的质量控制,甚至导致敏感符合单元的非正常运转。

因此,风电并网后,电网的其他常规机组必须保持较高的响应能力,及时进行跟进调节,防止出现频率和电量的较大波动。

风电并网具备很大的不稳定性,一旦出现了停风或风速过大等突发情况,将会导致电网的频率不稳定,尤其是电网中的风电比重较高时,会威胁系统的输出稳定性。

电力系统运作要保持频率稳定性,基本原则为失去了风电后,电网频率要保持高于最低频率允许值状态。

为消除风力发电不稳定性导致的系统电力频率不稳,可以采用优化调度运行和提高系统备用电容量的方式加以解决。

如果电力系统之间的联系紧密,频率问题基本上不会导致显著影响。

1.2 对电网电压的影响风速大小会对风力发电的状况产生显著影响,此外,风力资源的分布也存在很大的差异性,风电场大多建立在山区或者相对偏僻的地区,网络结构薄弱,风电场的运行势必会对正常系统的功能尤其是电压稳定性产生影响。

此外,风力发电机采用的是感应发电,风电并网对于电网而言也是无功负荷的状态。

为了防止出现极端情况导致风力发电输出丧失,每台风力发电机都要配备无功补偿装置。

风电场并网对电网的影响有哪些

风电场并网对电网的影响有哪些

风电场并网对电网的影响有哪些在当今能源转型的大背景下,风力发电作为一种清洁、可再生的能源形式,得到了快速发展。

风电场的规模不断扩大,其与电网的并网运行也成为了电力系统中的一个重要环节。

然而,风电场的并网并非一帆风顺,它给电网带来了一系列的影响,需要我们深入了解和研究。

风电场的输出功率具有间歇性和波动性。

这是由于风能的随机性和不确定性所决定的。

风速的变化会直接导致风电机组输出功率的波动,而且这种波动在短时间内可能会相当剧烈。

当大量的风电机组并网时,这种功率波动会在电网中叠加和传播,给电网的频率稳定带来挑战。

电网频率是衡量电力系统运行稳定性的重要指标,如果频率偏差过大,可能会导致电网中的设备故障,甚至引发停电事故。

风电场的无功功率特性也对电网产生重要影响。

风电机组在运行过程中需要从电网吸收或向电网注入无功功率,以维持自身的电压稳定。

然而,不同类型的风电机组在无功功率的控制和调节能力上存在差异。

一些早期的风电机组可能无法有效地进行无功调节,这就可能导致电网局部电压的波动和偏差。

电压的不稳定不仅会影响电力设备的正常运行,还可能降低电能质量,给用户带来不良影响。

风电场的接入还会改变电网的潮流分布。

传统电网的潮流分布是基于固定的电源和负荷分布计算的。

但风电场的接入位置和出力大小是不确定的,这就使得电网中的潮流不再是固定不变的。

新的潮流分布可能会导致某些线路过载,而另一些线路则轻载,从而影响电网的输电效率和经济性。

为了应对这种变化,电网需要加强规划和改造,增加输电线路的容量或者调整电网的结构。

另外,风电场的故障穿越能力也关系到电网的安全稳定运行。

当电网发生故障时,风电机组需要具备一定的故障穿越能力,即在短时间内保持不脱网,并向电网提供一定的无功支持,以帮助电网恢复正常运行。

如果风电机组的故障穿越能力不足,大量风电机组在故障时脱网,将进一步加剧电网的故障程度,甚至可能引发连锁故障,导致大面积停电。

风电场的并网还对电网的电能质量产生影响。

浅析风电并网对电网影响

浅析风电并网对电网影响

浅析风电并网对电网影响风电并网是指将风能转换成电能后,通过电网输送到用户端使用的过程。

风电并网的发展对电网运行和电力系统产生了诸多影响,本文将对其影响进行浅析。

首先,风电并网对电网结构和运行方式产生了影响。

传统的电力系统主要由大型火电、水电等发电厂构成,而风电发电机组通常较小,数量众多。

因此,在风电并网后,电网结构发生了变化,由传统的中心集中式电源向分布式电源转变,相应地也改变了电网的运行方式。

风电的并网使得电网的安全性和可靠性进一步增强,可以更好地应对单个电厂发生故障的情况。

其次,风电并网对电网供电能力和负荷均衡产生了影响。

风电的发电能力与风速相关,受自然因素的限制,风电的发电能力存在不稳定性和不可预测性。

这使得电网供电能力变得更为复杂,需要进行合理规划和管理。

同时,风电的并网也会对电网的负荷均衡产生影响。

风电的不稳定性和波动性使得电网容易出现频繁的负荷波动,需要通过电网调度来保持负荷均衡,提高电网的稳定性。

第三,风电并网对电网电压和频率稳定性产生了影响。

风电并网后,由于其产生的风能转换为电能的过程中存在一定的变频和变压,可能导致电网的电压和频率波动。

这对电网的电压和频率稳定性造成了一定的影响。

因此,需要在电网中引入相应的控制策略,如有功功率控制、无功功率控制等,来保持电网的电压和频率稳定。

最后,风电并网对电网的电力质量产生了影响。

由于风电的输出功率具有波动性和不稳定性,其并网可能导致电网的电压波动和谐波问题。

这对电网的电力质量造成一定的影响,可能引起电器设备的损坏或故障。

因此,需要采取相应的措施和技术手段来改善电网的电力质量,如采用STATCOM(静止补偿装置)等有源功率过滤技术来控制电压和谐波。

总的来说,风电并网对电网的影响是多方面的,涉及到电网结构、运行方式、供电能力、负荷均衡、电压稳定性、频率稳定性和电力质量等方面。

为了更好地适应风电并网的影响,需要加强对电网的规划和管理,引入相应的技术手段和控制策略,以提高电网的可靠性、稳定性和经济性。

风电大规模并网对电网的影响

风电大规模并网对电网的影响

由于风能具有随机性、间歇性、不稳定性的特点,当风电装机容量占总电网容量的比例较大时会对电网的稳定和安全运行带来冲击。

本文针对这一问题,阐述了大规模风电并网后对电力系统稳定性、电能质量、发电计划与调度、系统备用容量等方面的影响。

并对风电的经济性进行了分析。

风电并网对电网影响主要表现为以下几方面:1.电压闪变风力发电机组大多采用软并网方式,但是在启动时仍然会产生较大的冲击电流。

当风速超过切出风速时,风机会从额定出力状态自动退出运行。

如果整个风电场所有风机几乎同时动作,这种冲击对配电网的影响十分明显。

不但如此,风速的变化和风机的塔影效应都会导致风机出力的波动,而其波动正好处在能够产生电压闪变的频率范围之内(低于25Hz),因此,风机在正常运行时也会给电网带来闪变问题,影响电能质量。

已有的研究成果表明,闪变对并网点的短路电流水平和电网的阻抗比(也有说是阻抗角)十分敏感。

2.谐波污染风电给系统带来谐波的途径主要有两种:一种是风力发电机本身配备的电力电子装置,可能带来谐波问题。

对于直接和电网相连的恒速风力发电机,软启动阶段要通过电力电子装置与电网相连,因此会产生一定的谐波,不过因为过程很短,发生的次数也不多,通常可以忽略。

但是对于变速风力发电机则不然,因为变速风力发电机通过整流和逆变装置接入系统,如果电力电子装置的切换频率恰好在产生谐波的范围内,则会产生很严重的谐波问题,不过随着电力电子器件的不断改进,这一问题也在逐步得到解决。

另一种是风力发电机的并联补偿电容器可能和线路电抗发生谐振,在实际运行中,曾经观测到在风电场出口变压器的低压侧产生大量谐波的现象。

与电压闪变问题相比,风电并网带来的谐波问题不是很严重。

3.电压稳定性大型风电场及其周围地区,常常会有电压波动大的情况。

主要是因为以下三种情况。

风力发电机组启动时仍然会产生较大的冲击电流。

单台风力发电机组并网对电网电压的冲击相对较小,但并网过程至少持续一段时间后(约为几十秒)才基本消失,多台风力发电机组同时直接并网会造成电网电压骤降。

风电机组并网对电网稳定性的影响研究

风电机组并网对电网稳定性的影响研究

风电机组并网对电网稳定性的影响研究1. 引言1.1 背景介绍风电机组是利用风能转换成电能的装置,是一种清洁能源发电方式。

随着环保意识的提高和可再生能源的发展,风电机组的装机容量逐渐增加,也越来越多地并入到电网中。

风电机组并网对电网稳定性的影响备受关注。

传统的电力系统主要依靠燃煤、火电等发电方式,这些发电方式不易受到外界因素的影响。

但随着风电机组等可再生能源的广泛应用,电力系统面临着新的挑战。

由于风能的不稳定性和不可预测性,风电机组并网对电网频率稳定性、电压稳定性、动态响应、短路电流以及传输能力等方面都会产生影响。

研究风电机组并网对电网稳定性的影响成为当前学术界和电力行业的热点问题。

了解风电机组并网与电网稳定性之间的关系,有助于更好地控制风电功率的输出,提高电网的可靠性和安全性。

本文将从多个方面对这一问题展开研究和探讨。

1.2 研究目的研究目的旨在探讨风电机组并网对电网稳定性的影响,具体包括频率稳定性、电压稳定性、动态响应、短路电流和传输能力等方面。

通过深入研究风电机组并网对电网的影响机制,可以为电力系统的规划、运行和控制提供科学依据,对于提高电网的可靠性、稳定性和经济性具有重要意义。

本研究旨在揭示风电并网在不同情况下对电网稳定性的影响规律,为电力系统的风电并网规划和运行管理提供技术支持,促进清洁能源的大规模应用和电力系统的可持续发展。

通过研究风电机组并网对电网的影响,可以为相关部门制定更为合理的政策和措施,提高电网运行的效率和可靠性,推动电力系统向低碳、清洁、智能的方向发展。

1.3 研究意义风力发电具有清洁、可再生、资源广泛等优点,被广泛应用于电力系统中。

随着风电机组规模的不断扩大,其并网对电网稳定性的影响越来越显著。

本研究旨在深入探讨风电机组并网对电网稳定性的影响,为电力系统运行提供科学依据和技术支持。

风电机组并网对电网频率稳定性的影响是本研究的核心内容之一。

风电机组的不稳定输出会导致电网频率波动,影响电网的稳定运行,因此有必要对其影响机理进行深入研究。

大规模风电并网对电力系统的影响及应对措施

大规模风电并网对电力系统的影响及应对措施

大规模风电并网对电力系统的影响及应对措施摘要:风能具有可再生、无污染等特点,在新能源领域具有巨大的发展潜力。

随着风电装机容量在电网中所占比重的不断提高,大规模风电并网对电网的影响越来越严重。

因此,根据风电场实际运行情况,分析大规模风电并网对电力系统的影响,并采取有效措施,这对电力系统的稳定安全运行具有重要的现实意义。

本文详细论述了大规模风电并网对电力系统的影响及解决措施。

关键词:大规模风电并网;电力系统;影响;解决措施风能作为一种清洁可再生能源,不仅是最具大规模开发利用的能源,也是最具竞争力的非常规能源。

我国集中开发的大型风电场大多远离负荷中心,当地电网结构薄弱,吸纳风电的能力差,必须远距离输电;而且风能具有一定的间歇性及随机性,风电场出力随风速的变化而变化,其有功无功潮流经常发生变化,易发生电压失稳事故,若上述因素不能有效解决,将直接影响电网的安全稳定运行。

一、风能发电的特点1、风能的稳定性差。

风能属于过程性能源,不可控,具有随机性、间歇性、不稳定性特点,风速和风向决定了风力发电机的发电状态及出力大小。

2、风能不能储存。

对于单机独立运行的风力发电机组,要保证不间断供电,必须配备相应的储能装置。

3、风电场的分布位置通常较偏远。

我国的风电场多数集中在风能资源较丰富的西北、华北和东北地区。

二、大规模风电并网给电力系统的影响1、调峰调频容量的影响。

在风力发电系统中,基本无调峰现象,接入电网时多采用软并网方式,系统启动运行中,会产生较大的冲击电流。

特别是当风速超过切出风速时,风机将从额定出力状态解列退出运行,大规模风电并网时,大量风电机组的解列将对电网造成巨大影响。

另外,风速变化和塔影效应会引起风电机组出力波动,导致电网电压闪变。

虽然单台风电机组对电网电压影响较小,但单机对电网电压的影响也需持续一段时间才能基本消失,而大规模风电并网造成的电压冲击往往会造成电网电压的骤降。

当风速增大时,系统输入有功功率增大,风电场母线电压先降后升,此种现象在风电场与电力系统间等效阻抗较大时产生的电压波动更为明显。

风力发电对电网运行的影响及对策

风力发电对电网运行的影响及对策

风力发电对电网运行的影响及对策近年来,随着全球化石油能源的日益匮乏,加上日本地震带来的核电警示,加快包括风电在内的安全性清洁能源产业的发展已成为大势所趋。

大规模的风力发电需实现并网运行,国外风电大国虽然对风力发电和电网运行积累了一些经验,但由于我国电网结构的特殊性,风力发电和电网运行如何协调发展已成为风电场规划设计和运行中不可回避的最重要课题。

一、我国风力发电对电网运行的影响我国风力资源的富集地区,电网均比较薄弱,风力发电对电网运行的影响主要体现在电网调度、电能质量和电网安全稳定性等方面。

1.1对电网调度的影响风能资源丰富的地区人口稀少、负荷量小、电网结构薄弱等特点,风电功率的输入必然要改变电网的潮流分布,对局部电网的节点电压也将产生较大的影响。

风能本身是不可控的能源,它是否处于发电状态和所发电量基本取决于风速状况,而风速的不稳定性和间歇性决定了风电机组发电量具有较大的波动性和间歇性,并网后的风电场相当于电网的随机扰动源,具有反调节特性,需要电网侧预留出更多的备用电源和调峰容量,由于风力发电的不稳定性,增加了风力发电调度的难度。

1.2对电能质量的影响风电机组输出功率的波动性,使风电机组在运行过程中受湍流效应、尾流效应和塔影效应的影响,造成电压偏差、波动、闪变、谐波和周期性电压脉动等现象,尤其是电压波动和闪变对电网电能质量影响严重。

风力发电机中的异步电动机没有独立的励磁装置,并网前本身无电压,在并网时要伴随高于额定电流5~6倍的冲击电流,导致电网电压大幅度下跌。

在变速风电机组中大量使用的电力电子变频设备会产生谐波和间谐波,谐波和间谐波的出现,会导致电压波形发生畸变。

1.3对电网安全稳定性的影响电网在最初设计和规划时,没考虑到风电机组接入电网末端会改变配电网功率单向流动从而使潮流流向和分布发生改变的特点,造成风电场附近的电网电压超出安全范围,甚至导致电压崩溃。

大规模的风力发电电量注入电网,必将影响电网暂态稳定性和频率稳定性。

大规模风电并入电网对电力系统的影响

大规模风电并入电网对电力系统的影响

大规模风电并入电网对电力系统的影响摘要:风力发电是可再生能源发电形式中技术最成熟、最具开发规模和商业化发展前景的,然而风电场的出力不可控,为配合风电场出力的频繁波动,需要其他常规发电厂出力及系统备用的频繁改变。

随着新能源风电总装机容量的增加,这些问题将会严重影响电力系统的安全性、可靠性、经济性等指标。

分析风电并入电网后对电力系统的影响对于新能源应用水平的提高和我国电力事业的发展都有着积极的意义。

针对于此本文就大规模风电并入电网对电力系统的具体影响进行了分析。

关键词:风力发电;电力系统;电能质量随着风力发电技术的快速发展和国家在政策上对可再生能源发电的重视,我国风力发电建设已进入了快速发展的时期。

我国风资源较丰富,但适合大规模开发风电的地区一般都处于电网末端,由于此处电网网架结构较薄弱,因此大规模风电接入电网后可能会出现电网电压水平下降、线路传输功率超出热极限、系统短路容量增加和系统暂态稳定性改变等一系列问题。

一、风电对电力系统电压的影响电压稳定问题取决于风电场及接入电网的无功特性。

由于一般风能资源丰富地区距离负荷中心较远,大规模的风力发电是无法就地消纳的,需要通过输电网远距离输送到负荷中心。

在风电场的风电出力较高时,大量风电功率的远距离输送往往会造成线路压降过大,风电场的无功需求及电网线路的无功损耗增大,电网的无功不足,局部电网的电压稳定性受到影响、稳定裕度降低。

随着接入风电容量的增大。

风电场从系统中吸收的无功功率逐渐增大,如果系统不能提供充足的无功,网内相关节点电压会逐渐降低。

电网的电压稳定极限限制了风电场最大的装机容量,在电网规划没有与风电规划协调时,往往电网接纳风电的能力不能适应风电规划的发展,接入的风电场容量受到电网自身条件的限制。

通过采用一定的无功补偿手段,可以增加电网的电压稳定裕度,提高风电场的最大装机容量。

如果在风电场中安装一定容量的无功补偿装置(如并联电容器组)来提高风电场并网点的电压水平,能够改善风电接人地区的电压水平,提高电压稳定裕度,增加风电场的最大装机容量。

风电机组并网对电网稳定性的影响研究

风电机组并网对电网稳定性的影响研究

风电机组并网对电网稳定性的影响研究【摘要】这篇文章探讨了风电机组并网对电网稳定性的影响。

在介绍了研究背景和研究意义。

在分析了风电机组对电网频率稳定性、电压稳定性、短路容量和传输容量的影响。

通过研究发现,风电机组的并网会对电网稳定性产生影响,其中包括频率的波动、电压的波动、短路容量的变化以及传输容量的限制。

最后在结论部分总结了风电机组并网对电网稳定性的综合影响,并展望了未来的研究方向。

这项研究对于提高风电并网系统的稳定性和可靠性具有重要意义。

【关键词】风电机组,并网,电网稳定性,影响研究,频率稳定性,电压稳定性,短路容量,传输容量,综合影响,未来研究展望1. 引言1.1 研究背景风力发电是一种清洁能源,具有环保、可再生的特点,逐渐成为世界各国推广的主要新能源之一。

随着风电技术的不断发展和成熟,风电机组逐渐大规模并入电网。

风电机组并网对电网稳定性造成了一定的影响,引起了学术界和工程界的广泛关注。

深入研究风电机组并网对电网稳定性的影响,探索风电技术在电网中的作用机理和影响程度,对于保障电网的安全稳定运行具有重要意义。

在风电机组不断并网的背景下,电力系统的稳定性问题日益突出。

风电机组的不确定性、间歇性和随机性特点,以及风力资源的分散性和波动性,会对电网的频率、电压稳定性、短路容量和传输容量等方面产生一系列影响。

研究风电机组并网对电网稳定性的影响对于促进清洁能源发展,维护电网安全运行具有重要意义。

1.2 研究意义风电机组并网对电网频率稳定性的影响是一个重要的研究内容。

由于风电的功率输出具有不确定性和波动性,风电并网会对电网频率的稳定性造成一定的影响。

研究风电机组对电网频率的影响,有助于改善电网的频率控制性能,确保电网频率在合理范围内波动。

风电机组对电网电压稳定性的影响也是一个需要重点关注的问题。

风电并网可能会引起电网中的电压波动,影响电网各个节点的电压稳定性。

研究风电机组对电网电压的影响,可以为电网的电压控制提供重要参考。

新能源并网对电力系统电能质量的影响

新能源并网对电力系统电能质量的影响

新能源并网对电力系统电能质量的影响摘要:新能源的开发和利用已成为当前能源发展的重点。

新能源并网采用先进的技术,可以将太阳能、风能转换成电能资源,满足对电力的可持续发展需求。

新能源并网使能源结构更加多样化,但同时也会对电网的电能质量造成一定的影响,所以需要通过各种优化手段来改善其使用效率。

基于此,本文章对新能源并网对电力系统电能质量的影响进行探讨,以供参考。

关键词:新能源并网;电力系统;电能质量;影响引言2021年,政府工作报告中首次提到了“碳中和”的概念,国家鼓励开发清洁能源,新能源发电将太阳能、风能等转化为电能,在此过程中不会消耗其他能量也不会污染环境,大力推广新能源发电有利于减少碳排放量,缓解能源危机。

但新能源输出功率波动性较大,且新能源发电系统的逆变器中含有大量电力电子设备,新能源并网会使系统潮流发生变化,影响电能质量。

因此,需要对配电网网中新能源接入带来的影响进行深入分析。

一、新能源发电的特点能源是维持社会稳定发展的关键助力,其可以在实际生产发展阶段中合理转化为社会公众必需的动力、光能、热能及其他自然资源。

结合各类条件及划分标准来看,可以将能源展开多样化分类定位,主要包括常规能源与新能源,前者通常涵盖了石油、水能、天然气、煤炭等普及使用的能源类型,而后者是新时代社会还没有普遍开发及利用的资源,主要涉及海洋能、太阳能、风能及地热能等等。

在此期间,风能主要是因地表结构在高温度条件下产生的水蒸气与气温差造成的气压差异,进而在空气由高压区域朝向低压区域不断流动所产生的风,此过程中所形成的动能便被称为风能。

太阳能指的是阳光照射于地球表层展开能量转换与利用。

生物质能是借助各类绿色植物的光合作用实现能量转换。

地热能主要来源于地球熔岩内部存在的天然热能,海洋能通常涵盖了波浪能、潮汐能等等。

二、新能源并网对电力系统电能质量的影响(一)对馈线稳态电压的影响在网络运行中,通常需要使用专用设备调整电压,如更改负载变压器、电容器等的分配器连接,以确保新电源的网络稳定,因为网络中新电源的比例增加,网络的电阻、短路容量和其他参数也发生变化,因此传统的网络侧电压控制模式难以保证网络在调整电压时的电能质量,根据网络的实际状态调整压力调节方案。

风力发电并网技术及其对电能质量影响

风力发电并网技术及其对电能质量影响

小议风力发电并网技术及其对电能质量的影响【摘要】本文基于笔者的实际工作,分析了风力发电并网技术,随后对风力发电并网技术对电能质量造成的影响进行了详细分析,以最终保证风电场和电网能够稳定运行。

【关键词】风力发电并网技术电能质量影响在二十一世纪,风力发电为一类发展最为迅速的可再生能源,由于风电场具有的容量日益变大,对系统产生的影响日益突出,进行风力发电并网对电能质量的影响变为关键的课题,基于种种原因,其会给配电网造成谐波污染、电压波动以及闪变的影响,风电的随机性使发电及运行计划的确定有了难度。

该文重点分析了风力发电并网技术,还研究了风力发电并网技术对电网电能质量造成的影响,最后还探讨了电压波动及闪变的抑制办法。

一、风力发电并网技术的分析风电电源和电网电源二者在相序、电压频率、有效值以及相位、波形都相同或者大致相同,其即为风电机组的并网条件。

1.双馈异步发电机组并网双馈异步电机的转子经过变频器使用交流励磁,电机与电网间组成“柔性连接”,能根据电网电压及电流、发电机的转速,通过控制机侧变换器对发电机转子励磁电流进行调节,进而准确地控制发电机定子的电压,保证它符合并网条件,所以能于变速之下进行并网。

全部并网调节的过程通过转子变频器得以实现,不用外增硬件装置。

调节精度不仅高,并网冲击还不大。

2.异步发电机的并网技术当今,异步发电机的并网不仅包括降压、直接以及准同期并网方式,还包括晶闸管软并网以及捕捉式准同步并网方式。

对于降压并网方式,其于发电机和电网二者之间进行白耦变压器、电阻、电抗器的串联,进而减少并网之时的冲击电流以及电网电压降落的幅度。

当发电机进行稳定运行之时,要及时地由电路之中把接入的电阻元件除去,防止消耗功率。

对于直接并网方式,在并网之时,发电机的相序应相等于电网的相序,在异步发电机的转速大致达到同步转速的0.9到1.0的时候,便能自动并入电网。

对于自动并网的信号,测速装置能给出来,空气开关自动合闸并网得以完成。

风电并网对电力系统的影响

风电并网对电力系统的影响

风电并网对电力系统的影响摘要:由于风速具有波动性和间歇性,风力发电具有较强的不确定性。

为了确保电力系统的安全、稳定运行,研究风电并网对电力系统的影响是非常必要的。

本文分析了风电并网对电力系统的影响,之后提出了解决问题的措施,以供参考。

关键词:风电并网;电力系统;影响;措施随着现代工业的飞速发展和化石能源的日趋枯竭,能源和环境问题日益严峻,风电作为一种可再生的绿色能源,已成为世界上发展最快的可再生能源。

我国风力发电建设进入了一个快速发展的时期,大规模的风力发电必须要实现并网运行。

风电场接入电力系统的分析是风电场规划设计和运行中不可缺少的内容,是风力发电技术的三大课题之一。

随着风电场容量在系统中所占比例的增加,风电场对系统的影响越来越显著。

因此,必须深入研究这些影响,确保电力系统的安全、稳定运行。

1 风电并网对电力系统的影响1.1 风电并网对系统稳定性的影响一方面,风电并网引起的稳定问题主要是电压稳定问题。

风力发电随风速大小等因素而变化,同时由于风能资源分布的限制,风电厂大多建设在电网的末端,网架结构比较薄弱,所以在风电并网运行时必然会影响电网的电压质量和电网的电压稳定性。

同时大型风电厂的风力发电机几乎都是异步发电机,在其并网运行时需从电力系统吸收大量无功功率,增加电网的无功负担,有可能导致小型电网的电压失稳。

另一方面,风电并网改变了配电网的功率流向和潮流分布,这是既有的电网在规划和设计时未曾考虑的。

因此,随着风电注入功率的增加,风电场附近局部电网的电压和联络线功率将超出安全运行范围,影响系统的稳定性。

随着各地风力发电的蓬勃发展,风电场的规模不断扩大,风电装机容量在系统中所占的比例不断增加,风电输出的不稳定性对电网的功率冲击效应也不断增大,对系统稳定性的影响就更加明显。

情况严重时,将会使系统失去动态稳定性,导致整个系统瓦解。

1.2 风电并网对系统运行成本的影响风力发电的运行成本与火电机组相比很低,甚至可以忽略不计。

并网风电机组对电网电能质量的影响

并网风电机组对电网电能质量的影响

并网风电机组对电网电能质量的影响山东电力研究院臧宏志1、前言随着国家发改委近几年对风电特许权示范项目的不断推出,风力发电正以前所未有的速度高速发展。

现阶段由于我国绝大多数风电场都是接入电网运行,随着风电上网电量的增加,风电的电能质量日益受到关注,风电场的电能质量必须要满足电力系统的电能质量要求,而衡量电能质量的主要指标通常为电压谐波、三相电压不平衡度、频率偏差等,因此有必要从电压谐波、三相电压不平衡度、频率偏差等三个方面来测试风电场的电能质量。

风资源的不确定性和风电机组本身的运行特性使风电机组的输出功率是波动的,可能影响电网的电能质量,如电压偏差、电压波动和闪变、谐波等。

电压波动和闪变是风力发电对电网电能质量的主要负面影响之一。

影响风力发电产生波动和闪变的因素有很多:随着风速的增大,风电机组产生的电压波动和闪变也不断增大。

并网风电机组在启动、停止和发电机切换过程中也产生电压波动和闪变。

风电机组公共连接点短路比越大,风电机组引起的电压波动和闪变越小。

另外,风电机组中的电力电子控制装置如果设计不当,将会向电网注人谐波电流,引起电压波形发生不可接受的畸变,并可能引发由谐振带来的潜在问题。

荣成华能风电场使用的是新型变速恒频双馈风力发电机组,与传统的恒速恒频风力发电系统有较大的不同。

风力发电机的转速不受发电机输出频率的限制,其输出电压的频率、幅值和相位也不受转子转速的影响。

风力机通过励磁控制和变桨距调节,可运行于最佳工作状态,从而提高了运行效率和系统的稳定性。

双馈电机的最大特点是转子通过一个背靠背脉冲宽度调制(PWM)变流器与电网相连。

电网侧变流器的主要功能是控制电容电压使其恒定,从而为转子侧变流器提供电源支撑,转子侧变流器为转子提供幅值、相位和频率可变的励磁电流。

通过变速恒频风力发电机的励磁控制,可以实现无电流冲击的软并网。

由于风能是随机、不可控的,所以风电机组发出的电能是波动的、随机的,这会引起风电机组电压的波动和闪变。

风电机组并网对电网稳定性的影响研究

风电机组并网对电网稳定性的影响研究

风电机组并网对电网稳定性的影响研究风电机组是利用风能转换成电能的发电设备,而并网则是指将风电机组接入电网进行发电。

随着风电装机容量的不断增加,风电并网对电网稳定性的影响逐渐引起人们的关注。

本文将从风电机组并网对电网稳定性的影响进行研究,并探讨风电并网对电网的影响以及可能的解决方案。

1. 风电并网导致电网频率波动风电机组并网后,由于风资源的不稳定性,风机在发电过程中会受到风速的影响,导致风电机组发电功率的波动。

这种功率波动会对电网频率产生影响,导致电网频率的波动加剧。

尤其是在风速突变或风电机组并入电网时,电网频率波动更加明显。

3. 风电并网对电网短路容量的影响风电并网加入了新的发电装置,对原有的电网短路容量产生一定的影响。

在风电机组并网后,由于其具有一定的短路能力,会对电网的短路容量造成影响,使得电网的短路容量发生变化,从而影响电网的短路电流分布和传输能力。

二、风电并网可能的解决方案1. 风电机组的技术改进通过对风电机组技术的改进,增加风电机组的稳定性,减少其功率波动,从而减小其对电网频率和电压的影响。

比如采用先进的风电机组控制技术,提高其对风速变化的响应速度,减小功率波动。

2. 电网的调度和运行通过对电网的调度和运行进行优化和控制,根据风电并网的实际情况,对其进行合理的运行调度,降低其对电网的影响。

在风电并网时,采取合理的控制策略,降低并网冲击,减小电网频率和电压的波动。

3. 电网设备的改造和升级对原有的电网设备进行改造和升级,提高电网的稳定性和抗干扰能力。

比如加装静止无功补偿装置,优化电网结构,提高电网的短路容量和稳定性。

三、结论风电机组的并网对电网稳定性会产生一定的影响,尤其是在风速变化较大或风电机组并网时,影响会更加明显。

为了降低风电并网对电网稳定性的影响,需要采取一系列的技术措施和管理措施。

通过风电机组的技术改进、电网的调度和运行优化、电网设备的改造和升级等措施,可以有效降低风电并网对电网稳定性的影响,保障电网的安全稳定运行。

风力发电并网对电力系统的影响

风力发电并网对电力系统的影响

风力发电并网对电力系统的影响摘要:风力发电作为一种重要的可再生能源形式,越来越受到人们的广泛关注。

随着风电设备制造技术的日益成熟和风电设备价格的逐步降低,近些年来,无论是发达国家还是发展中国家都在大力发展风力发电。

特别是自20世纪80年代以来,大、中型风电场并网容量发展最为迅猛,对常规电力系统运行造成的影响逐步明显和加大,由此提出了一系列值得关注和研究的问题。

风力发电的主要特点是随机性与不可控性,主要随风速变化而变化。

因此,风电并网运行对主电网运行带来诸多不利影响。

分析风电场并网对电网影响是风电事业发展的关键技术问题,同时也是电网部门安全、经济运行的一个新课题。

关键词:电力系统;电网电压;电网频率;措施1 风电并网对主电网运行的影响由于风速变化是随机性的,因此风电场的出力也是随机的。

风电本身这种特点使其容量可信度低,给电网有功、无功平衡调度带来困难。

在风电容量比较高的电力网中,可能会产生质量问题。

例如电压波动和闪变、频率偏差、谐波等问题。

更重要的是:系统静态稳定、动态稳定、暂态稳定、电压稳定都需要验证。

当然,相同装机容量的风电场在不同的接入点对电网的影响也是不同的。

在短路容量大的接入点对系统影响小。

反之,影响就大。

定量分析风电场对主电网运行的影响,要从稳态和动态两方面进行分析。

稳态分析就是对含风电场的电力系统进行潮流计算。

在稳态潮流分析中,风电场高压母线不能简单视为PQ节点或PV节点。

含风电场的电力系统对平衡节点的有功、无功平衡能力提出更高要求,要分别分析含风电场电网在电网大、小运行方式下,是否满足系统的安全稳定运行的各种约束。

由于不同的风电机组的工作原理、数学模型都不相同,因此,对不同类型风电场的潮流计算方法也有所差异。

对于异步发电机组组成的风电场。

采用风电场、主系统分别迭代的方法:首先要设定风速,取值范围为风机切入风速到切出风速之间。

考虑尾流效应,利用RAHMAN模型计算出各台风机轮毂处风速。

浅谈风电并网对电网电能质量的影响

浅谈风电并网对电网电能质量的影响
能利用系 。
= n ( w  ̄ t + q v ) + £ s i n { 等 【 a s i n 6 o f t + ) 一 l 】 } c 。 s 。 f

式f 2 ) 中的第 一项即为 S P WM输 出波形 中的基波分量 。 可 以看出 , 这 个基波分量正是调制时所需要的正弦波。 在三相桥式 S P WM逆 变 电路 的情况下 , 各 相输 出端 相对于直 流 电 源 中点 的电压波形 的形状和单 相桥式 S P WM逆 变电路 完全 相同 ,只是 输 出电压 幅值 不是 E d , 而是 E 。 2 . 3变频 恒速风机并 网引起 电压波动和 闪变 的机 理分析 风电引起 电压波动 和闪变 的根本原 因是并 网风 电机组输 出功率 的 波动, 下面将分析并 网风电机组输 出功 率波动 引起电压波 动和闪变 的机 … -J L Nhomakorabea、一
机例变换 器
、 一 I 卜一—
网侧变拽嚣
△ “ — ■一( 4 ) 电压波动值为: ( 5 ) 式中, U 为线路额 , / _ — — 定 电压 , d 为 电压波动值 。 由式( 5 ) 可知, 当风电机组输出的有功和无功快速变动时, 会弓 I 起电 网的电压 陕速变动 , 也就是 电压 波动 。电压 波动有 可能引起可 察觉 的闪
摘 要: 随 着 变速恒 频 电机 、 双馈 电机 等 新 型发 电机 组 的应 用推 广 , 风 电 并 网给 配 电 网带 来谐 波 污 染 、 电 压 波动 及 闪变 等 电能 质 量 问题 日益严 重 。 文章 主要 研 究 了 大型 风 电场接 入 电力 系统 后 可 能 引起 的 电压偏 差 、 电压 波动 和 闪变 以及谐 波 问题 。
关键 词 : 风 力发 电 ; 电能质 量 ; 电压偏 差 ; 闪变; 谐 波

风电并网对电网影响因素分析及解决措施

风电并网对电网影响因素分析及解决措施

风电并网对电网影响因素分析及解决措施摘要:随着科技的不断发展,风电技术日臻成熟,智能电网建设的普及度显著提升,未来风电技术将会在电网中承担更重要的角色。

风力电场的不断推广及对电力网络的逐步渗透,对现代电力系统产生了显著影响。

由此可见,对风电并网的影响和相关策略研究具备现实意义。

关键词:风电并网;电压;影响1.风力发电发展概况在风力发电技术不断完善和成熟的前提下,风电并网成为了发展的重要趋势,而随着风电场在电力系统的作用不断提升,与并网后系统稳定性、电压波动和闪变、谐波等相关的研究不断增多。

风电并网的自然属性较强,相比于其他常规类型的电源并网有很大的差异性,尤其是大型风电场并入电力系统后,对电力系统的正常运转而言是一个重大挑战,高水平风电背景下,原有电力系统的运作方式也将受到挑战。

近些年来,随着变速恒频风力发电技术的不断发展和成熟,风力发电技术逐步取代了传统发电技术成为了主流。

现阶段,世界范围内对风电并网技术的关注度显著提升,主要表现在以下几个方面:系统应用方面的风电功率预测,风电波动性对系统工作的影响,风电应用后的电能质量问题,风电动态运作的特性问题,风电无功电压和参与电网的电压控制问题等。

2.风电并网对电网的影响因素2.1对电网频率的影响风速是一项不可控的因素,而风速的不稳定性也决定了风力的随机性。

风电并网后可能会出现电源稳定性差的问题,并网后可能出现的问题也是难以预测的,需要提前对相关问题做好防范。

系统中的风电容量处于较大比重时,如果出现了功率的随机性波动,将会对系统电量和功率的稳定性产生影响,不利于电力资源的质量控制,甚至导致敏感符合单元的非正常运转。

因此,风电并网后,电网的其他常规机组必须保持较高的响应能力,及时进行跟进调节,防止出现频率和电量的较大波动。

风电并网具备很大的不稳定性,一旦出现了停风或风速过大等突发情况,将会导致电网的频率不稳定,尤其是电网中的风电比重较高时,会威胁系统的输出稳定性。

风力发电对电网的影响

风力发电对电网的影响

风力发电对电网的影响:1、对电能质量影响:由于风能的随机性以及并网风组的运行特性,将影响电网的电能质量,主要表现为:电压波动,电压闪变,电压跌了及谐波。

2、对电网稳定性影响:接入电网末端,改变了配电网功率单向流动的特点;使系统潮流分布发生了变化;从而影响电网的稳定系。

3、大型风电机组,由于没有独立的励磁装置,并网时会产生5~8倍于额定电流的冲击电流;对于小容量的电网,并网瞬间会造成电网电压的较大幅度下降。

1、风电场规模问题电力系统中风电规模的大小采用以下2个指标来表征。

A)风电穿透功率极限。

风电穿透功率是指系统中风电场装机容量占系统总负荷的比例。

风电穿透功率极限定义在满足一定技术指标的前提下接入系统的最大风电场装机容量与系统最大负荷的百分比,表征系统能够承受的最大风电场装机容量。

B)风电场短路容量比。

风电场短路容量比定义为风电场额定功率与该风电场与电力系统连接点的短路容量比,表征局部电网承受风电扰动的能力。

以上2个指标的经验数据只供参考。

要确切分析电网接纳风电能力,还是应该通过对系统稳定性、电能质量、电网调峰能力等具体问题进行分析之后才能确定。

2、电压波动和系统稳定性问题在风电机组启动、退出和风速变化的情况下,往往会一起电压波动。

风电机组启动引起的电压波动可采用软并网启动方式和多台机组分组启动来解决。

但风速超过切出风速或系统发生故障时,风电机组会从额定出力状态退出并网状态,从而引起电网电压的突降。

而由于机端的电容补偿抬高了机组脱网前风电场的运行电压,因此脱网会使电网电压突降更加明显。

大型风电场的风力发电机几乎都是异步发电机,在其并网运行时需要从系统吸收大量无功,增加了电网的无功负担。

严重情况下,当系统发生三相接地短路时,有可能造成电网电压失稳。

因此在风电场接入电网之前应采用恰当的风电机组模型来计算分析系统电压稳定性问题。

同时,风电场应采取必要的措施预防此类问题,如分组投切电容器静止无功补偿装置、超导储能装置。

风电并网对电力系统的影响及改善措施

风电并网对电力系统的影响及改善措施

风电并网对电力系统的影响及改善措施风电并网对电力系统的影响及改善措施摘要:于风电场是一种依赖于自然能源的分散电源,同时目前大多采用恒速恒频异步风力发电系统,其并网运行降低了电网的稳定性和电能质量。

着眼于并网风电场与电网之间的相互影响,特别是对系统稳定性以及电能质量的影响,对大型风电场并网运行中的一些基础性的技术问题进行了研究。

关键词:风电场;并网;现状分析。

一、引言风力发电作为一种重要的可再生能源形式,越来越受到人们的广泛关注,并网型风力发电以其独特的能源、环保优势和规模化效益,得到长足发展,随着风电设备制造技术的日益成熟和风电价格的逐步降低,近些年来,无论是发达国家还是发展中国家都在大力发展风力发电。

风力发电之所以在全世界范围获得快速发展,除了能源和环保方面的优势外,还因为风电场本身所具有的独特优点:(1)风能资源丰富,属于清洁的可再生能源;(2)施工周期短,实际占地少,对土地要求低;(3)投资少,投资灵活,投资回收快;(4)风电场运行简单,风力发电具有经济性;(5)风力发电技术相对成熟。

自20世纪80年代以来,大、中型风电场并网容量发展最为迅猛,对常规电力系统运行造成的影响逐步明显和加大,随着风电场规模的不断扩大,风电特性对电网的负面影响愈加显著,成为制约风电场建设规模的严重障碍。

因此深入研究风电场与电网的相互作用成为进一步开发风电所迫切要求解决的问题。

其局限性主要表现在:(1)风能的能量密度小且不稳定,不能大量储存;(2)风轮机的效率较低;(3)对生态环境有影响,产生机械和电磁噪声;接入电网时,对电网有负面影响。

二、我国风力发电装机容量现状根据中国XX发布20__年中国风电装机容量统计报告中数据显示,20__年,中国(不包括台湾地区)新增安装风电机组7872台,装机容量2960MW,同比下降____%;累计安装风电机组53764台,装机容量7.53242MW同比增长20.8%。

20__-20__年中国新增及累计风电装机容量区域装机情况图(引自20__年中国风电装机容量统计)20__-20__年中国各区域累计风电装机容量图(引自20__年中国风电装机容量统计)三、风电并网对电力系统的影响风力发电是一种特殊的电力,它以自然风为原动力,风资源的随机性和间歇性决定了风电机组的输出特性也是波动和间歇的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风电并网对电网电能质量的影响王昊,1205020420,电气-4班(河海大学能源与电气学院,江苏南京211100)摘要:现阶段由于我国绝大多数风电场都是接入电网运行,随着风电上网电量的增加,风电的电能质量日益受到关注,风电场的电能质量必须要满足电力系统的电能质量要求。

风资源的不确定性和风电机组本身的运行特性使风电机组的输出功率是波动的,会影响电网的电能质量,如电压偏差、电压波动和闪变、谐波。

风电对电力系统频率稳定性也会造成较大的影响。

在电网发生短路故障导致电压骤降时,风力发电机组如果纷纷解列会带来系统暂态不稳定。

本文对风电并网对电能质量的影响定性分析。

关键词:电能质量;电压波动和闪变;谐波;电压骤降0引言在众多可再生能源发电技术中,风力发电是目前技术最成熟、最具有规模化开发条件和商业化发展前景的发电方式之一。

随着国家发改委近几年对风电特许权示范项目的不断推出,风力发电正以前所未有的速度高速发展。

风资源的不确定性和风电机组本身的运行特性使风电机组的输出功率是波动的,可能影响电网的电能质量,如电压偏差、电压波动和闪变、谐波等。

电压波动和闪变是风力发电对电网电能质量的主要负面影响之一。

影响风力发电产生波动和闪变的因素有很多:随着风速的增大,风电机组产生的电压波动和闪变也不断增大。

并网风电机组在启动、停止和发电机切换过程中也产生电压波动和闪变。

风电机组公共连接点短路比越大,风电机组引起的电压波动和闪变越小。

另外,风电机组中的电力电子控制装置如果设计不当,将会向电网注人谐波电流,引起电压波形发生不可接受的畸变,并可能引发由谐振带来的潜在问题。

1 风力发电系统组成及原理1.1 风力发电原理风能发电的原理是利用风轮将风能转变为机械能,风轮带动发电机再将机械能转变为电能。

大型风力发电机组发出的电能直接并到电网上,向电网馈电,小型风力发电机一般将风力发电机组发出的电能用储能设备储存起来(一般用蓄电池),需要时再提供给负载(可直流供电,亦可用逆变器变换为交流供给用户)。

1.1.1 风力机工作原理(1)风力发电机风力发电机可以分为两种类型,一种是主要靠和风向方向一致的空气动力产生的力矩来驱动;另外一种是主要靠和风向方向垂直的空气动力产生的力矩来驱动。

前者的功率系数很小,能量变换效率低下,所以逐渐被淘汰。

后者又可包括水平轴的风力机和垂直轴的风力机,垂直轴的风力机主要缺点是转矩脉动大,在遇到强风时不易调速,在 80 年代后期各国己经停止了对这种风车的研制和开发,现在的风力机主要是水平轴螺旋桨推进器型的。

水平轴风力机主要风轮、增速齿轮箱、发电机、偏航装置、控制系统、塔架等部件所组成。

风轮的作用是将风能转换为机械能,它由气动性能优异的叶片(目前商业机组一般为 2—3 个叶片)装在轮毅上所组成,风轮采用定桨距或变桨距两种,以定桨距居多。

低速转动的风轮通过传动系统由增速齿轮箱增速,将动力传递给发电机。

上述这些部件都安装在机舱平面上,整个机舱由高大的搭架举起,由于风向经常变化,为了有效地利用风能,必须要有迎风装置,它根据风向传感器测得的风向信号,由控制器控制偏航电机,驱动与塔架上大齿轮咬合的小齿轮转动,使机舱始终对风。

风力发电机组的调向装置大部分是上风向尾翼调向。

调速装置采用风轮偏置和尾翼铰接轴倾斜式调速、变桨距调速机构或风轮上仰式调速,在风速较大,达到风车的额定功率时,调节桨距可进行失速调节来限制负荷的大小,以限制负荷的大小保护风车。

发电装置主要由塔楼和安装在塔顶的引擎舱组成。

水平轴的风力机通常根据风力机不同的使用目的使用不同数目的叶片。

风力发电主要使用 2 到 3 个桨叶的风力机,20 个或更多桨叶的风力机主要用于水泵等机械装置的驱动。

桨叶数目少的风车启动力矩小,叶片端速比大,因此可工作的风速范围较大,主要应用在风力发电中。

风车中还包括许多控制装置功率较大的机组还装有手动刹车机构,以确保风力机在大风或台风情况下的安全。

(2)风力机的功率1由于实际上风力机械不可能将桨叶旋转的风能全部转变为轴的机械能,因而风力机的实际功率应为风轮所接受风的动能与通过风轮扫掠面积的全部风的动能比值。

以水平轴风力机械为例,理论上最大风能利用系数为 0.593 左右,这是贝兹极限,但再考虑到风速变化和桨叶空气动力损失等因素,风能利用系数能达到0.4 就相当高了。

通过以上的分析我们知道,风力发电系统包括风车、发电机、电力变换及其控制系统。

其中基于空气动力学设计的风车,其技术发展水平己经比较成熟,各种各样的发电机,如感应电机、同步电机、永磁电机可以满足不同情况下的需求。

风力机和发电机将风能转化为电能的效率大约为 35%。

风电机组的功率调节有两种方式,一种是失速调节,另一种是变桨距调节,即叶片可以绕叶片上的轴转动,改变叶片气动数据,实现功率调节;整台机组由电控系统进行监视与控制,可以实现无人操作管理。

1.2 风电系统使用小型风力发电机多是偏远地区。

由于风速的多变,使得风力发电机的电压及频率变化,不易于直接被负载利用,这就出现了储能环节,以便从储能设备中提取能源。

一般小型风力发电机使用蓄电池储能,先用整流器将发电机的交流电变成直流电向蓄电池充电,然后用逆变器将蓄电池的直流电变换成交流电,供给负载。

整流器和逆变器可以做成两个装置,也可以合为一体。

1KW ~ 10KW 的风力发电机组主要应用于小型风电系统。

该系统适用于远离电网,有一定用电量的家庭农场,公路、铁路养路站、小型微波发射站、移动通讯发射站、光纤通讯信号放大站、输油管线阴级保护站等用户。

系统原理图包括:风力机、控制器、储能设备及逆变器等。

并网型风力发电机组由传动系统、偏航系统、液压系统、制动系统、发电机、控制及安全等系统组成。

发电机将风轮的机械能转换为电能,并入电网。

1.3 风力发电技术风力机和发电机是风力发电系统实现机电能量转换的两大主要部分,有限的机械强度和电气性能必然使其受到功率和速度的限制,因此,风力机和发电机的功率和速度控制是风力发电的关键之一。

国内目前装机的电机一般分为二类:(1)异步型①笼型异步发电机;功率为 600/125kW、750kW、800kW、1250\180kW 定子向电网输送不同功率的50Hz 交流电;②绕线式双馈异步发电机;功率为 1500kW 定子向电网输送 50Hz 交流电,转子由变频器控制,向电网间接输送有功或无功功率。

(2)同步型①永磁同步发电机;功率为 750kW、1200kW、1500kW 由永磁体产生磁场,定子输出经全功率整流逆变后向电网输送 50Hz 交流电②电励磁同步发电机;由外接到转子上的直流电流产生磁场,定子输出经全功率整流逆变后向电网输送 50Hz 交流电。

目前风力发电机组按照风电机的调节技术分主要有以下 2种:1、变速恒频双馈风力发电机组;2、恒速恒频风力发电机组。

1.4变速恒频风力发电技术发电机及其控制系统是风力发电系统的另一大核心部分,它负责将机械能转换为电能,风力发电机及其控制系统的运行状况和控制技术,也决定着整个系统的性能、效率和输出电能质量。

根据发电机的运行特征和控制技术,风力发电技术可分为恒速恒频(Constant Speed Constant Frequency,简称CSCF)风力发电技术和变速恒频(Variable Speed Constant Frequency,简称VSCF)风力发电技术。

(1)恒速恒频风力发电技术恒速运行的风力机转速不变,而风速经常变化,cp值往往偏离其最大值,使风力机常常运行于低效状态。

恒速恒频发电系统中,多采用笼型异步电机作为并网运行的发电机,并网后在电机机械特性曲线的稳定区内运行,异步发电机的转子速度高于同步转速。

当风力机传给发电机的机械功率随风速而增加时,发电机的输出功率及其反转矩也相应增大。

当转子速度高于同步转速3%-5%时达到最大值,若超过这个转速,异步发电机进入不稳定区,产生的反转矩减小,导致转速迅速升高,引起飞车,这是十分危险的。

(2)变速恒频风力发电技术虽然目前大多数采用异步发电机的风力发电系统属于恒速恒频发电系统,但作为一种新型发电技术,变速恒频发电是一种新型的发电技术,非常适用于风力、水力等绿色能源开发领域,尤其是在风力发电方面,变速恒频体现出了显著的优越性和广阔的应用前景。

21)风能是一种具有随机性、爆发性、不稳定性特征的能源。

传统的恒速恒频发电方式由于只能固定运行在同步转速上,当风速改变时风力机就会偏离最佳运行转速,导致运行效率下降,不但浪费风力资源,而且增大风力机的磨损。

采用变速恒频发电方式,就可按照捕获最大风能的要求,在风速变化的情况下实时地调节风力机转速,使之始终运行在最佳转速上,从而提高了机组发电效率,优化了风力机的运行条件。

2)变速恒频发电可以在异步发电机的转子侧施加三相低频电流实现交流励磁,控制励磁电流的幅值、频率、相位实现输出电能的恒频恒压。

同时采用矢量变换控制技术,实现发电机输出有功功率、无功功率解藕(简称P、Q 解藕)控制。

控制有功功率可调节风力发电机组转速,实现最大风能捕获的追踪控制;调节无功功率可调节电网功率因数,提高风力发电机组及电力系统运行的动、静态稳定性。

3)采用变速恒频发电技术,可使发电机组与电网系统之间实现良好的柔性连接,比传统的恒速恒频发电系统更易实现并网操作及运行。

变速恒频发电技术的诸多优点使其受到了人们的广泛关注,它越来越多地被应用到风力发电中。

变速恒频发电风力发电系统有多种形式,有的是通过发电机与电力电子装置相结合实现变速恒频,有的是通过改造发电机本身结构而实现变速恒频。

4)新型变速恒频双馈风力发电机组对电能质量的影响优于传统的恒速恒频风力发电机组。

新型变速恒频双馈风力发电机组,与传统的恒速恒频风力发电系统有较大的不同。

风力发电机的转速不受发电机输出频率的限制,其输出电压的频率、幅值和相位也不受转子转速的影响。

风力机通过励磁控制和变桨距调节,可运行于最佳工作状态,从而提高了运行效率和系统的稳定性。

双馈电机的最大特点是转子通过一个背靠背脉冲宽度调制(PWM)变流器与电网相连。

电网侧变流器的主要功能是控制电容电压使其恒定,从而为转子侧变流器提供电源支撑,转子侧变流器为转子提供幅值、相位和频率可变的励磁电流。

通过变速恒频风力发电机的励磁控制,可以实现无电流冲击的软并网。

由于风能是随机、不可控的,所以风电机组发出的电能是波动的、随机的,这会引起风电机组电压的波动和闪变。

另外,异步电机以及电力电子装置的使用,可能带来谐波和间谐波。

大容量风电机组的并网必然对电网的电能质量造成一定的影响。

2 风电并网对电能质量的影响定性分析2.1 电压波动和闪变分析风资源的不确定性和风电机组本身的运行特性使风电机组的输出功率是波动的,会影响电网的电能质量,如电压偏差、电压波动和闪变、谐波以及周期性电压脉动等。

相关文档
最新文档