电动汽车热泵空调系统的实验研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电动汽车用热泵空调系统的实验研究
轩小波1,2陈斐1,2
1.上海新能源汽车空调工程技术研究中心
2.上海加冷松芝汽车空调股份有限公司制冷研究院
摘要:基于一款电动汽车空调设计了热泵空调系统试验台架,研究了不同压缩机转速和环境温度条件下双换热器和三换热器系统对热泵空调换热性能、总成出风口平均温度及系统COP的影响。结果表明,环境温度越高双换热器系统和三换热器系统的换热性能越高,且三换热器系统的性能优势越明显;压缩机转速为5500rpm、室外环境温度为7℃、1℃、-5℃工况下,三换热器系统较双换热器系统总成出风口平均温度分别高8.0℃、7.2℃和6.1℃,系统COP分别提高15.0%、16.5%和18.2%,提高了电动汽车乘员舱的舒适性和能效比。
关键词:电动汽车热泵空调实验研究三换热器系统系统COP
Experimental Research of Heat Pump Air-conditioning System
for Electric Vehicle
Songz automobile air conditioning co.,ltd Shanghai 201108
Abstract: Designed a test bench of heat pump air conditioning system based on an electric car air-conditioning. The impact of heat pump air conditioning system transfer performance, average temperature of the outlet assembly and the system coefficient of performance were studied base on two exchangers system and three exchangers system, under different compressor speeds and different ambient temperatures. The test results indicate that, higher the ambient temperature, higher the heat transfer performance of the two exchangers system and three exchangers system, transfer performance advantages more obvious of the three exchangers system. Under compressor speed is 5500rpm, ambient temperature is 7℃,1℃,-5℃conditions, average temperature of outlet assembly of the three exchangers system higher 8.0℃, 7.2℃and 6.1℃than the two exchangers system, the coefficient of performance increased 15.0%, 16.5% and 18.2% respectively, and the electric vehicle passenger compartment comfort and energy efficiency is also improved.
Key words:
electric vehicle heat pump air-conditioning experimental research three heat exchangers system system coefficient of performance
1前言
由于新能源电动和混动汽车工业的快速发展,空调系统能耗对电动汽车续行里程的影响日益凸显,这对电动汽车空调系统的节能降耗提出了更高要求。目前市场上的电动汽车冬季大多都采用PTC加热方式采暖,不仅能耗高而且制热效率低,电动汽车空调必须从自身解决低效供暖的问题,热泵型空调技术正好解决了电动汽车采暖能耗高及对发动机余热的依赖问题。
热泵是利用少量高品位能源使热量由低温热源流向高温热源的节能装置[1],在电动汽车中使用热泵空调系统取暖,可利用电能将环境中的热量泵送到车室内,得到的热量为消耗的电能与吸收的低位热能之和,因此其能效比大于1[2];魏名山等人[3]针对电动汽车在冬天取暖时能耗较高的问题,设计了一套用于取暖的热泵空调系统;热泵COP 是制热模式下热泵空调系统的实际制热量与实际输入功率的比值[4];Hosoz 等人[5]将传统燃油汽车空调改装为热泵空调,研究了不同压缩机转速与系统换热量、COP 等参数之间的关系。
本文设计了用于电动汽车室内采暖的热泵空调系统试验台架,研究了不同压缩机转速和环境温度条件下双换热器和三换热器系统对热泵空调换热性能、总成出风口平均温度及系统COP的影响。
2电动汽车热泵空调系统
电动汽车热泵空调系统原理如图1所示,主要由电动压缩机、单向阀、四通换向阀、节流装置、室内外换热器、气液分离器等组成。
图1 电动汽车热泵空调系统图
制冷模式下,从压缩机出口排出的高温高压制冷剂气体经单向阀、四通换向阀进入室外换热器,在室外换热器内与外界空气进行热交换冷凝为低温高压的制冷剂液体,流经节流装置进行节流降压,节流后的气液两相制冷剂进入室内换热器,与室内空气进行交换实现蒸发吸热以达到降低乘员舱内温度的目的,最后从室内换热器排出的低温过热制冷剂经四通换向阀、气液分离器被压缩机吸入进入下一个制冷循环。
制热模式下,从压缩机出口排出的高温高压制冷剂气体经单向阀、四通换向阀进入室内换热器,与车内空气进行热交换以达到提升乘员舱内温度的目的,冷凝为低温高压的制冷剂液体流经节流装置进行节流降压,节流后的气液两相制冷剂进入室外换热器与室外空气进行热交换,最后从室外换热器排出的低温过热制冷剂经四通换向阀、气液分离器被压缩机吸入进入下一个制热循环。
3实验装置与方法
3.1 实验装置