电力电子与运动控制系统

电力电子与运动控制系统

【VIP专享】运动控制系统课程设计报告

《运动控制系统》课程设计报告 时间 2014.10 _ 学院自动化 _ 专业班级自1103 _ 姓名曹俊博 __ 学号 41151093 指导教师潘月斗 ___ 成绩 _______

摘 要 本课程设计从直流电动机原理入手,建立V-M双闭环直流调速系统,设计双闭环直流调速系统的ACR和ASR结构,其中主回路采用晶闸管三相桥式全控整流电路供电,触发器采用KJ004触发电路,系统无静差;符合电流超调量σi≤5%;空载启动到额定转速超调量σn≤10%。并详细分析系统各部分原理及其静态和动态性能,且利用Simulink对系统进行各种参数给定下的仿真。 关键词:双闭环;直流调速;无静差;仿真 Abstract This course is designed from DC motor, establish the principles of V-M double closed loop DC speed control system design, the double closed loop dc speed control system and the structure, including ACR ASR the main loop thyristor three-phase bridge type all control the power supply and trigger the rectifier circuit KJ004 trigger circuit, the system without the static poor; Accord with current overshoots sigma I 5% or less; No-load start to the rated speed overshoot sigma n 10% or less. And detailed analysis of the system principle and the static and dynamic performance, and the system of simulink to various parameters set simulation. Key Words:double closed loop;DC speed control system;without the static poor;simulation

电力电子与电气传动概述

电力电子与电气传动概述 电气C142张启文 1 电力电子与电气传动主要内容 电力电子与电气传动包括电力电子技术与电气传动两大部分。 电力电子技术的主要内容:电力电子器件及其应用,即应用电力电子器件实现电力变换:AC/DC、DC/DC、DC/AC、AC/AC。 电气传动的主要内容:直流调速与交流调速 信息电子技术——信息处理 电力电子技术——电力变换 电子技术一般即指信息电子技术,广义而言,也包括电力电子技术。 电力电子技术——使用电力电子器件对电能进行变换和控制的技术,即 应用于电力领域的电子技术。 2、电力电子技术的发展概况 1904年:电子管问世 1930-1947:水银整流器时代 1957-1970:晶闸管时代 1985-2000:IGBT及功率集成器件和发展时代 电力电子技术的发展史是以电力电子器件的发展史为纲的。

3、电力电子技术的应用 一般工业: 交直流电机、电化学工业、冶金工业交通运输: 电气化铁道、电动汽车、航空、航海电力系统: 高压直流输电、柔性交流输电、无功补偿电子装置电源: 为信息电子装置提供动力 家用电器: “节能灯”、变频空调 其他: UPS、航天飞行器、新能源、发电装置 AC/DC可控整流:将交流电变为直流电 有源逆变:将直流电变为交流电回送电网 交流调压:将固定的交流电变为可调的交流电 变频:将频率固定的交流电变为频率可调的交流电 直流斩波:将固定的直流电变为可调的直流电

4、就业前景 (一)应用逐渐多元化,顺应时代趋势 电力传动系统是电力电子器件典型的应用领域,在国民经济中占有极其重要的地位,具有广阔的发展前景。电力电子作为节能,自动化、智能化、机电一体化的基础正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。譬如,风能是正在开发中的具有广阔前景的新能源之一。它对寻求新能源,改善生态环境,发展偏远地区经济,都具有重大的意义。 在当今积极提倡环保节能的国际大环境下,现代电力电子技术是21世纪各国竞相发展的强国兴邦技术之一,随着与微电子技术的不断融合,其应用范围日益广泛,并且有向各行业渗透的趋势,面临来自环境和资讯等方面的严峻挑战,现代电力行业急需一批既懂电力工程技术,又懂电力电子与电气传动技术的高层次复合型人才。 (二)无处不在的新兴学科 近几十年来,电力电子技术得到迅猛发展,应用范围极其广泛,在各级工业、交通运输、电力系统、通信系统、计算机系统、新能源系统以及家电产品等国民经济和人民生活的各个领域都有重要的应用:大到航天飞行器中的特种电源、远程特高压电压传输系统,小到家用的空调、冰箱和计算机电源,电力电子及电力传动技术可以说是无处不在。可以毫不夸张地说,只要是需要电能的地方,就需要电力电子和电力传动。电气传动技术也正在向智能化迈进,具有巨大的研究价值和广泛的应用前景,从而也为广大毕业生提供了源源不断的就业机会。 5、就业方向 本专业适合到电力系统、电气工程及其相关领域的高校、科研单位及企业从事教学、研发、管理、生产等方面的工作。例如,研究新型电力电子器件、电能的变换与控制、电力电子电源、电力传动及其自动化等理论技术和应用。

电力拖动自动控制系统运动控制系统第版习题答案完整版

电力拖动自动控制系统运动控制系统第版习题 答案 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

习题解答(供参考) 习题二 2.2 系统的调速范围是1000~100min r ,要求静差率s=2%,那么系统允许的静差转速降是多少? 解:10000.020.98) 2.04(1) n n s n rpm D s ?= =??=- 系统允许的静态速降为2.04rpm 。 2.3 某一调速系统,在额定负载下,最高转速特性为0max 1500min n r =,最低转速特性为 0min 150min n r =,带额定负载时的速度降落15min N n r ?=,且在不同转速下额定速降 不 变,试问系统能够达到的调速范围有多大系统允许的静差率是多少 解:1)调速范围 max min D n n =(均指额定负载情况下) 2) 静差率 01515010%N s n n =?== 2.4 直流电动机为P N =74kW,UN=220V ,I N =378A ,n N =1430r/min ,Ra=0.023Ω。相控整流器内阻Rrec=0.022Ω。采用降压调速。当生产机械要求s=20%时,求系统的调速范围。如果s=30%时,则系统的调速范围又为多少? 解:()(2203780.023)14300.1478N N a N Ce U I R n V rpm =-=-?=

2.5 某龙门刨床工作台采用V-M 调速系统。已知直流电动机 60,220,305,1000min N N N N P kW U V I A n r ====,主电路总电阻R=0.18Ω,Ce=0.2Vmin/r, 求: (1)当电流连续时,在额定负载下的转速降落N n ?为多少? (2)开环系统机械特性连续段在额定转速时的静差率N S 多少? (3)若要满足D=20,s ≤5%的要求,额定负载下的转速降落N n ?又为多少? 解:(1)3050.180.2274.5/min N N n I R Ce r ?=?=?= (2) 0274.5(1000274.5)21.5%N N S n n =?=+= (3) (1)]10000.050.95] 2.63/min N n n S D s r ?=-=??= 2.6 有一晶闸管稳压电源,其稳态结构图如图所示,已知给定电压* 8.8u U V =、比例调节 器放大系数2P K =、晶闸管装置放大系数15S K =、反馈系数γ=0.7。求:(1)输出电压 d U ;(2)若把反馈线断开,d U 为何值开环时的输出电压是闭环是的多少倍(3)若把反 馈系数减至γ=0.35,当保持同样的输出电压时,给定电压*u U 应为多少? 解:(1)*(1)2158.8(12150.7)12d p s u p s U K K U K K V γ=+=??+??=

电力电子及电气传动教学试验台和MCL系统挂箱介绍和使用说明

《电力电子与变频技术》实验实训指导书 李翔编写 适用专业:电气自动化 机电一体化 安徽国防科技职业学院机电工程系 2011 年 11 月

第一部分电力电子技术实验指导 实验一三相半波可控整流电路的研究 一.实验目的 了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻—电感性负载时的工作。 二.实验线路及原理 三相半波可控整流电路用三只晶闸管,与单相电路比较,输出电压脉动小,输出功率大,三相负载平衡。不足之处是晶闸管电流即变压器的二次电流在一个周期内只有1/3时间有电流流过,变压器利用率低。 实验线路见图2-1。 三.实验内容 1.研究三相半波可控整流电路供电给电阻性负载时的工作。 2.研究三相半波可控整流电路供电给电阻—电感性负载时的工作。 四.实验设备及仪表 1.MCL系列教学实验台主控制屏。 2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。 3.MCL—33组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ) 4.MEL—03组件(900Ω,0.41A)或自配滑线变阻器. 5.双踪示波器。 6.万用电表。 五.注意事项 1.整流电路与三相电源连接时,一定要注意相序。 2.整流电路的负载电阻不宜过小,应使I d不超过0.8A,同时负载电阻不宜过大,保证I d超过0.1A,避免晶闸管时断时续。 3.正确使用示波器,避免示波器的两根地线接在非等电位的端点上,造成短路事故。 六.实验方法 1.按图接线,未上主电源之前,检查晶闸管的脉冲是否正常。 (1)打开MCL—18电源开关,给定电压有电压显示。 (2)用示波器观察MCL-33(或MCL-53,以下同)的双脉冲观察孔,应有间隔均匀,幅度相同的双脉冲 (3)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1”脉冲超前“2”脉冲600,则相序正确,否则,应调整输入电源。 (4)用示波器观察每只晶闸管的控制极,阴极,应有幅度为1V—2V的脉冲。 2.研究三相半波可控整流电路供电给电阻性负载时的工作 合上主电源,接上电阻性负载,调节主控制屏输出电压U uv、U vw、U wv,从0V调至110V:

运动控制系统课程教学大纲

《运动控制系统》课程教学大纲 大纲执笔人:大纲审核人: 课程编号:0808000555 英文名称:Motion control system 学分:4 总学时:64。其中,讲授54 学时,实验 10 学时,上机 0 学时,实训 0 学时。 适用专业: 自动化 先修课程:自动控制原理、现代控制理论基础、电力电子技术 一、课程性质与教学目的 《运动控制系统》是一门讲授交、直流电动机控制理论和控制规律,以提高电能利用效率及运动控制品质的一门专业主干课程,是自动化专业的一门必修课。其目的是使学生了解并掌握各类交、直流电动机控制系统的基本结构、工作原理和性能指标,着重培养学生对运动控制系统的综合分析能力和工程设计能力,从而掌握现代交、直流电动机的控制理论和系统设计方法,为今后从事专业工作打下扎实的基础。 二、基本要求 本课程秉承理论与实际相结合的理念,应用自动控制理论解决运动控制系统的分析和设计问题,以转矩和磁链(或磁通)控制规律为主线,由简入繁、由低及高地循序深入,论述系统的静、动态性能。通过本课程的学习,要求学生能够了解运动控制系统的定义、结构及其分类,理解运动控制的必要性,掌握单、双闭环直流电动机调速系统、VVVF变频器、交流异步电动机矢量控制系统、正弦波永磁同步电动机调速系统、位置控制系统等的结构与原理、分析与设计方法。 三、重点与难点 1. 课程重点 (1)直流调速系统:以直流电动机为对象组成的运动控制系统,转速单闭环调速系统,转速、电流双闭环控制调速系统的基本组成和控制规律,静态、动态性能分析,直流调速系统的工程设计方法,直流调速系统的数字控制方法。 (2)交流调速系统:异步电动机的稳态模型及基于稳态模型的交流调速系统,异步电动机的动态模型及基于动态模型的高性能交流调速系统,同步电动机变频调速系统。 2、课程难点 (1)双闭环直流调速系统:通过双闭环直流调速系统静、动态模型研究及性能分析,对转速与电流环的典型系统校正,推导PI 控制规律与工程计算方法。 (2)空间电压矢量PWM:从稳态和动态、时域和空间等方面论述矢量、标量、相量的区别与联系,各自的表现形式,基本特征与物理意义。 (3)异步电动机动态数学模型:依据旋转磁场产生原理,论述时间和空间变量的相对关系,讨论静止与旋转(或交变)的关系与转化,理解在各种坐标系下的数学模型。通过计算机数字仿真,分析比较各种物理量在不同坐标系的表现形式和相互间的联系。 (4)矢量控制系统:着重论述按转子磁链定向,定子电流转矩分量和励磁分量的解耦,等效

运动控制系统课程设计报告

《运动控制系统》课程设计报告 时间2014.10 _ 学院自动化 _ 专业班级自1103 _ 姓名曹俊博__ 学号 指导教师潘月斗 ___ 成绩 _______

摘要 本课程设计从直流电动机原理入手,建立V-M双闭环直流调速系统,设计双闭环直流调速系统的ACR和ASR结构,其中主回路采用晶闸管三相桥式全控整流电路供电,触发器采用KJ004触发电路,系统无静差;符合电流超调量σi≤5%;空载启动到额定转速超调量σn≤10%。并详细分析系统各部分原理及其静态和动态性能,且利用Simulink对系统进行各种参数给定下的仿真。 关键词:双闭环;直流调速;无静差;仿真 Abstract This course is designed from DC motor, establish the principles of V-M double closed loop DC speed control system design, the double closed loop dc speed control system and the structure, including ACR ASR the main loop thyristor three-phase bridge type all control the power supply and trigger the rectifier circuit KJ004 trigger circuit, the system without the static poor; Accord with current overshoots sigma I 5% or less; No-load start to the rated speed overshoot sigma n 10% or less. And detailed analysis of the system principle and the static and dynamic performance, and the system of simulink to various parameters set simulation. Key Words:double closed loop;DC speed control system;without the static poor;simulation

浅析电力拖动自动控制系统

浅析电力拖动自动控制系统 【摘要】电力拖动控制系统是一种较为重要的控制系统,其在工业生产中发挥着很大的作用,随着社会的发展以及科技的推动,这一系统开始趋向于自动化的应用形式。电能在人们的生活中发挥着重要的作用,电器的种类越来越多,现代社会对电力的需求量也越来越大,所以,自动化的电力拖动控制系统,可以更好的满足人类社会对电力的需求。本文分析了电力拖动自动控制系统的设计原理,还介绍了电力拖动自动控制系统的安全防护,希望对相关电力人员有所帮助,使相关企业生产可以更加安全、稳定的进行。 【关键词】电力拖动;系统;自动控制;原理;安全防护 电力拖动系统在工业领域应用极其广泛,伴随着我国科技的发展,工业企业的生产效率越来越高,人类社会对电能的需求量也越来越大。很多工业企业引进了先进的机械设备,提高了企业的生产水平,同时也对电力拖动控制系统提出了更高的要求,所以,电力拖动控制系统的自动化也是企业未来发展的必然趋势。电力拖动自动控制系统是对传统系统的改进与优化,这种系统在运行的过程中,更加安全稳定,而且满足了企业对自动化机械设备生产运行的要求。为了使电力拖动自动控制系统发挥更大的效用,相关人员要研究出更加完善的安全防护措施,这也可以为企业增产以及效益提升做出更大的贡献。 1.电力拖动自动控制系统的设计原理 电力拖动控制系统在工业企业生产中发挥着重要的作用,工作人员在系统运行的过程中,可以更好的掌握电动机的运行状况,还可以通过信息反馈,了解企业生产运行机制的运转情况,比较常见的反馈信息是电流信息。电力拖动控制系统中包含着很多的构件,其中电气设备是生产运行机制中比较重要的系统,其也是企业实现机械自动控制的关键因素。在利用计算机设备,可以在系统运行的过程中,可以直观的从显示器中,了解设备的运行状况,通过计算机等设备的信息反馈,可以有效的实现电力拖动的自动化控制。 实现电力拖动控制系统的自动化运行,需要借助先进的计算机技术,相关工作人员通过计算机信息的反馈,以及企业生产需求的变化,可以有效的制定出不同的控制方案,还可以实现机械运行的自动化生产。在这一过程中,计算机的编程起着至关重要的作用,计算机不但具有强大的计算等功能,还具有操作便捷等特点,所以,工作人员一定要多了解计算机相关知识,这样才能编制出独立的驱动程序,实现多种设备的自动控制。工作人员还要利用计算机操作技术,实现系统的对接测试,这些步骤有利于简化电力拖动自动化控制编程。电力拖动自动控制系统的各项参数可以认为调动,根据不同的要求,技术人员可以更改编程,所以这项工作具有一定的变动性。但是从系统的设计原理来看,电力拖动自动控制系统在调整的过程中,需要遵循一定的设计原则,其主要是利用计算机作为控制中心,而且是通过信号传输完成下达命令以及执行命令这一系列工作。

电力电子与电力传动简介

电力电子与电力传动简介 本文章来源:考研网发布者:wenpinger 浏览次数:3051 发布时间:2010-2-01 16:34 对电力电子与电力传动专业的介绍 电力电子与电力传动学科主要研究新型电力电子器件、电能的变换与控制、功率源、电力传动及其自动化等理论技术和应用。它是综合了电能变换、电磁学、自动控制、微电子及电子信息、计算机等技术的新成就而迅速发展起来的交叉学科,对电气工程学科的发展和社会进步具有广泛的影响和巨大的作用。 学科研究范围: 电力电子器件的原理、制造及其应用技术;电力电子电路、装置、系统及其仿真与计算机辅助设计;电力电子系统故障诊断及可靠性;电力传动及其自动控制系统;电力牵引;电磁测量技术与装置;先进控制技术在电力电子装置中的应用;电力电子技术在电力系统中的应用;电能变换与控制;谐波抑制与无功补偿。 研究方向: 1 )谐波抑制与无功补偿 2 )电力电子电路仿真与设计 3 )计算机控制系统 4 )电气系统智能控制技术 5 )现代控制理论及其电气传动中的应用 6 )系统故障诊断技术及应用 7 )现代交、直流电机调速技术 8 )功率变换技术的研究 该学科对实践动手能力要求很高,难度较大。本科是电气工程、自动化、电子信息工程的适合报考这个专业。该专业需要的基础是电路基础,模拟电路与数字电路,电机学,单片机技术,计算机控制技术,电力电子技术,电力拖动自动控制系统,数字信号处理。 该专业实力最强的几所院校:浙大(拥有国内唯一的电力电子国家实验室,师资力量雄厚,有汪栖生院士和徐德鸿等知名教授,科研成果较多)西安交通大学(西交的电力电子与能源研究中心在国内处于领先水平,科研成果较多,有电力电子知名专家王兆安教授)南京航空航天大学(有航空电源航空科技重点实验室,师资力量雄厚,科研成果较多)合肥工业大学和中国矿业大学(有电力电子与电力传动国家重点学科) 电力电子专业状况及职场发展 老是看到好多新同学打听这个专业,N多人还在比较电力系统和电力电子与电力传动,哪个更好?哪个更有前(钱)途?马上就过年了,今天有点空,也想冒下泡,想跟对这一方向有点兴趣的兄弟姐妹简单聊一下总体情况。我也只是一名研发工程师,说得不对不全之处,请各位拍砖时手下留情。 毫无疑问,电力系统是电气工程下面一个非常非常传统的专业,毕业后较大的可能进入国家电网或南方电网下属的各级电力公司,君不见这个坛子里好多人讲电力的高薪,因而也

电力拖动与运动控制系统复习题

一.判断题 1弱磁控制时电动机的电磁转矩属于恒功率性质只能拖动恒功率负载而不能拖 动恒转矩负载。(Ⅹ) 2. 带电流截止负反馈的速度反馈调速系统是单闭环调速系统(√) 4直流电动机变压调速和降磁调速都可做到无级调速。(√) 5静差率和机械特性硬度是一回事。(Ⅹ) 6带电流截止负反馈的转速闭环系统不是单闭环系统。(Ⅹ) 7电流—转速双闭环无静差可逆调速系统稳态时控制电压Uk的大小并非仅取决于速度给定值Ug的大小。(√) 8.临界截止电流应大于电动机额定电流(√)。 9.双闭环调速系统在起动过程中,速度调节器总是处于饱和状态。(Ⅹ) 10.可逆脉宽调速系统中电动机的转动方向(正或反)由驱动脉冲的宽窄决定。(√) 11.电流滞环控制器的滞环宽度越窄,则开关频率越高(√) 12.电压源型转速开环恒压频比控制的异步电动机变压变频调速系统中,I*R补 值,保证 U/f=常数。(√)。 偿环节的作用是适当提高U S 13转速电流双闭环速度控制系统中转速调节为PID调节器时转速总有超调。 (Ⅹ)14.在矢量控制系统中,通过转子磁链定向的目的是可以实现定子电流的转矩分量和励磁分量完全解耦。(√) 二.选择题 2.静差率和机械特性的硬度有关,当理想空载转速一定时,特性越硬,静差率(B) 越大 B. 越小 C. 不变 D.先大后小 4.可以使系统在无静差的情况下保持恒速运行,实现无静差调速的是(B) A.比例控制 B.积分控制C.微分控制 D.比例微分控制 5.控制系统能够正常运行的首要条件是 (B) A.快速性 B.稳定性 C. 稳态误差小 D.扰动小 8.转速电环调速系统中电流调节器的英文缩写是 (A) A.ACR B.AVR C.ASR D.ATR A. 9. 当静差率相同,带P调节的转速反馈系统比开环系统的调速范围大()倍。 A. K B. 1+K C. 2 D. 1

电力拖动自动控制系统 第四版 课后答案

习题解答(供参考) 习题二 2.2 系统的调速范围是1000~100 min r ,要求静差率s=2%,那么系统允许的静差转速降是多少? 解: 10000.02(100.98) 2.04(1) n n s n rpm D s ?= =??=- 系统允许的静态速降为 2.04rpm 。 2.3 某一调速系统,在额定负载下,最高转速特性为 0max 1500min n r =,最低转速特性为 0min 150min n r =,带额定负 载时的速度降落15min N n r ?=,且在不同转速下额定速降 不变,试问系统能够达到的调速范围有多大?系统允许的静差率是多少? 解:1)调速范围 max min D n n =(均指额定负载情况下) max 0max 1500151485N n n n =-?=-= min 0min 15015135N n n n =-?=-= max min 148513511D n n === 2) 静差率 01515010%N s n n =?== 2.4 直流电动机为P N =74kW,UN=220V ,I N =378A ,n N =1430r/min ,Ra=0.023Ω。相控整流器内阻Rrec=0.022Ω。采用降压调速。当生产机械要求s=20%时,求系统的调速范围。如果s=30%时,则系统的调速范围又为多少?? 解: ()(2203780.023)14300.1478N N a N Ce U I R n V rpm =-=-?=

378(0.0230.022)0.1478115N n I R C e r p m ?==?+= [(1)]14300.2[115(10.2)] 3.1N D n S n s =?-=??-= [(1)]14300.3[115(10.3)] 5.33 N D n S n s =?-=??-= 2.5 某龙门刨床工作台采用V-M 调速系统。已知直流电动机,主电路总电阻R=0.18Ω,Ce=0.2V ?min/r,求: (1)当电流连续时,在额定负载下的转速降落 N n ?为多少? (2)开环系统机械特性连续段在额定转速时的静差率 N S 多少? (3)若要满足D=20,s ≤5%的要求,额定负载下的转速降落 N n ?又为多少? 解:(1) 3050.180.2274.5/min N N n I R Ce r ?=?=?= (2) 0274.5(1000274.5)21.5%N N S n n =?=+= (3) [(1)]10000.05[200.95] 2.63/min N n n S D s r ?=-=??= 2.6 有一晶闸管稳压电源,其稳态结构图如图所示,已知给定电压 * 8.8u U V =、比例调节器放大系数2P K =、晶闸管装置放大系数 15S K =、反馈系数γ=0.7。求:(1)输出电压d U ;(2)若把反馈线断开,d U 为何值?开环时的输出电压是闭环是的多少倍?(3)若 把反馈系数减至γ=0.35,当保持同样的输出电压时,给定电压 * u U 应为多少? 解:(1) * (1)2158.8(12150.7)12d p s u p s U K K U K K V γ=+=??+??= (2) 8.8215264d U V =??=,开环输出电压是闭环的22倍 (3) * (1)12(12150.35)(215) 4.6u d p s p s U U K K K K V γ=+=?+???= 2.7 某闭环调速系统的调速范围是1500r/min~150r/min ,要求系统的静差率5%s ≤,那么系统允许的静态速降是多少?如果开环系统的静态 速降是100r/min ,则闭环系统的开环放大倍数应有多大? 解: 1) ()s n s n D N N -?=1/ 1015002%/98%N n =??? 15002%/98%10 3.06/min N n r ?=??= 2) () 7.31106.3/1001/=-=-??=cl op n n K

电力电子与电气传动综合课程设计任务书(1)

电力电子与电气传动综合课程设计任务书 一、目的及要求: 通过电力电子与电气传动的综合课程设计教学环节,使学生掌握以直流电动机为对象组成的运动控制,包括转速单闭环调速系统,转速、电流双闭环控制调速系统,静态、动态性能分析及工程设计方法,掌握以交流电动机为对象组成的运动控制,包括基于稳态模型和动态模型的异步电动机调速系统以及同步电动机调压调速系统的工作原理和性能特点。 通过该课程的学习,培养学生理论联系实际的能力,掌握电气传动控制系统的工作原理和设计方法,从实际出发,深入地进行理论分析,应用理论解决电气传动系统中的实际问题,提高学生分析问题和解决问题的能力。检验同学们对所学知识的掌握程度和运用能力。 二、内容及步骤: 内容: 1、设计一个三相桥式全控整流电路,电源相电压为220V,利用可调的 直流电压驱动直流电机进行调速,仿真观察整流电路输出电压和电 流波形,电机电流、转速、转矩变化曲线。 2、设计一个双闭环直流电动机调速系统,整流装置采用三相桥式电路, 电动机参数:UN=220V,IdN=136A,nN=1460r/min,Ce=0.132V.min/r, 过载倍数λ=1.5,整流装置放大系数Ks=40,电枢回路总电阻R =0.5欧,时间常数Tl=0.03s,Tm=0.18s,电流反馈系数β=0.05V/A, 转速反馈系数α=0.007V.min/r,要求实现稳态无静差,电流超调 量σ i %≤5%,空载起动到额定转速时的转速超调量σ n %≤10%, 取电流反馈滤波时间常数T oi =0.0017s,转速反馈滤波时间常数T on =0.01s,取转速调节器和电流调节器的饱和值为12V,输出限幅值 为10V,额定转速时转速给定U n *=10V。仿真观察系统的转速、电流响应和设定参数变化对系统响应的影响。 3、完成基于IGBT逆变电路的异步电机恒压频比变频调速系统仿真,电 机参数如下:额定功率为 2.2kW,额定线电压为380V,额定频率为 50Hz,额定转速为1423pm,定子电阻为 3.478Ω,定子漏感为 0.01254H,转子电阻为2.546Ω,转子漏感为0.01226H,励磁电感 为0.3329H,转动惯量为0.0131,极对数为2。 4、采用三相SPWM技术设计一个转速开环变频调速系统,观察电动机的 电流、转速和转矩曲线。 步骤如下: 1、查阅调速系统资料。 2、设计调速系统原理图和动态结构框图。 3、计算各控制参数。 4、熟悉MATLAB仿真工具。 5、对原理图和结构框图进行仿真。 6、总结课程设计报告。 三、课程设计时间和进度安排: 1、时间安排第16-18周

电力拖动与运动控制系统第一章课后答案

1-2有一V-M 调速系统,电动机参数为:PN=,UN=220V ,IN=15A ,nN=1500r/min,电枢电阻Ra=2Ω,整流装置内阻Rrec=1Ω,触发整流环节的放大倍数Ks=30。要求系统满足调速范围D=20,静差率s ≤10%。 (1)计算开环系统的静态速降Δnop 和调速要求所允许的闭环静态速降Δncl 。 (2)采用转速负反馈组成闭环系统,试画出系统的原理图和静态结构框图。 (3)计算放大器所需的放大倍数。 解:(1) (2) r V n I R U C N N a N e min/127.01500152220?=?-=-= ()()min /33.354127.01512r C I R R n e N rec a op =+=+=? ()()m in /33.81.01201.015001r S D s n n N cl =-?=-=?

(3) 1-7 某直流调速系统,其额定数据如下:60kW ,220V ,305A ,1000r/min ,Ra=,电枢回路总电阻R= ,如果要求调速范围 D = 20,静差率s<= 5%,问开环系统能否满足要求? 解: 如果要求D=20,S<=5%, 所以,开环不能满足要求。 1-8 带电流截止负反馈的转速负反馈单闭环有静差调速系统,已知:最大给定电压54.41133.833.3431=-=-??= cl op n n K 79.802 .030127.054.41=??==αs e p K KC K 205.01000 05.0305220=?-=-=∴-=N a N a N N n R I U Ce Ce R I U n min /8.267205 .018.0305r Ce R I n N N =?==?m in /63.2)05.01(2005.01000)1(r D s s n n N N =-?≤-=?

运动控制系统实验指导书分解

运动控制系统 实验指导书 赵黎明、王雁编 广东海洋大学信息学院自动化系

直流调速 实验一不可逆单闭环直流调速系统静特性的研究 一.实验目的 1.研究晶闸管直流电动机调速系统在反馈控制下的工作。 2.研究直流调速系统中速度调节器ASR的工作及其对系统静特性的影响。 3.学习反馈控制系统的调试技术。 二.预习要求 1.了解速度调节器在比例工作与比例—积分工作时的输入—输出特性。 2.弄清不可逆单闭环直流调速系统的工作原理。 三.实验线路及原理 见图6-7。 四.实验设备及仪表 1.MCL系列教学实验台主控制屏。 2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。 3.MCL—33(A)组件或MCL—53组件。 4.MEL-11挂箱 5.MEL—03三相可调电阻(或自配滑线变阻器)。 6.电机导轨及测速发电机、直流发电机M01(或电机导轨及测功机、MEL—13组件)。 7.直流电动机M03。 8.双踪示波器。 五.注意事项 1.直流电动机工作前,必须先加上直流激磁。 2.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。 3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。 4.三相主电源连线时需注意,不可换错相序。 5.电源开关闭合时,过流保护发光二极管可能会亮,只需按下对应的复位开关SB1

即可正常工作。 6.系统开环连接时,不允许突加给定信号U g起动电机。 7.起动电机时,需把MEL-13的测功机加载旋钮逆时针旋到底,以免带负载起动。 8.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。 9.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。 六.实验内容 1.移相触发电路的调试(主电路未通电) (a)用示波器观察MCL—33(或MCL—53,以下同)的双脉冲观察孔,应有双脉冲,且间隔均匀,幅值相同;观察每个晶闸管的控制极、阴极电压波形,应有幅值为1V~2V 的双脉冲。 (b)触发电路输出脉冲应在30°~90°范围内可调。可通过对偏移电压调节单位器及ASR输出电压的调整实现。例如:使ASR输出为0V,调节偏移电压,实现α=90°;再保持偏移电压不变,调节ASR的限幅电位器RP1,使α=30°。 2.求取调速系统在无转速负反馈时的开环工作机械特性。 a.断开ASR的“3”至U ct的连接线,G(给定)直接加至U ct,且Ug调至零,直流电机励磁电源开关闭合。 b.合上主控制屏的绿色按钮开关,调节三相调压器的输出,使U uv、Uvw、Uwu=200V。 注:如您选购的产品为MCL—Ⅲ、Ⅴ,无三相调压器,直接合上主电源。以下均同。 c.调节给定电压U g,使直流电机空载转速n0=1500转/分,调节测功机加载旋钮(或直流发电机负载电阻),在空载至额定负载的范围内测取7~8点,读取整流装置输出电压U d 3.带转速负反馈有静差工作的系统静特性 a.断开G(给定)和U ct的连接线,ASR的输出接至U ct,把ASR的“5”、“6”点短接。 b.合上主控制屏的绿色按钮开关,调节U uv,U vw,U wu为200伏。 c.调节给定电压U g至2V,调整转速变换器RP电位器,使被测电动机空载转速n0=1500转/分,调节ASR的调节电容以及反馈电位器RP3,使电机稳定运行。 调节测功机加载旋钮(或直流发电机负载电阻),在空载至额定负载范围内测取7~8

电力拖动控制系统

★采用计算机控制电力传动系统的优越性在于:(1)可显著提高系统性能。采用数字给定、数字控制和数字检测,系统精度大大提高可根据控制对象的变化,方便地改变控制器参数,以提高系统抗干扰能力(2)可采用各种控制策略。可变参数PID和PI控制;自适应控制;模糊控制;滑模控制;复合控制。(3)可实现系统监控功能。状态检测;数据处理、存储与显示;越限报警;打印报表等。 ★数字测速方法:1. 旋转编码器:光电转换;增量式旋转编码器; 脉冲数字(P/D)转换方法:(1)M法—脉冲直接计数方法;(2)T 法—脉冲时间计数方法;(3)M/T法—脉冲时间混合计数方法 M法测速:工作原理:由计数器记录PLG发出的脉冲信号;定时器每隔时间T c向CPU发出中断请求INTt;CPU响应中断后,读出计数值M1,并将计数器清零重新计数;根据计数值M 计算出对应的转速值n。 ★计算公式:式中Z为PLG每转输出的脉冲个数; ★M法测速的分辨率: ★M法测速误差率:在上式中,Z 和T c均为常值,因此转速n 正比于脉冲个数。高速时Z大,量化误差较小,随着转速的降低误差增大,转速过低时将小于1,测速装置便不能正常工作。所以,M法测速只适用于高速段。 ★T法测速:工作原理:计数器记录来自CPU的高频脉冲f0;PLG每输出一个脉冲,中断电路向CPU发出一次中断请求;CPU 响应INTn中断,从计数器中读出计数值M2,并立即清零,重新计数。 ★计算公式: ★T法测速的分辨率: ★T法测速误差率:低速时,编码器相★邻脉冲间隔时间长,测得的高频时钟脉冲个数M2多,所以误差率小,测速精度高,故T法测速适用于低速段。 ★两种测速方法的比较:M法测速在高速段分辨率强;T法测速在低速段分辨率强。因此,可以将两种测速方法相结合,取长补短。既检测T c时间内旋转编码器输出的脉冲个数M1,又检测同一时间间隔的高频时钟脉冲个数M2,用来计算转速,称作M/T法测速。 ★M/T法测速:电路结构 ★工作原理:T0定时器控制采样时间;M1计数器记录PLG脉冲;M2计数器记录时钟脉冲。 ★计算公式:

电机电力电子及电气传动教学实验台介绍

第1章 MCL系列 电机电力电子及电气传动教学实验台介绍 一概述 1.特点: (1)采用组件式结构,可根据不同内容进行组合,故结构紧凑,使用方便灵活,并且可随着功能的扩展只需增加组件即可,能在一套装置上完成《电力电子学》,《电力拖动自动控制系统》等课程的主要实验。 (2)装置布局合理,外形美观,面板示意图明确,直观,学生可通过面板的示意查寻故障,分析工作原理。电机采用导轨式安装,更换机组简捷,方便,所采用的电机经过特殊设计,其参数特性能模拟3KW左右的通用实验机组,能给学生正确的感性认识。除实验控制屏外,还设置有实验用台,内可放置机组,实验组件等,并有可活动的抽屉,内可放置导线,工具等,使实验更方便。 (3)实验线路典型,配合教学内容,满足教学大纲要求。控制电路全部采用模拟和数字集成芯片,可靠性高,维修,检测方便。触发电路采用数字集成电路双窄脉冲。 (4)装置具有较完善的过流、过压、RC吸收、熔断器等保护功能,提高了设备的运行可靠性和抗干扰能力。 (5)面板上有多只发光二极管指示每一个脉冲的有无和熔断器的通断。触发脉冲可外加,也可采用内部的脉冲触发可控硅,并可模拟整流缺相和逆变颠覆等故障现象。 2.技术参数 (1)输入电源:380V 10% 50H Z1H Z (2)工作条件:环境温度:-5 ~ 400C 相对湿度:〈75% 海拔:〈1000m (3)装置容量:〈1KVA (4)电机容量:〈200W (5)外形尺寸:长1600mm X宽700mm(长1300mm X宽700mm) 1

2 电力电子技术.半控型器件: 1.单结晶体管同步移相触发电路及单相半波可控整流电路2.正弦波同步移相触发电路及单相半波可控整流电路3.锯齿波同步移相触发电路 4.单相桥式半控整流电路 5.单相桥式全控整流电路 6.单相桥式有源逆变电路 7.三相半波可控整流电路 8.三相半波有源逆变电路 9.三相桥式半控整流电路 10.三相桥式全控整流电路 11.三相桥式有源逆变电路 12.直流斩波电路 13.单相并相逆变电路 14.单相交流调压电路 15.三相交流调压电路 电力电子技术.全控型器件特性部分 1.功率场效应晶体管(MOSFET)的主要参数测量 2.功率场效应晶体管(MOSFET)的驱动电路研究 3.绝缘栅双极型晶体管(IGBT)特性及其驱动电路的研究4.电力晶体管(GTR)驱动电路的研究 5.电力晶体管(GTR)的特性研究 电力电子技术.全控型器件典型线路部分 1.直流斩波电路(升压斩波、降压斩波)的性能研究2.单相交直交变频电路的性能研究 3.半桥型开关稳压电源的性能研究 4.电流控制型脉宽调制开关稳压电源研究 5.直流斩波电路(Buck-Boost变换器)的研究 6.采用自关断器件的单相交流调压实验 7.单相正弦波(SPWM)逆变电路实验 8.全桥DC/DC变换电路实验

电力电子与电力传动学科

电力电子与电力传动学科硕士研究生培养方案 电力电子与电力传动学科硕士研究生培养方案 本学科是电气工程一级学科下的二级学科,是一个既涉及传统电气技术,又会聚了现代电力电子技术、信息与控制技术的工程应用学科。特点是综合了强电与弱电、电力与电子、硬件与软件、测量与控制等多学科的知识,实现对供配电系统、电力拖动系统及机电自动化设备与生产线的供电、驱动与控制及深层次的理论研究。 本学科与电子科学与技术、信息与通信工程、计算机科学与技术、仪器科学与技术、电路与系统等学科相互交叉,紧密联系,理论深入而又工程性强。近年来发展势头良好,社会对此方面的高级技术人才有很好的需求。 一、培养目标 本学科硕士学位培养过程中以电力电子、电机拖动及控制、供配电技术与测量传感及工程控制为核心,硕士学位获得者应掌握电力电子与电力传动科学的基础理论与技术,并掌握电子科学、计算机科学及信息科学的一般理论与技术,具有从事电力拖动与控制系统、供电系统和电子信息系统科学以及相关领域的研究开发及教学工作能力,有严谨求学的学风和高尚的职业道德,熟练掌握一门外语。 二、研究方向 01机电伺服驱动及控制技术 02电力传动控制与变流技术 03电力电子智能功率驱动及控制 04电力系统自动化 05电力电子与电力传动系统 06电能质量与控制 三、培养方式和学习年限 全日制硕士研究生学习年限一般为两年半至三年;在职硕士研究生学习年限一般为三年半至四年;提前完成硕士学业者,可提前半年毕业;若因客观原因不能按时完成学业者,可申请适当延长学习年限,延长时间不得超过半年。 四、学分与课程学习基本要求 总学分要求不低于26学分,其中课程总学分不低于24个学分,必修环节不低于2学分。课程学分要求中,学位课不低于15学分,其中所有公共基础课必修(皆为校统考课程),基础课至少选修一门。 学位课可以代替非学位课,但非学位课不能代替学位课。对于跨学科专业或同等学力录取的硕士生须补相应专业本科核心课程至少3门,但不计学分。 五、课程设置(详见课程设置表) 六、必修环节(参见第98页) 七、学位论文(参见第98页) ·1·

电力拖动自动控制系统-运动控制系统-课后题答案

第2章 三、思考题 2-1 直流电动机有哪几种调速方法?各有哪些特点? 答:调压调速,弱磁调速,转子回路串电阻调速,变频调速。特点略。 2-2 简述直流PWM 变换器电路的基本结构。 答:直流PWM 变换器基本结构如图,包括IGBT 和续流二极管。三相交流电经过整流滤波后送往直流PWM 变换器,通过改变直流PWM 变换器中IGBT 的控制脉冲占空比,来调节直流PWM 变换器输出电压大小,二极管起续流作用。 2-3 直流PWM 变换器输出电压的特征是什么? 答:脉动直流电压。 2=4 为什么直流PWM 变换器-电动机系统比V-M 系统能够获得更好的动态性能? 答:直流PWM 变换器和晶闸管整流装置均可看作是一阶惯性环节。其中直流PWM 变换器的时间常数Ts 等于其IGBT 控制脉冲周期(1/fc),而晶闸管整流装置的时间常数Ts 通常取其最大失控时间的一半(1/(2mf)。因fc 通常为kHz 级,而 f 通常为工频(50 或60Hz)为一周内),m 整流电压的脉波数,通常也不会超过20,故直流PWM 变换器时间常数通常比晶闸管整流装置时间常数更小,从而响应更快,动态性能更好。 2=5 在直流脉宽调速系统中,当电动机停止不动时,电枢两端是否还有电压?电路中是否还有电流?为什么? 答:电枢两端还有电压,因为在直流脉宽调速系统中,电动机电枢两端电压仅取决于直流PWM 变换器的输出。电枢回路中还有电流,因为电枢电压和电枢电阻的存在。 2-6 直流PWM 变换器主电路中反并联二极管有何作用?如果二极管断路会产生什么后果? 答:为电动机提供续流通道。若二极管断路则会使电动机在电枢电压瞬时值为零时产生过电压。 2-7 直流PWM 变换器的开关频率是否越高越好?为什么? 答:不是。因为若开关频率非常高,当给直流电动机供电时,有可能导致电枢电流还未上升至负载电流时,就已经开始下降了,从而导致平均电流总小于负载电流,电机无法运转。2=8 泵升电压是怎样产生的?对系统有何影响?如何抑制? 答:泵升电压是当电动机工作于回馈制动状态时,由于二极管整流器的单向导电性,使得电动机由动能转变为的电能不能通过整流装置反馈回交流电网,而只能向滤波电容充电,造成电容两端电压升高。泵升电压过大将导致电力电子开关器件被击穿。应合理选择滤波电容的容量,或采用泵升电压限制电路。 2-9 在晶闸管整流器-电动机开环调速系统中,为什么转速随负载增加而降低? 答:负载增加意味着负载转矩变大,电机减速,并且在减速过程中,反电动势减小,于是电枢电流增大,从而使电磁转矩增加,达到与负载转矩平衡,电机不再减速,保持稳定。故负载增加,稳态时,电机转速会较增加之前降低。 2-10 静差率和调速范围有何关系?静差率和机械特性硬度是一回事吗?举个例子。 答:D=(nN/△n)(s/(1-s)。静差率是用来衡量调速系统在负载变化下转速的稳定度的,)而机械特性硬度是用来衡量调速系统在负载变化下转速的降落的。 2-11 调速范围与静态速降和最小静差率之间有何关系?为什么必须同时提才有意义? 答:D=(nN/△n)(s/(1-s)。因为若只考虑减小最小静差率,则在一定静态速降下,允许) 允许的最小转差率又大得不能满足要求。因此必须同时提才有意义。 2=12 转速单闭环调速系统有哪些特点?改变给定电压能否改变电动机的转速?为什么?如

相关文档
最新文档