高中数学三角函数的诱导公式PPT课件
合集下载
人教高中数学必修一A版《诱导公式》三角函数说课教学课件复习(诱导公式二、三、四)
课件
课件
课件
1.如果 α,β 满足 α+β=π,那么下列式子中正确的个数是( )
①sin α=sin β;②sin α=-sin β;③cos α=-cos β;④cos α=cos β;
⑤tan α=-tan β.
A.1
B.2
C.3
D.4
栏目导航
C [因为 α+β=π,所以 sin α=sin(π-β)=sin β,
栏目导航
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
1.计算:(1)cosπ5+cos25π+cos35π+cos45π; (2)tan 10°+tan 170°+sin 1 866°-sin(-606°).
栏目导航
[解] (1)原式=cosπ5+cos45π+cos25π+cos35π
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
B.
3 3
C.- 3
D. 3
C [tan-43π=tan-2π+23π= 2π tan 3
=tanπ-π3=-tanπ3=- 3.]
栏目导航
3.已知 tan α=3,则 tan(π+α)
=________.
课件
课件
60°)=-sin 60°=- 23. 法二:sin 1 320°=sin(4×360°-120°)=sin(-120°)
三角函数的诱导公式 高中数学课件(人教A版2019必修第一册)
x
y
在题中横线上。
y
-x
sin(π-α)=
cos(π-α)=
tan(π-α)= -
x
3
tan
( 2)tan
4
4
y
公式四:
sin( ) sin
cos( ) cos
tan( ) tan -1
P′(-x,y)
π-a
α 与π-α关于y轴对称
+(°-°)(°+°)
(2)证明:左边=
(1)解:原式=
( +)( +)
(°+°)+(°+°)
=
=
=
-°°
|°-°|
-
=
=-tan °-°
如:sin(π+a),假设 a 是锐角,则π+a 是第三象
限角,所以sin(π+a)=-sina
思考2:如果α为锐角,你能得到什么结论?
a
-
2
cos( -)=sin
2
c
α
b
sin ( ) cos
2
思考3:若α为一个任意给定的角,那么 的终边与
角
2
的终边有什么关系?
2k ( k Z ), - , 的三角函数值,等于角
的同名函数值,前面加上一个把 看成锐角时
原函数值的符号。
即:
函数名不变,符号看象限!
“函数名不变”是指等号两边的三角函数同名;
“符号看象限”是指等号右边是正号还是负号,可
以通过先假设a是锐角,然后由等号左边的式子中的
y
在题中横线上。
y
-x
sin(π-α)=
cos(π-α)=
tan(π-α)= -
x
3
tan
( 2)tan
4
4
y
公式四:
sin( ) sin
cos( ) cos
tan( ) tan -1
P′(-x,y)
π-a
α 与π-α关于y轴对称
+(°-°)(°+°)
(2)证明:左边=
(1)解:原式=
( +)( +)
(°+°)+(°+°)
=
=
=
-°°
|°-°|
-
=
=-tan °-°
如:sin(π+a),假设 a 是锐角,则π+a 是第三象
限角,所以sin(π+a)=-sina
思考2:如果α为锐角,你能得到什么结论?
a
-
2
cos( -)=sin
2
c
α
b
sin ( ) cos
2
思考3:若α为一个任意给定的角,那么 的终边与
角
2
的终边有什么关系?
2k ( k Z ), - , 的三角函数值,等于角
的同名函数值,前面加上一个把 看成锐角时
原函数值的符号。
即:
函数名不变,符号看象限!
“函数名不变”是指等号两边的三角函数同名;
“符号看象限”是指等号右边是正号还是负号,可
以通过先假设a是锐角,然后由等号左边的式子中的
高中数学三角函数的诱导公式PPT课件
谢谢聆听
02
弧度制
以弧长与半径之比作为角的度量单位,一周角等于2π弧 度。
03
角度与弧度的转换公式
1度=π/180弧度,1弧度=180/π度。
三角函数定义域与值域
正弦函数(sin)
定义域为全体实数,值域为[-1,1]。
余弦函数(cos)
定义域为全体实数,值域为[-1,1]。
正切函数(tan)
定义域为{x|x≠kπ+π/2,k∈Z},值域为全体实数。
电磁波
三角函数在电磁学中描述电场和磁场的振动,以 及电磁波(如光波、无线电波)的传播。
工程技术中的测量和计算问题
1 2 3
角度测量
三角函数在测量学中用于计算角度、距离和高程 等问题,如使用全站仪进行地形测量。
建筑设计
在建筑设计中,三角函数用于计算建筑物的角度 、高度和间距等参数,确保建筑结构的稳定性和 安全性。
错误产生原因分析
基础知识不扎实
学生对三角函数的基本概念和性 质理解不深入,导致在记忆和使
用诱导公式时出错。
思维方式僵化
学生可能过于依赖记忆而非理解, 导致在面对灵活多变的题目时无法 灵活运用诱导公式。
训练不足
学生可能缺乏足够的练习,无法熟 练掌握诱导公式的使用方法和技巧 。
针对性纠正措施建议
A
强化基础知识
04 学生易错点剖析及纠正措施
常见错误类型总结
公式记忆错误
学生常常将三角函数的诱 导公式混淆,例如将正弦 、余弦、正切的诱导公式 记混。
角度转换错误
在解题过程中,学生可能 会将角度制与弧度制混淆 ,或者在角度加减时出错 。
符号判断错误
在使用诱导公式时,学生 可能会忽略符号的判断, 导致最终结果错误。
高中数学三角函数的诱导公式微课PPT课件
02
诱导公式推导与理解
周期性及对称性质
周期性
三角函数具有周期性,即函数值 在一定周期内重复出现。正弦函 数和余弦函数的周期为$2pi$,正 切函数的周期为$pi$。
对称性质
正弦函数和余弦函数具有轴对称 和中心对称性。正弦函数关于原 点对称,余弦函数关于$y$轴对称 。正切函数具有周期性对称。
奇偶性质
本题主要考察三角方程与 不等式的求解方法。通过 诱导公式和同角三角函数 关系式,我们可以将方程 转化为更简单的形式进行 求解。
求不等式 sin^2x - 3sinx + 2 < 0 的解集。
本题主要考察三角函数不 等式的求解方法。通过诱 导公式和因式分解等方法 ,我们可以将不等式转化 为更简单的形式进行求解 。
弧度。
角度与弧度的转换公式
03
1度=π/180弧度,1弧度=180/π度。
任意角三角函数定义
正弦函数sinx
正切函数tanx
在直角三角形中,任意锐角的对边与 斜边的比值。
在直角三角形中,任意锐角的对边与 邻边的比值。
余弦函数cosx
在直角三角形中,任意锐角的邻边与 斜边的比值。
三角函数性质与图像
05
课堂小结与拓展延伸
总结本节课所学知识点和技能点
掌握了三角函数的基本概念和性质,包括正弦、余弦、正切等函数的定义域、值域 、周期性、奇偶性等;
学习了三角函数的诱导公式,包括和差化积、积化和差、倍角公式等,能够灵活运 用这些公式进行三角函数的化简和计算;
通过例题和练习,提高了分析问题和解决问题的能力,培养了数学思维和逻辑推理 能力。
强调诱导公式在解题中的重要性
诱导公式是三角函数中的重要内 容,它可以将复杂的三角函数式 化简为简单的形式,从而方便求
高中数学必修四三角函数PPT课件
01
02
03
04
第一象限
正弦、余弦、正切均为正。
第二象限
正弦为正、余弦为负、正切为 负。
第三象限
正弦、余弦均为负、正切为正。
第四象限
正弦为负、余弦为正、正切为 负。
02 三角函数诱导公 式与变换
诱导公式及其应用
诱导公式的基本形式
01
通过角度的加减、倍角、半角等变换,得到三角函数的等价表
达式。
诱导公式的推导
02
正切函数的周期为$pi$,即$tan(x + kpi) = tan x$,其中$k in Z$。
三角函数的奇偶性
正弦函数是奇函数, 即$sin(-x) = -sin x$。
正切函数是奇函数, 即$tan(-x) = -tan x$。
余弦函数是偶函数, 即$cos(-x) = cos x$。
三角函数在各象限的符号
三角恒等变换
和差化积、积化和差等公式及应用
三角函数的图像与性质
周期性、奇偶性、单调性等
解三角形
正弦定理、余弦定理及应用
常见题型解析及技巧点拨
01
三角函数求值问题:利 用同角关系式、诱导公 式等求解
02
三角函数的图像与性质 应用:判断单调性、周 期性等
03
三角恒等变换的应用: 证明等式、化简表达式 等
余弦定理及其应用
余弦定理的公式表达 在任意三角形ABC中,有$a^2 = b^2 + c^2 - 2bccos A$,以及相应的其他两个式子。
余弦定理的推导 通过向量的数量积和投影进行推导。
余弦定理的应用 用于求解三角形的边和角,尤其在已知三边或两边及夹角 的情况下。同时,也可用于判断三角形的形状(锐角、直 角或钝角)。
诱导公式(2) PPT课件(高一数学人教A版 必修一册)
2
高中数学
y
P5 (y1,x1)
P6 (-y1,x1)
+
2
O
P1 (x1,y1)
x
公式五:
sin cos
2
cos sin
2
公式六:
sin cos ,
2
cos sin .
2
这组公式的特点是:等号左右的函数名发生改变,
即等号右侧变为角的余名三角函数值;公式右侧
的符号是把当成锐角时,所求三角函数值的符号.
高中数学
例1 证明:
3
(1)sin = cos ;
2
3
(2)cos = sin .
2
证明:
高中数学
3
,其中 = − .
小结:1.请你选择下面一个或几个关键词谈一谈研究的
过程中的体会:知识、方法、思想、收获、喜悦……
2.公式五和六的作用是什么?
知识上,又学会了两组诱导公式;
思想方法层面:诱导公式体现了由未知转化为已知的
化归思想;诱导公式所揭示的是终边
具有某种对称关系的两个角三角函数
之间的关系.主要体现了化归和数形结
y
x5= y1,y5= x1
P5 (x5,y5)
P1 (x1,y1)
O
高中数学
x
问题3:以OP1为终边的角与以其对称边OP5为
终边的角的三角函数值有什么关系?
y
x5= y1,y5= x1
高中数学
y
P5 (y1,x1)
P6 (-y1,x1)
+
2
O
P1 (x1,y1)
x
公式五:
sin cos
2
cos sin
2
公式六:
sin cos ,
2
cos sin .
2
这组公式的特点是:等号左右的函数名发生改变,
即等号右侧变为角的余名三角函数值;公式右侧
的符号是把当成锐角时,所求三角函数值的符号.
高中数学
例1 证明:
3
(1)sin = cos ;
2
3
(2)cos = sin .
2
证明:
高中数学
3
,其中 = − .
小结:1.请你选择下面一个或几个关键词谈一谈研究的
过程中的体会:知识、方法、思想、收获、喜悦……
2.公式五和六的作用是什么?
知识上,又学会了两组诱导公式;
思想方法层面:诱导公式体现了由未知转化为已知的
化归思想;诱导公式所揭示的是终边
具有某种对称关系的两个角三角函数
之间的关系.主要体现了化归和数形结
y
x5= y1,y5= x1
P5 (x5,y5)
P1 (x1,y1)
O
高中数学
x
问题3:以OP1为终边的角与以其对称边OP5为
终边的角的三角函数值有什么关系?
y
x5= y1,y5= x1
5.3诱导公式 课件ppt
; 关于 轴对称:
; 关于原点对称:
诱导公式二~四 【拓展】进一步,通过作出P点关于 轴的对称点和关于
轴的对称点,我们可以得出如下结论: 【公式三】
【公式四】
诱导公式二~四
【总结】对于公式一~四的概括: 【1】α+2kπ,-α,(π±α)的三角函数值,在绝对值上 等于α的同名函数值,正负取决于把α看成锐角时 原函数值的符号. 即“函数名不变,符号看象限.” 【2】对于正弦与余弦的诱导公式,α可以为任意角;对 于正切的诱导公式,α的终边不能落在y轴上,即
例题讲解: 例1 求下列三角函数值:
(1)cos 225
(2) sin 8
3
(3)sin
16
3
例 2 化简tanco-sα1-801°8+0°αcsoinsα-+138600°+° α.
(4) tan 20400
解析:tan(-α-180°)=tan[-(180°+α)]=-tan(180°+α)=-tan α,
课时作业: 1、教材习题:
P194: 1、2、3、4、5、6、7、8
2、教辅书中对应课时习题
“ THANKS ”
求证:scions52απ-+π2α·sin(α-2π)·cos(2π-α)=sin2α.
解析:证明:左边=csoinsπ2π2+-αα·[-sin(2π-α)]cos α=csoins αα[-(-
sin
α)]cos
α=csoins
α α·sin
α·cos
α=sin2α=右边,故原式成立.
等式左边复杂、应从左边入手利用诱导公式化简证明.
诱导公式二~四 【问题1】如何用公式二和公式三推导出公式四?
【答】
【问题2】关于“函数名不变,符号看象限”的理解. 【答】①“函数名不变”是指等式两边的三角函数同名; ②“符号看象限”是指把原角看成锐角时新角在原函数下的符号,由 新角所在象限确定符号.如sin(α+π),若把α看成锐角,则π+α在 第三象限,所以取负值,故sin(α+π)=-sinα
高中数学三角函数诱导公式ppt课件
单调性
正弦函数和余弦函数在 $[0, pi]$和$[0, 2pi]$上单 调性不同;正切函数在$(frac{pi}{2}, frac{pi}{2})$ 上单调递增。
三角函数值域和极值点
值域
正弦函数和余弦函数的值域均为$[-1, 1]$;正切函数的值域 为$R$。
极值点
正弦函数在$frac{pi}{2} + kpi(k in Z)$处取得最大值1,在 $frac{3pi}{2} + kpi(k in Z)$处取得最小值-1;余弦函数在 $2kpi(k in Z)$处取得最大值1,在$pi + kpi(k in Z)$处取得 最小值-1。
诱导公式
通过加减周期的整数倍,将任意角度 的三角函数转化为基本角度的三角函 数,实现角度的标准化。
典型例题解析
例题1
求sin(150°)的值。
01
解析
02 利用诱导公式,将150°转化为
30°,即 sin(150°)=sin(30°)=1/2。
例题2
求cos(-420°)的值。
03
解析
利用周期性质,将-420°转化 为60°,即cos(420°)=cos(60°)=1/2。
通过同角关系式证明 三角恒等式。
利用同角关系式化简 复杂的三角函数表达 式。
典型例题解析
例题1
已知sinα = 3/5,求cosα ,tanα的值。
例题2
化简表达式(sinα
+
cosα)/(sinα - cosα)。
例题3
证明恒等式(1 + sinα + cosα)/(1 + sinα - cosα) = (1 + cosα)/sinα。
人教版高中数学新教材必修第一册课件:5.3 三角函数的诱导公式(共19张PPT)
A. -1 B. 0
C. 1
D. 2
深化练习
2.思考题 若 f (n)
cos(n
)
,则
4
2
f (1) f (2) f (3) f (4) f (2019) __2_。
3.若f (n) cos( n )则
24
f (1) f (2) f (3) f (4)
2
f (2019) __2。
课堂小结
1、体现了未知到已知、复杂到简单的化归思想。
2、由例1、2,你对公式一到四的作用有什么进一 步的认识?你能自己归纳一下把任意角的三角函数 转化为锐角三角函数的步骤吗?
3、记忆:函数名不变,符号看象限,象限怎么判,把α锐角看
tan( ) tan
注: k 2π(k Z), , π 的三角函数值, 等于的同名三角函数值,前面加上一个把
看做锐角时原函数值的符号
诱导公式的记忆口诀 : 函数名不变,符号看象限,象限怎么判,把α锐角看
复习引入
1.设 0 90 ,对于任意一个 0到 360 的角 ,
以下四种情形中有且仅有一种成立.
,
180 180
, ,
360 ,
当 0,90 当 90,180 当 180,270 当 270,360
学习新知
公式一~四的作用 公式一的作用是:把不在0~2π范围内的角的 三角函数化为0~2π范围内的角的三角函数; 公式二的作用是:把第三象限角的三角函数化 为第一象限角的三角函数; 公式三的作用是:把负角的三角函数化为正角 的三角函数; 公式四的作用是:把第二象限角的三角函数化 为第一象限角的三角函数. 因此,运用公式一~四可以将任一角的三角函 数转化为锐角的三角函数.
典型例题
高中数学课件- 《三角函数的诱导公式1》课件 (2)
将所求各角用 α+87π 表示,然后用诱导公式和三角函数关系式
求解.
[解析] 左边=ssiinn[[π4π+-87πα++α87π]+]-3ccooss[[2απ++87απ+-873ππ]] =--ssiinnαα++878π7π--3ccoossαα++8877ππ
=ttaannαπ++8787ππ++13 =mm++31=右边. ∴等式成立.
9
因为
sin( ) sin2 cos( ) cos2 tan( ) tan2
所以 sin(2 ) sin cos(2 ) cos tan(2 ) tan
诱导公式的变形
11
二、探 究
公式一:
公式三:
sin( ) sin cos( ) cos tan( ) tan
的原则. (2)证明左边=A,右边=A,则左边=右边,这里的 A 起着
桥梁的作用. (3)通过作差或作商证明,即左边-右边=0 或左右边边=1.
设
tan(α
+
8 7
π)
=
m.
求
证
:
ssiinn172507ππ+-αα+-3ccoossαα+-217723ππ=mm+ +31.
[分析] 本题主要考查诱导公式,从已知角的关系入手,
[解析] 当 k 为偶数时,不妨设 k=2m(m∈Z), 则原式=ssiinn[22mmπ+-1απc+osα[]2cmos-21mππ- +αα] =sinsin-πα+coαscπo+sαα =--sinsαinα-cocsoαsα=-1;
当 k 为奇数时,可设 k=2m+1(m∈Z), 同理,可得原式=-1. 故对任意整数 k 都有原式=-1.
若cos(π-α)=-13,32π<α<2π.则sin(5π+α)的值是多少?
高中数学《诱导公式》课件
sin
α=y,cos
α=x,当x≠0时,tan
α=
y x
.
(1)如图5.2-8(1),作点P(x,y)关于x轴的对称点P1(x,-y),则∠xOP1=-α.
由三角函数的定义可得
sin(-α)=-y=-sin α,
cos(-α)=x=cos α,
当x≠0时,tan(-α)=
y x
y x
tan.
(1) 图5.2-8
2 诱导公式.
诱导公式揭示了终边具 有某种对称关系的两个角三 角函数之间的关系.
一 诱导公式
例
12
化简:
(1)
sin
3
2
;
(2)
cos
3
2
.
解
(1)
sin
3
2
sin
2
sin
2
cos
;
(2)
cos
3
2
cos
2
cos
2
sin
.
一 诱导公式
例
13
化简:cos cos
探究α与π -α之间的函数 关系,我们还可以从这两个角 的终边关于y轴对称来推导,试 试看.
一 诱导公式
为了使用方便,我们将上述探究得到的公式总结如下:
公式二 sin(-α)=-sin α, cos(-α)=cos α, tan(-α)=-tan α.
公式三 sin(π+α)=-sin α, cos(π+α)=-cos α, tan(π+α)=tan α.
利用公式五,可以实现正弦函数与余弦函数的相互转化.
一 诱导公式
当角α的终边不在坐标轴上时,还可以得出以下公式:
公式六
三角函数的诱导公式课件-高一上学期数学人教A版(2019)必修第一册
例题讲练
例 2(1)已知 sin 2
5
sin(5 )
5
,求
tan(
)
2 cos( 5
)
的值.
2
例题讲练
(2)(已2知)s已in知(sin( ) 1) , 1则,si则n(sin(37 37) 的 )值的为值(为( ) )
12 123 3
12 12
A. 1 3
A. 1 3
B.
B1. 3
1 3
C.C.2 3
2
2
2
2
A.0 个
B.1 个
C.2 个
D.3 个
例题讲练
(2)(在2)A在BCA中B,C若中s,in若( Asin(BACB) Csi)n( Asin(BACB) ,C则) ,A则BCABC
是___是_______________________________三__角__形三.角形.
cccooosss(((
) ))
_______, ______________,,
tttaaannn(((
) ))
_______; ______________;;
(6) ((66)) (7) ((77))
ssssssiiiiiinnnnnn((((((333222222)))
)))____________________________________,,,,,,ccccccoooooosss(((sss(((222333222
tan(2k记 忆)方 t法an:. 三角函数的周期T 2 ,所以 2k 可以直接划掉
一.三角函数的诱导公式
(2)( (角22) ) 角 角与与 与的终的 的边终 终关于边 边_关 关__于 于________________对____称____,对 对称 称, ,
高中数学课件三角函数ppt课件完整版
2024/1/26
单调性
在各象限内,正弦、余弦 函数的单调性及其变化规 律。
最值问题
利用三角函数的性质求最 值,如振幅、周期等参导公式与恒等 式
REPORTING
2024/1/26
7
诱导公式及其应用
01
诱导公式的基本形式
通过角度的加减、倍角、半角等关系,将任意角的三角函数值转化为基
8
恒等式及其证明方法
2024/1/26
恒等式的基本形式
两个解析式之间的一种等价关系,即对于某个变量或一组变量的取值范围内,无论这些变 量取何值,等式都成立。
恒等式的证明方法
通常采用代数法、几何法或三角法等方法进行证明。其中,代数法是通过代数运算和变换 来证明恒等式;几何法是通过几何图形的性质和关系来证明恒等式;三角法是通过三角函 数的性质和关系来证明恒等式。
化简为简单的形式。
12
三角函数的乘除运算规则
乘积化和差公式
通过乘积化和差公式,可以将两 个三角函数的乘积转化为和差的
形式,从而简化运算。
商的化简
利用同角三角函数的基本关系, 可以将三角函数的商转化为简单
的三角函数运算。
倍角公式
通过倍角公式,可以将三角函数 的乘方运算转化为简单的三角函
数运算。
2024/1/26
建立三角函数与数列、概率统计相关 的数学模型
结合计算机编程和数学软件,实现模 型的数值模拟和可视化
2024/1/26
利用数学分析、高等代数等方法求解 模型
22
PART 06
总结回顾与拓展延伸
REPORTING
2024/1/26
23
本章节知识点总结回顾
三角函数图像
正弦、余弦、正切函数的图像 及其周期性、奇偶性等性质。
单调性
在各象限内,正弦、余弦 函数的单调性及其变化规 律。
最值问题
利用三角函数的性质求最 值,如振幅、周期等参导公式与恒等 式
REPORTING
2024/1/26
7
诱导公式及其应用
01
诱导公式的基本形式
通过角度的加减、倍角、半角等关系,将任意角的三角函数值转化为基
8
恒等式及其证明方法
2024/1/26
恒等式的基本形式
两个解析式之间的一种等价关系,即对于某个变量或一组变量的取值范围内,无论这些变 量取何值,等式都成立。
恒等式的证明方法
通常采用代数法、几何法或三角法等方法进行证明。其中,代数法是通过代数运算和变换 来证明恒等式;几何法是通过几何图形的性质和关系来证明恒等式;三角法是通过三角函 数的性质和关系来证明恒等式。
化简为简单的形式。
12
三角函数的乘除运算规则
乘积化和差公式
通过乘积化和差公式,可以将两 个三角函数的乘积转化为和差的
形式,从而简化运算。
商的化简
利用同角三角函数的基本关系, 可以将三角函数的商转化为简单
的三角函数运算。
倍角公式
通过倍角公式,可以将三角函数 的乘方运算转化为简单的三角函
数运算。
2024/1/26
建立三角函数与数列、概率统计相关 的数学模型
结合计算机编程和数学软件,实现模 型的数值模拟和可视化
2024/1/26
利用数学分析、高等代数等方法求解 模型
22
PART 06
总结回顾与拓展延伸
REPORTING
2024/1/26
23
本章节知识点总结回顾
三角函数图像
正弦、余弦、正切函数的图像 及其周期性、奇偶性等性质。
高中数学《三角函数的诱导公式》公开课优秀课件-2024鲜版
02
基础知识回顾
2024/3/28
7
三角函数定义及性质
2024/3/28
三角函数的定义
正弦、余弦、正切等函数在直角三 角形中的定义及在各象限的符号规 律。
三角函数的性质
周期性、奇偶性、单调性、最值等 性质。
8
角度制与弧度制转换
角度制与弧度制的定义
角度制以度为单位,弧度制以弧长为单位。
角度制与弧度制的转换公式
16
利用诱导公式化简问题
例题3
化简$tan(16pi + frac{pi}{4})$。
分析
利用诱导公式,将$16pi + frac{pi}{4}$表示为$4pi + frac{pi}{4}$,然后应用$tan(pi + alpha) = tan alpha$和 特殊角三角函数值求解。
解答
$tan(16pi + frac{pi}{4}) = tan(4pi + frac{pi}{4}) = tan frac{pi}{4} = 1$。 2024/3/28
18
05
学生自主练习与反馈
2024/3/28
19
基础练习题选讲
题目一
利用三角函数的诱导公式,化简 表达式 $sin(180^circ - alpha)$。
题目二
求 $cos(-alpha)$ 的表达式,并 指出其与 $cos alpha$ 的关系。
题目三
利用诱导公式,证明 $tan(360^circ - alpha) = -tan
2024/3/28
03
三角函数的求值与应用
通过实例演示如何利用诱导公式求解三角函数的值,以及三角函数在几
何、物理等领域的应用。
人教版高中数学3三角函数诱导公式(一)(共18张PPT)教育课件
(公式二)
0~2π
(公式四)
0~π
锐角
课后活动
• P29 2 ,3 • 完成P15“新知导学”的预习
凡 事都 是多 棱镜 ,不同 的角 度会 看到 不同 的结 果。若 能把 一些 事看 淡了 ,就会 有个 好心 境, 若把 很多 事 看开了 ,就 会有 个好 心情。 让聚 散离 合犹 如月 缺月 圆那样 寻常 ,
《
《
我
是
算
命
先
生
》
读
同学们加油!
公式四
s in ( ) s in c o s ( ) c o s ta n ( ) ta n
注意
• 1.公式中
可以是任意角。
• 2.注意角度制下的公式。
理论迁移
例1 求下列各三角函数的值:
(1)cos225
(2)sin 11
3
(3)sin(-16 )
3
(4)cos(-2040 )
解题一般步骤
(公式三)
(公式一)
(公式二)
负角
正角 k 2 0~2π
(公式四)
0~π
锐角
例题
例2 化简:sci n o 1 s8 1 0 8 c s 0io n1 s38 6 00 .
1.诱导公式
小结
函数名不变,符号看象限
2.做题规律
(公式三)
负角
(公式一)
正角 k 2
钝角→锐角
公式一
诱导公式 公式二
sin( k 2) sin cos( k 2) cos tan( k 2) tan
sin( ) sin cos( ) cos tan( ) tan
公式三
高中数学三角函数的诱导公式课件ppt
奇变偶不变
符号看象限
注意: 看成锐角;原函数值的符号
22
例题与练习
例3 、证明:i( n3(21π ) αs)c o s α; ( 2 ) c3o2π s(α)s i n α.
23
例题与练习
1 求下列三角函数值
1sin12000
(1) 3
2cos47/6
2
(2) 3 2
2 求三角式sin12000·cos12900+cos10200· sin10500+tan9450 2
3 计算 cos/5+ cos2/5+
cos3/5+ cos4/5
0
24
例题与练习
练习1 已知sin/4+=1/2;则sin3/4的 值是 1/2
2 已知cos 750+=1/3; 求cos1050+cos2850
0
25
例题与练习
1 已知角的终边上的一点P3a;4a a<0 则cos5400的值是 3/5
8
r 1
公式三
siny c o s xta n y
x
sin()y
cos()x
tan()yy
xx
公式三
sin ( ) sin c o s( )c o s ta n ( ) ta n
9
探究3
sin( ) sin cos( ) cos tan( ) tan
sin() sin cos() cos tan () tan
用公式 二或四
任意正角的 三角函数
用公式一
0 ~ 2 的
三角函数
上述过程体现了由未知到已知的化归思想
14
四 例题分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)正切tanα= y x
O
x
问题探究
1.终边相同的角的同一三角函数值有什么关系? 相等
2.角 -α与α的终边 有何位置关系? 终边关于x轴对称
3.角 -α与α的终边 有何位置关系?
终边关于y轴对称
4.角 +α与α的终边 有何位置关系?
终边关于原点对称
终边相同的角的同一三角函数值相等
sin( 2k ) sin (k Z)
x 轴对称点 P3 x, y ,关于 y 轴对称点 P2 x,y
探究1
形如 的三角函数值与 的三角函数值之
间的关系
r 1
sin y cos x tan y
x
sin( ) y
cos( ) x
tan( ) y y
由上面两组公式的推导方法,你能同理推导出
角 与 的三角函数值之间的关系吗?
r 1
sin y
公式四
cos x tan y
x
sin( ) y
cos( ) x
tan( ) y y
x x
公式四
sin( ) sin
(2)已知cos( + )= 3 ,
6
3
求cos( 5 - )的值.
6
探索研究
已知任意角 的终边与单位圆相交于点Px,y ,
请同学们思考回答点 P关于直线 y x 对称的
点的坐标是什么?
y 1 P′(y,x)
公 式 五:
-1
P(x,y) 1
s
in
(π 2
α
) cosα
,
等于 的同名三角函数值前面加上把 看作
锐角时原函数值的符号。
简记为“函数名不变,符号看象限”
小结
1、通过例题,你能说说诱导公式的作用以及化任 意角的三角函数为锐角三角函数的一般思路吗?
任意负角的 用公式 三角函数 三或一
锐角的三 角函数
用公式 二或四
任意正角的 三角函数
用公式一
0 ~ 2 的
公式四:
sin() sin cos() cos tan() tan
sin( ) sin cos( ) cos tan( ) tan
三.发现规律:
公式一、 的三角函数值,
公 式 五:
公 式七 :
cos( 2k ) cos(k Z)
(公式一)
tan( 2k ) tan (k Z)
二、思考:
已知任意角 的终边与单位圆相交于点Px,y ,
请同学们思考回答点 P关于原点、x 轴、y 轴对称
的三个点的坐标是什么?
点Px,y关于原点对称点 P1 x, y ,关于
cos( ) cos
tan( ) tan
公式一:
sin( k 2) sin cos( k 2) cos tan( k 2) tan
(k Z)
公式三:
公式二: sin( ) sin cos( ) cos tan( ) tan
tan( ) y y
xx
公式三
sin( ) sin
cos( ) cos tan( ) tan
探究3
sin( ) sin cos( ) cos tan( ) tan
sin() sin cos() cos tan() tan
三角函数
上述过程体现了由未知到已知的化归思想。
四.例题分析
例1.求下列三角函数值
(1) cos225 cos(180 45) cos45 2
2
(2) sin 11
3
sin(4 ) sin
3
3
3 2
(3)sin( 16 ) sin16 sin(5
x x
公式二
sin( ) sin cos( ) cos tan( ) tan
探究2
我们再来研究角 与 的三角
函数值之间的关系
r 1
公式三
sin y cos x tan y
x
sin( ) y
cos( ) x
0 -1
x
c
o
s (π 2
α
) sinα
.
公 式六:
sin
(π 2
α
) cosα
π 2
α
的正弦(余弦)函数
, 值,分别等于α 的余弦(正弦)
函数值,前面加上一个把α 看
c
o s (π 2
α
) sinα
.成锐角时原函数值的符号。
总结:
1.公式五,六口诀: 函数名改变,符号看象限;
11
33 3
33
sin 3 3 3 3 3
22
2
22
cos 1 1 1 1 1
22
2 22
cos(180 0 ) sin( 360 0 ) 例2 化简:sin( 180 0 ) cos(180 0 )
练习反馈
(1)已知:tan 3,求 2cos( ) 3sin( ) 的值. 4cos() sin(2 )
3
3
) 3
(sin ) 3
3 2
(4)cos(2040) cos2040 cos(5360 240)
cos240 cos(180 60) cos60 1
2
SUCCESS
THANK YOU
2019/8/21
练习反馈
填写下表
2 4 5 7
2019/8/21
一切立体图形中最美的是球形, 一切平面图形中最美的是圆形。
——— 毕达哥拉斯学派
圆是第一个最简单、最完美的图形。
—— 布龙克尔
一.复习回顾
任意角三角函数的定义 设α是一个任意角,它的终边与单位圆交于点 P(x,y),那么:
(1)正弦sinα= y
y P(x,y)
(2)余弦cosα= x