高中数学三角函数的诱导公式PPT课件
合集下载
人教高中数学必修一A版《诱导公式》三角函数说课教学课件复习(诱导公式二、三、四)
![人教高中数学必修一A版《诱导公式》三角函数说课教学课件复习(诱导公式二、三、四)](https://img.taocdn.com/s3/m/60aade66b42acfc789eb172ded630b1c59ee9b85.png)
课件
课件
课件
1.如果 α,β 满足 α+β=π,那么下列式子中正确的个数是( )
①sin α=sin β;②sin α=-sin β;③cos α=-cos β;④cos α=cos β;
⑤tan α=-tan β.
A.1
B.2
C.3
D.4
栏目导航
C [因为 α+β=π,所以 sin α=sin(π-β)=sin β,
栏目导航
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
1.计算:(1)cosπ5+cos25π+cos35π+cos45π; (2)tan 10°+tan 170°+sin 1 866°-sin(-606°).
栏目导航
[解] (1)原式=cosπ5+cos45π+cos25π+cos35π
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
B.
3 3
C.- 3
D. 3
C [tan-43π=tan-2π+23π= 2π tan 3
=tanπ-π3=-tanπ3=- 3.]
栏目导航
3.已知 tan α=3,则 tan(π+α)
=________.
课件
课件
60°)=-sin 60°=- 23. 法二:sin 1 320°=sin(4×360°-120°)=sin(-120°)
三角函数的诱导公式 高中数学课件(人教A版2019必修第一册)
![三角函数的诱导公式 高中数学课件(人教A版2019必修第一册)](https://img.taocdn.com/s3/m/e6672a3a54270722192e453610661ed9ad5155de.png)
x
y
在题中横线上。
y
-x
sin(π-α)=
cos(π-α)=
tan(π-α)= -
x
3
tan
( 2)tan
4
4
y
公式四:
sin( ) sin
cos( ) cos
tan( ) tan -1
P′(-x,y)
π-a
α 与π-α关于y轴对称
+(°-°)(°+°)
(2)证明:左边=
(1)解:原式=
( +)( +)
(°+°)+(°+°)
=
=
=
-°°
|°-°|
-
=
=-tan °-°
如:sin(π+a),假设 a 是锐角,则π+a 是第三象
限角,所以sin(π+a)=-sina
思考2:如果α为锐角,你能得到什么结论?
a
-
2
cos( -)=sin
2
c
α
b
sin ( ) cos
2
思考3:若α为一个任意给定的角,那么 的终边与
角
2
的终边有什么关系?
2k ( k Z ), - , 的三角函数值,等于角
的同名函数值,前面加上一个把 看成锐角时
原函数值的符号。
即:
函数名不变,符号看象限!
“函数名不变”是指等号两边的三角函数同名;
“符号看象限”是指等号右边是正号还是负号,可
以通过先假设a是锐角,然后由等号左边的式子中的
y
在题中横线上。
y
-x
sin(π-α)=
cos(π-α)=
tan(π-α)= -
x
3
tan
( 2)tan
4
4
y
公式四:
sin( ) sin
cos( ) cos
tan( ) tan -1
P′(-x,y)
π-a
α 与π-α关于y轴对称
+(°-°)(°+°)
(2)证明:左边=
(1)解:原式=
( +)( +)
(°+°)+(°+°)
=
=
=
-°°
|°-°|
-
=
=-tan °-°
如:sin(π+a),假设 a 是锐角,则π+a 是第三象
限角,所以sin(π+a)=-sina
思考2:如果α为锐角,你能得到什么结论?
a
-
2
cos( -)=sin
2
c
α
b
sin ( ) cos
2
思考3:若α为一个任意给定的角,那么 的终边与
角
2
的终边有什么关系?
2k ( k Z ), - , 的三角函数值,等于角
的同名函数值,前面加上一个把 看成锐角时
原函数值的符号。
即:
函数名不变,符号看象限!
“函数名不变”是指等号两边的三角函数同名;
“符号看象限”是指等号右边是正号还是负号,可
以通过先假设a是锐角,然后由等号左边的式子中的
高中数学三角函数的诱导公式PPT课件
![高中数学三角函数的诱导公式PPT课件](https://img.taocdn.com/s3/m/158a4c90cf2f0066f5335a8102d276a200296081.png)
谢谢聆听
02
弧度制
以弧长与半径之比作为角的度量单位,一周角等于2π弧 度。
03
角度与弧度的转换公式
1度=π/180弧度,1弧度=180/π度。
三角函数定义域与值域
正弦函数(sin)
定义域为全体实数,值域为[-1,1]。
余弦函数(cos)
定义域为全体实数,值域为[-1,1]。
正切函数(tan)
定义域为{x|x≠kπ+π/2,k∈Z},值域为全体实数。
电磁波
三角函数在电磁学中描述电场和磁场的振动,以 及电磁波(如光波、无线电波)的传播。
工程技术中的测量和计算问题
1 2 3
角度测量
三角函数在测量学中用于计算角度、距离和高程 等问题,如使用全站仪进行地形测量。
建筑设计
在建筑设计中,三角函数用于计算建筑物的角度 、高度和间距等参数,确保建筑结构的稳定性和 安全性。
错误产生原因分析
基础知识不扎实
学生对三角函数的基本概念和性 质理解不深入,导致在记忆和使
用诱导公式时出错。
思维方式僵化
学生可能过于依赖记忆而非理解, 导致在面对灵活多变的题目时无法 灵活运用诱导公式。
训练不足
学生可能缺乏足够的练习,无法熟 练掌握诱导公式的使用方法和技巧 。
针对性纠正措施建议
A
强化基础知识
04 学生易错点剖析及纠正措施
常见错误类型总结
公式记忆错误
学生常常将三角函数的诱 导公式混淆,例如将正弦 、余弦、正切的诱导公式 记混。
角度转换错误
在解题过程中,学生可能 会将角度制与弧度制混淆 ,或者在角度加减时出错 。
符号判断错误
在使用诱导公式时,学生 可能会忽略符号的判断, 导致最终结果错误。
高中数学三角函数的诱导公式微课PPT课件
![高中数学三角函数的诱导公式微课PPT课件](https://img.taocdn.com/s3/m/d34a0f6b492fb4daa58da0116c175f0e7cd11909.png)
02
诱导公式推导与理解
周期性及对称性质
周期性
三角函数具有周期性,即函数值 在一定周期内重复出现。正弦函 数和余弦函数的周期为$2pi$,正 切函数的周期为$pi$。
对称性质
正弦函数和余弦函数具有轴对称 和中心对称性。正弦函数关于原 点对称,余弦函数关于$y$轴对称 。正切函数具有周期性对称。
奇偶性质
本题主要考察三角方程与 不等式的求解方法。通过 诱导公式和同角三角函数 关系式,我们可以将方程 转化为更简单的形式进行 求解。
求不等式 sin^2x - 3sinx + 2 < 0 的解集。
本题主要考察三角函数不 等式的求解方法。通过诱 导公式和因式分解等方法 ,我们可以将不等式转化 为更简单的形式进行求解 。
弧度。
角度与弧度的转换公式
03
1度=π/180弧度,1弧度=180/π度。
任意角三角函数定义
正弦函数sinx
正切函数tanx
在直角三角形中,任意锐角的对边与 斜边的比值。
在直角三角形中,任意锐角的对边与 邻边的比值。
余弦函数cosx
在直角三角形中,任意锐角的邻边与 斜边的比值。
三角函数性质与图像
05
课堂小结与拓展延伸
总结本节课所学知识点和技能点
掌握了三角函数的基本概念和性质,包括正弦、余弦、正切等函数的定义域、值域 、周期性、奇偶性等;
学习了三角函数的诱导公式,包括和差化积、积化和差、倍角公式等,能够灵活运 用这些公式进行三角函数的化简和计算;
通过例题和练习,提高了分析问题和解决问题的能力,培养了数学思维和逻辑推理 能力。
强调诱导公式在解题中的重要性
诱导公式是三角函数中的重要内 容,它可以将复杂的三角函数式 化简为简单的形式,从而方便求
高中数学必修四三角函数PPT课件
![高中数学必修四三角函数PPT课件](https://img.taocdn.com/s3/m/91aa0c261fb91a37f111f18583d049649a660e63.png)
01
02
03
04
第一象限
正弦、余弦、正切均为正。
第二象限
正弦为正、余弦为负、正切为 负。
第三象限
正弦、余弦均为负、正切为正。
第四象限
正弦为负、余弦为正、正切为 负。
02 三角函数诱导公 式与变换
诱导公式及其应用
诱导公式的基本形式
01
通过角度的加减、倍角、半角等变换,得到三角函数的等价表
达式。
诱导公式的推导
02
正切函数的周期为$pi$,即$tan(x + kpi) = tan x$,其中$k in Z$。
三角函数的奇偶性
正弦函数是奇函数, 即$sin(-x) = -sin x$。
正切函数是奇函数, 即$tan(-x) = -tan x$。
余弦函数是偶函数, 即$cos(-x) = cos x$。
三角函数在各象限的符号
三角恒等变换
和差化积、积化和差等公式及应用
三角函数的图像与性质
周期性、奇偶性、单调性等
解三角形
正弦定理、余弦定理及应用
常见题型解析及技巧点拨
01
三角函数求值问题:利 用同角关系式、诱导公 式等求解
02
三角函数的图像与性质 应用:判断单调性、周 期性等
03
三角恒等变换的应用: 证明等式、化简表达式 等
余弦定理及其应用
余弦定理的公式表达 在任意三角形ABC中,有$a^2 = b^2 + c^2 - 2bccos A$,以及相应的其他两个式子。
余弦定理的推导 通过向量的数量积和投影进行推导。
余弦定理的应用 用于求解三角形的边和角,尤其在已知三边或两边及夹角 的情况下。同时,也可用于判断三角形的形状(锐角、直 角或钝角)。
诱导公式(2) PPT课件(高一数学人教A版 必修一册)
![诱导公式(2) PPT课件(高一数学人教A版 必修一册)](https://img.taocdn.com/s3/m/dd9c9f466d175f0e7cd184254b35eefdc8d31539.png)
2
高中数学
y
P5 (y1,x1)
P6 (-y1,x1)
+
2
O
P1 (x1,y1)
x
公式五:
sin cos
2
cos sin
2
公式六:
sin cos ,
2
cos sin .
2
这组公式的特点是:等号左右的函数名发生改变,
即等号右侧变为角的余名三角函数值;公式右侧
的符号是把当成锐角时,所求三角函数值的符号.
高中数学
例1 证明:
3
(1)sin = cos ;
2
3
(2)cos = sin .
2
证明:
高中数学
3
,其中 = − .
小结:1.请你选择下面一个或几个关键词谈一谈研究的
过程中的体会:知识、方法、思想、收获、喜悦……
2.公式五和六的作用是什么?
知识上,又学会了两组诱导公式;
思想方法层面:诱导公式体现了由未知转化为已知的
化归思想;诱导公式所揭示的是终边
具有某种对称关系的两个角三角函数
之间的关系.主要体现了化归和数形结
y
x5= y1,y5= x1
P5 (x5,y5)
P1 (x1,y1)
O
高中数学
x
问题3:以OP1为终边的角与以其对称边OP5为
终边的角的三角函数值有什么关系?
y
x5= y1,y5= x1
高中数学
y
P5 (y1,x1)
P6 (-y1,x1)
+
2
O
P1 (x1,y1)
x
公式五:
sin cos
2
cos sin
2
公式六:
sin cos ,
2
cos sin .
2
这组公式的特点是:等号左右的函数名发生改变,
即等号右侧变为角的余名三角函数值;公式右侧
的符号是把当成锐角时,所求三角函数值的符号.
高中数学
例1 证明:
3
(1)sin = cos ;
2
3
(2)cos = sin .
2
证明:
高中数学
3
,其中 = − .
小结:1.请你选择下面一个或几个关键词谈一谈研究的
过程中的体会:知识、方法、思想、收获、喜悦……
2.公式五和六的作用是什么?
知识上,又学会了两组诱导公式;
思想方法层面:诱导公式体现了由未知转化为已知的
化归思想;诱导公式所揭示的是终边
具有某种对称关系的两个角三角函数
之间的关系.主要体现了化归和数形结
y
x5= y1,y5= x1
P5 (x5,y5)
P1 (x1,y1)
O
高中数学
x
问题3:以OP1为终边的角与以其对称边OP5为
终边的角的三角函数值有什么关系?
y
x5= y1,y5= x1
5.3诱导公式 课件ppt
![5.3诱导公式 课件ppt](https://img.taocdn.com/s3/m/d2208c80ba4cf7ec4afe04a1b0717fd5360cb206.png)
; 关于 轴对称:
; 关于原点对称:
诱导公式二~四 【拓展】进一步,通过作出P点关于 轴的对称点和关于
轴的对称点,我们可以得出如下结论: 【公式三】
【公式四】
诱导公式二~四
【总结】对于公式一~四的概括: 【1】α+2kπ,-α,(π±α)的三角函数值,在绝对值上 等于α的同名函数值,正负取决于把α看成锐角时 原函数值的符号. 即“函数名不变,符号看象限.” 【2】对于正弦与余弦的诱导公式,α可以为任意角;对 于正切的诱导公式,α的终边不能落在y轴上,即
例题讲解: 例1 求下列三角函数值:
(1)cos 225
(2) sin 8
3
(3)sin
16
3
例 2 化简tanco-sα1-801°8+0°αcsoinsα-+138600°+° α.
(4) tan 20400
解析:tan(-α-180°)=tan[-(180°+α)]=-tan(180°+α)=-tan α,
课时作业: 1、教材习题:
P194: 1、2、3、4、5、6、7、8
2、教辅书中对应课时习题
“ THANKS ”
求证:scions52απ-+π2α·sin(α-2π)·cos(2π-α)=sin2α.
解析:证明:左边=csoinsπ2π2+-αα·[-sin(2π-α)]cos α=csoins αα[-(-
sin
α)]cos
α=csoins
α α·sin
α·cos
α=sin2α=右边,故原式成立.
等式左边复杂、应从左边入手利用诱导公式化简证明.
诱导公式二~四 【问题1】如何用公式二和公式三推导出公式四?
【答】
【问题2】关于“函数名不变,符号看象限”的理解. 【答】①“函数名不变”是指等式两边的三角函数同名; ②“符号看象限”是指把原角看成锐角时新角在原函数下的符号,由 新角所在象限确定符号.如sin(α+π),若把α看成锐角,则π+α在 第三象限,所以取负值,故sin(α+π)=-sinα
高中数学三角函数诱导公式ppt课件
![高中数学三角函数诱导公式ppt课件](https://img.taocdn.com/s3/m/1c8534ccb8d528ea81c758f5f61fb7360a4c2b46.png)
单调性
正弦函数和余弦函数在 $[0, pi]$和$[0, 2pi]$上单 调性不同;正切函数在$(frac{pi}{2}, frac{pi}{2})$ 上单调递增。
三角函数值域和极值点
值域
正弦函数和余弦函数的值域均为$[-1, 1]$;正切函数的值域 为$R$。
极值点
正弦函数在$frac{pi}{2} + kpi(k in Z)$处取得最大值1,在 $frac{3pi}{2} + kpi(k in Z)$处取得最小值-1;余弦函数在 $2kpi(k in Z)$处取得最大值1,在$pi + kpi(k in Z)$处取得 最小值-1。
诱导公式
通过加减周期的整数倍,将任意角度 的三角函数转化为基本角度的三角函 数,实现角度的标准化。
典型例题解析
例题1
求sin(150°)的值。
01
解析
02 利用诱导公式,将150°转化为
30°,即 sin(150°)=sin(30°)=1/2。
例题2
求cos(-420°)的值。
03
解析
利用周期性质,将-420°转化 为60°,即cos(420°)=cos(60°)=1/2。
通过同角关系式证明 三角恒等式。
利用同角关系式化简 复杂的三角函数表达 式。
典型例题解析
例题1
已知sinα = 3/5,求cosα ,tanα的值。
例题2
化简表达式(sinα
+
cosα)/(sinα - cosα)。
例题3
证明恒等式(1 + sinα + cosα)/(1 + sinα - cosα) = (1 + cosα)/sinα。
人教版高中数学新教材必修第一册课件:5.3 三角函数的诱导公式(共19张PPT)
![人教版高中数学新教材必修第一册课件:5.3 三角函数的诱导公式(共19张PPT)](https://img.taocdn.com/s3/m/2253b0ca6429647d27284b73f242336c1eb930c9.png)
A. -1 B. 0
C. 1
D. 2
深化练习
2.思考题 若 f (n)
cos(n
)
,则
4
2
f (1) f (2) f (3) f (4) f (2019) __2_。
3.若f (n) cos( n )则
24
f (1) f (2) f (3) f (4)
2
f (2019) __2。
课堂小结
1、体现了未知到已知、复杂到简单的化归思想。
2、由例1、2,你对公式一到四的作用有什么进一 步的认识?你能自己归纳一下把任意角的三角函数 转化为锐角三角函数的步骤吗?
3、记忆:函数名不变,符号看象限,象限怎么判,把α锐角看
tan( ) tan
注: k 2π(k Z), , π 的三角函数值, 等于的同名三角函数值,前面加上一个把
看做锐角时原函数值的符号
诱导公式的记忆口诀 : 函数名不变,符号看象限,象限怎么判,把α锐角看
复习引入
1.设 0 90 ,对于任意一个 0到 360 的角 ,
以下四种情形中有且仅有一种成立.
,
180 180
, ,
360 ,
当 0,90 当 90,180 当 180,270 当 270,360
学习新知
公式一~四的作用 公式一的作用是:把不在0~2π范围内的角的 三角函数化为0~2π范围内的角的三角函数; 公式二的作用是:把第三象限角的三角函数化 为第一象限角的三角函数; 公式三的作用是:把负角的三角函数化为正角 的三角函数; 公式四的作用是:把第二象限角的三角函数化 为第一象限角的三角函数. 因此,运用公式一~四可以将任一角的三角函 数转化为锐角的三角函数.
典型例题
高中数学课件- 《三角函数的诱导公式1》课件 (2)
![高中数学课件- 《三角函数的诱导公式1》课件 (2)](https://img.taocdn.com/s3/m/9d36ac2dabea998fcc22bcd126fff705cc175cab.png)
将所求各角用 α+87π 表示,然后用诱导公式和三角函数关系式
求解.
[解析] 左边=ssiinn[[π4π+-87πα++α87π]+]-3ccooss[[2απ++87απ+-873ππ]] =--ssiinnαα++878π7π--3ccoossαα++8877ππ
=ttaannαπ++8787ππ++13 =mm++31=右边. ∴等式成立.
9
因为
sin( ) sin2 cos( ) cos2 tan( ) tan2
所以 sin(2 ) sin cos(2 ) cos tan(2 ) tan
诱导公式的变形
11
二、探 究
公式一:
公式三:
sin( ) sin cos( ) cos tan( ) tan
的原则. (2)证明左边=A,右边=A,则左边=右边,这里的 A 起着
桥梁的作用. (3)通过作差或作商证明,即左边-右边=0 或左右边边=1.
设
tan(α
+
8 7
π)
=
m.
求
证
:
ssiinn172507ππ+-αα+-3ccoossαα+-217723ππ=mm+ +31.
[分析] 本题主要考查诱导公式,从已知角的关系入手,
[解析] 当 k 为偶数时,不妨设 k=2m(m∈Z), 则原式=ssiinn[22mmπ+-1απc+osα[]2cmos-21mππ- +αα] =sinsin-πα+coαscπo+sαα =--sinsαinα-cocsoαsα=-1;
当 k 为奇数时,可设 k=2m+1(m∈Z), 同理,可得原式=-1. 故对任意整数 k 都有原式=-1.
若cos(π-α)=-13,32π<α<2π.则sin(5π+α)的值是多少?
高中数学《诱导公式》课件
![高中数学《诱导公式》课件](https://img.taocdn.com/s3/m/799fcc14e55c3b3567ec102de2bd960591c6d91e.png)
sin
α=y,cos
α=x,当x≠0时,tan
α=
y x
.
(1)如图5.2-8(1),作点P(x,y)关于x轴的对称点P1(x,-y),则∠xOP1=-α.
由三角函数的定义可得
sin(-α)=-y=-sin α,
cos(-α)=x=cos α,
当x≠0时,tan(-α)=
y x
y x
tan.
(1) 图5.2-8
2 诱导公式.
诱导公式揭示了终边具 有某种对称关系的两个角三 角函数之间的关系.
一 诱导公式
例
12
化简:
(1)
sin
3
2
;
(2)
cos
3
2
.
解
(1)
sin
3
2
sin
2
sin
2
cos
;
(2)
cos
3
2
cos
2
cos
2
sin
.
一 诱导公式
例
13
化简:cos cos
探究α与π -α之间的函数 关系,我们还可以从这两个角 的终边关于y轴对称来推导,试 试看.
一 诱导公式
为了使用方便,我们将上述探究得到的公式总结如下:
公式二 sin(-α)=-sin α, cos(-α)=cos α, tan(-α)=-tan α.
公式三 sin(π+α)=-sin α, cos(π+α)=-cos α, tan(π+α)=tan α.
利用公式五,可以实现正弦函数与余弦函数的相互转化.
一 诱导公式
当角α的终边不在坐标轴上时,还可以得出以下公式:
公式六
三角函数的诱导公式课件-高一上学期数学人教A版(2019)必修第一册
![三角函数的诱导公式课件-高一上学期数学人教A版(2019)必修第一册](https://img.taocdn.com/s3/m/781b817aa66e58fafab069dc5022aaea988f4116.png)
例题讲练
例 2(1)已知 sin 2
5
sin(5 )
5
,求
tan(
)
2 cos( 5
)
的值.
2
例题讲练
(2)(已2知)s已in知(sin( ) 1) , 1则,si则n(sin(37 37) 的 )值的为值(为( ) )
12 123 3
12 12
A. 1 3
A. 1 3
B.
B1. 3
1 3
C.C.2 3
2
2
2
2
A.0 个
B.1 个
C.2 个
D.3 个
例题讲练
(2)(在2)A在BCA中B,C若中s,in若( Asin(BACB) Csi)n( Asin(BACB) ,C则) ,A则BCABC
是___是_______________________________三__角__形三.角形.
cccooosss(((
) ))
_______, ______________,,
tttaaannn(((
) ))
_______; ______________;;
(6) ((66)) (7) ((77))
ssssssiiiiiinnnnnn((((((333222222)))
)))____________________________________,,,,,,ccccccoooooosss(((sss(((222333222
tan(2k记 忆)方 t法an:. 三角函数的周期T 2 ,所以 2k 可以直接划掉
一.三角函数的诱导公式
(2)( (角22) ) 角 角与与 与的终的 的边终 终关于边 边_关 关__于 于________________对____称____,对 对称 称, ,
高中数学课件三角函数ppt课件完整版
![高中数学课件三角函数ppt课件完整版](https://img.taocdn.com/s3/m/6f886090ac51f01dc281e53a580216fc710a5366.png)
2024/1/26
单调性
在各象限内,正弦、余弦 函数的单调性及其变化规 律。
最值问题
利用三角函数的性质求最 值,如振幅、周期等参导公式与恒等 式
REPORTING
2024/1/26
7
诱导公式及其应用
01
诱导公式的基本形式
通过角度的加减、倍角、半角等关系,将任意角的三角函数值转化为基
8
恒等式及其证明方法
2024/1/26
恒等式的基本形式
两个解析式之间的一种等价关系,即对于某个变量或一组变量的取值范围内,无论这些变 量取何值,等式都成立。
恒等式的证明方法
通常采用代数法、几何法或三角法等方法进行证明。其中,代数法是通过代数运算和变换 来证明恒等式;几何法是通过几何图形的性质和关系来证明恒等式;三角法是通过三角函 数的性质和关系来证明恒等式。
化简为简单的形式。
12
三角函数的乘除运算规则
乘积化和差公式
通过乘积化和差公式,可以将两 个三角函数的乘积转化为和差的
形式,从而简化运算。
商的化简
利用同角三角函数的基本关系, 可以将三角函数的商转化为简单
的三角函数运算。
倍角公式
通过倍角公式,可以将三角函数 的乘方运算转化为简单的三角函
数运算。
2024/1/26
建立三角函数与数列、概率统计相关 的数学模型
结合计算机编程和数学软件,实现模 型的数值模拟和可视化
2024/1/26
利用数学分析、高等代数等方法求解 模型
22
PART 06
总结回顾与拓展延伸
REPORTING
2024/1/26
23
本章节知识点总结回顾
三角函数图像
正弦、余弦、正切函数的图像 及其周期性、奇偶性等性质。
单调性
在各象限内,正弦、余弦 函数的单调性及其变化规 律。
最值问题
利用三角函数的性质求最 值,如振幅、周期等参导公式与恒等 式
REPORTING
2024/1/26
7
诱导公式及其应用
01
诱导公式的基本形式
通过角度的加减、倍角、半角等关系,将任意角的三角函数值转化为基
8
恒等式及其证明方法
2024/1/26
恒等式的基本形式
两个解析式之间的一种等价关系,即对于某个变量或一组变量的取值范围内,无论这些变 量取何值,等式都成立。
恒等式的证明方法
通常采用代数法、几何法或三角法等方法进行证明。其中,代数法是通过代数运算和变换 来证明恒等式;几何法是通过几何图形的性质和关系来证明恒等式;三角法是通过三角函 数的性质和关系来证明恒等式。
化简为简单的形式。
12
三角函数的乘除运算规则
乘积化和差公式
通过乘积化和差公式,可以将两 个三角函数的乘积转化为和差的
形式,从而简化运算。
商的化简
利用同角三角函数的基本关系, 可以将三角函数的商转化为简单
的三角函数运算。
倍角公式
通过倍角公式,可以将三角函数 的乘方运算转化为简单的三角函
数运算。
2024/1/26
建立三角函数与数列、概率统计相关 的数学模型
结合计算机编程和数学软件,实现模 型的数值模拟和可视化
2024/1/26
利用数学分析、高等代数等方法求解 模型
22
PART 06
总结回顾与拓展延伸
REPORTING
2024/1/26
23
本章节知识点总结回顾
三角函数图像
正弦、余弦、正切函数的图像 及其周期性、奇偶性等性质。
高中数学《三角函数的诱导公式》公开课优秀课件-2024鲜版
![高中数学《三角函数的诱导公式》公开课优秀课件-2024鲜版](https://img.taocdn.com/s3/m/d7260410302b3169a45177232f60ddccdb38e66e.png)
02
基础知识回顾
2024/3/28
7
三角函数定义及性质
2024/3/28
三角函数的定义
正弦、余弦、正切等函数在直角三 角形中的定义及在各象限的符号规 律。
三角函数的性质
周期性、奇偶性、单调性、最值等 性质。
8
角度制与弧度制转换
角度制与弧度制的定义
角度制以度为单位,弧度制以弧长为单位。
角度制与弧度制的转换公式
16
利用诱导公式化简问题
例题3
化简$tan(16pi + frac{pi}{4})$。
分析
利用诱导公式,将$16pi + frac{pi}{4}$表示为$4pi + frac{pi}{4}$,然后应用$tan(pi + alpha) = tan alpha$和 特殊角三角函数值求解。
解答
$tan(16pi + frac{pi}{4}) = tan(4pi + frac{pi}{4}) = tan frac{pi}{4} = 1$。 2024/3/28
18
05
学生自主练习与反馈
2024/3/28
19
基础练习题选讲
题目一
利用三角函数的诱导公式,化简 表达式 $sin(180^circ - alpha)$。
题目二
求 $cos(-alpha)$ 的表达式,并 指出其与 $cos alpha$ 的关系。
题目三
利用诱导公式,证明 $tan(360^circ - alpha) = -tan
2024/3/28
03
三角函数的求值与应用
通过实例演示如何利用诱导公式求解三角函数的值,以及三角函数在几
何、物理等领域的应用。
人教版高中数学3三角函数诱导公式(一)(共18张PPT)教育课件
![人教版高中数学3三角函数诱导公式(一)(共18张PPT)教育课件](https://img.taocdn.com/s3/m/a01bfddade80d4d8d05a4f26.png)
(公式二)
0~2π
(公式四)
0~π
锐角
课后活动
• P29 2 ,3 • 完成P15“新知导学”的预习
凡 事都 是多 棱镜 ,不同 的角 度会 看到 不同 的结 果。若 能把 一些 事看 淡了 ,就会 有个 好心 境, 若把 很多 事 看开了 ,就 会有 个好 心情。 让聚 散离 合犹 如月 缺月 圆那样 寻常 ,
《
《
我
是
算
命
先
生
》
读
同学们加油!
公式四
s in ( ) s in c o s ( ) c o s ta n ( ) ta n
注意
• 1.公式中
可以是任意角。
• 2.注意角度制下的公式。
理论迁移
例1 求下列各三角函数的值:
(1)cos225
(2)sin 11
3
(3)sin(-16 )
3
(4)cos(-2040 )
解题一般步骤
(公式三)
(公式一)
(公式二)
负角
正角 k 2 0~2π
(公式四)
0~π
锐角
例题
例2 化简:sci n o 1 s8 1 0 8 c s 0io n1 s38 6 00 .
1.诱导公式
小结
函数名不变,符号看象限
2.做题规律
(公式三)
负角
(公式一)
正角 k 2
钝角→锐角
公式一
诱导公式 公式二
sin( k 2) sin cos( k 2) cos tan( k 2) tan
sin( ) sin cos( ) cos tan( ) tan
公式三
高中数学三角函数的诱导公式课件ppt
![高中数学三角函数的诱导公式课件ppt](https://img.taocdn.com/s3/m/02103034f342336c1eb91a37f111f18583d00c2e.png)
奇变偶不变
符号看象限
注意: 看成锐角;原函数值的符号
22
例题与练习
例3 、证明:i( n3(21π ) αs)c o s α; ( 2 ) c3o2π s(α)s i n α.
23
例题与练习
1 求下列三角函数值
1sin12000
(1) 3
2cos47/6
2
(2) 3 2
2 求三角式sin12000·cos12900+cos10200· sin10500+tan9450 2
3 计算 cos/5+ cos2/5+
cos3/5+ cos4/5
0
24
例题与练习
练习1 已知sin/4+=1/2;则sin3/4的 值是 1/2
2 已知cos 750+=1/3; 求cos1050+cos2850
0
25
例题与练习
1 已知角的终边上的一点P3a;4a a<0 则cos5400的值是 3/5
8
r 1
公式三
siny c o s xta n y
x
sin()y
cos()x
tan()yy
xx
公式三
sin ( ) sin c o s( )c o s ta n ( ) ta n
9
探究3
sin( ) sin cos( ) cos tan( ) tan
sin() sin cos() cos tan () tan
用公式 二或四
任意正角的 三角函数
用公式一
0 ~ 2 的
三角函数
上述过程体现了由未知到已知的化归思想
14
四 例题分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)正切tanα= y x
O
x
问题探究
1.终边相同的角的同一三角函数值有什么关系? 相等
2.角 -α与α的终边 有何位置关系? 终边关于x轴对称
3.角 -α与α的终边 有何位置关系?
终边关于y轴对称
4.角 +α与α的终边 有何位置关系?
终边关于原点对称
终边相同的角的同一三角函数值相等
sin( 2k ) sin (k Z)
x 轴对称点 P3 x, y ,关于 y 轴对称点 P2 x,y
探究1
形如 的三角函数值与 的三角函数值之
间的关系
r 1
sin y cos x tan y
x
sin( ) y
cos( ) x
tan( ) y y
由上面两组公式的推导方法,你能同理推导出
角 与 的三角函数值之间的关系吗?
r 1
sin y
公式四
cos x tan y
x
sin( ) y
cos( ) x
tan( ) y y
x x
公式四
sin( ) sin
(2)已知cos( + )= 3 ,
6
3
求cos( 5 - )的值.
6
探索研究
已知任意角 的终边与单位圆相交于点Px,y ,
请同学们思考回答点 P关于直线 y x 对称的
点的坐标是什么?
y 1 P′(y,x)
公 式 五:
-1
P(x,y) 1
s
in
(π 2
α
) cosα
,
等于 的同名三角函数值前面加上把 看作
锐角时原函数值的符号。
简记为“函数名不变,符号看象限”
小结
1、通过例题,你能说说诱导公式的作用以及化任 意角的三角函数为锐角三角函数的一般思路吗?
任意负角的 用公式 三角函数 三或一
锐角的三 角函数
用公式 二或四
任意正角的 三角函数
用公式一
0 ~ 2 的
公式四:
sin() sin cos() cos tan() tan
sin( ) sin cos( ) cos tan( ) tan
三.发现规律:
公式一、 的三角函数值,
公 式 五:
公 式七 :
cos( 2k ) cos(k Z)
(公式一)
tan( 2k ) tan (k Z)
二、思考:
已知任意角 的终边与单位圆相交于点Px,y ,
请同学们思考回答点 P关于原点、x 轴、y 轴对称
的三个点的坐标是什么?
点Px,y关于原点对称点 P1 x, y ,关于
cos( ) cos
tan( ) tan
公式一:
sin( k 2) sin cos( k 2) cos tan( k 2) tan
(k Z)
公式三:
公式二: sin( ) sin cos( ) cos tan( ) tan
tan( ) y y
xx
公式三
sin( ) sin
cos( ) cos tan( ) tan
探究3
sin( ) sin cos( ) cos tan( ) tan
sin() sin cos() cos tan() tan
三角函数
上述过程体现了由未知到已知的化归思想。
四.例题分析
例1.求下列三角函数值
(1) cos225 cos(180 45) cos45 2
2
(2) sin 11
3
sin(4 ) sin
3
3
3 2
(3)sin( 16 ) sin16 sin(5
x x
公式二
sin( ) sin cos( ) cos tan( ) tan
探究2
我们再来研究角 与 的三角
函数值之间的关系
r 1
公式三
sin y cos x tan y
x
sin( ) y
cos( ) x
0 -1
x
c
o
s (π 2
α
) sinα
.
公 式六:
sin
(π 2
α
) cosα
π 2
α
的正弦(余弦)函数
, 值,分别等于α 的余弦(正弦)
函数值,前面加上一个把α 看
c
o s (π 2
α
) sinα
.成锐角时原函数值的符号。
总结:
1.公式五,六口诀: 函数名改变,符号看象限;
11
33 3
33
sin 3 3 3 3 3
22
2
22
cos 1 1 1 1 1
22
2 22
cos(180 0 ) sin( 360 0 ) 例2 化简:sin( 180 0 ) cos(180 0 )
练习反馈
(1)已知:tan 3,求 2cos( ) 3sin( ) 的值. 4cos() sin(2 )
3
3
) 3
(sin ) 3
3 2
(4)cos(2040) cos2040 cos(5360 240)
cos240 cos(180 60) cos60 1
2
SUCCESS
THANK YOU
2019/8/21
练习反馈
填写下表
2 4 5 7
2019/8/21
一切立体图形中最美的是球形, 一切平面图形中最美的是圆形。
——— 毕达哥拉斯学派
圆是第一个最简单、最完美的图形。
—— 布龙克尔
一.复习回顾
任意角三角函数的定义 设α是一个任意角,它的终边与单位圆交于点 P(x,y),那么:
(1)正弦sinα= y
y P(x,y)
(2)余弦cosα= x