成都树德中学数学全等三角形单元测试卷附答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都树德中学数学全等三角形单元测试卷附答案

一、八年级数学轴对称三角形填空题(难)

1.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P有_____个.

【答案】4

【解析】

【分析】

由A点坐标可得OA=22,∠AOP=45°,分别讨论OA为腰和底边,求出点P在x轴正半轴和负半轴时,△APO是等腰三角形的P点坐标即可.

【详解】

(1)当点P在x轴正半轴上,

①如图,以OA为腰时,

∵A的坐标是(2,2),

∴∠AOP=45°,OA=22,

当∠AOP为顶角时,OA=OP=22,

当∠OAP为顶角时,AO=AP,

∴OPA=∠AOP=45°,

∴∠OAP=90°,

∴OP=2OA=4,

∴P的坐标是(4,0)或(22,0).

②以OA为底边时,

∵点A的坐标是(2,2),

∴∠AOP=45°,

∵AP=OP,

∴∠OAP=∠AOP=45°,

∴∠OPA=90°,

∴OP=2,

∴P 点坐标为(2,0).

(2)当点P 在x 轴负半轴上,

③以OA 为腰时,

∵A 的坐标是(2,2),

∴OA =22,

∴OA =OP =22,

∴P 的坐标是(﹣22,0).

综上所述:P 的坐标是(2,0)或(4,0)或(2,0)或(﹣2,0).

故答案为:4.

【点睛】

此题主要考查等腰三角形的判定及坐标与图形性质的综合运用,注意分类讨论思想的运用是解题关键.

2.在ABC ∆中,边AB 、AC 的垂直平分线分别交边BC 于点D 、点E ,20DAE ∠=︒,则BAC ∠=______°.

【答案】80或100

【解析】

【分析】

根据题意,点D 和点E 的位置不确定,需分析谁靠近B 点,则有如下图(图见解析)两种情况:(1)图1中,点E 距离点B 近,根据垂直平分线性质可知,

,BD AD AE CE ==,从而有1,2B DAE C DAE ∠=∠+∠∠=∠+∠,再根据三角形的内角和定理可得180B C BAC ∠+∠+∠=︒,联立即可求得;(2)图2中,点D 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有3,4B C ∠=∠∠=∠,由三角形的内角和定理得180B C BAC ∠+∠+∠=︒,联立即可求得.

【详解】

由题意可分如下两种情况:

(1)图1中,根据垂直平分线性质可知,,BD AD AE CE ==,

1,2B DAE C DAE ∴∠=∠+∠∠=∠+∠

(等边对等角),

两式相加得12B C DAE DAE ∠+∠=∠+∠+∠+∠,

又12DAE BAC ∠+∠+∠=∠

20B C BAC DAE BAC ∴∠+∠=∠+∠=∠+︒

由三角形内角和定理得180B C BAC ∠+∠+∠=︒,

20180BAC BAC ∴∠+︒+∠=︒

80BAC ∴∠=︒

(2)图2中,根据垂直平分线性质可知,,BD AD AE CE ==,

3,4B C ∴∠=∠∠=∠

(等边对等角),

两式相加得34B C ∠+∠=∠+∠,

又34DAE BAC ∠+∠+∠=∠,

3420BAC DAE BAC ∴∠+∠=∠-∠=∠-︒

20B C BAC ∴∠+∠=∠-︒

由三角形内角和定理得180B C BAC ∠+∠+∠=︒,

20180BAC BAC ∴∠-︒+∠=︒

100BAC ∴∠=︒

.

故答案为80或100.

【点睛】

本题考查了垂直平分线的性质(垂直平分线上的点到线段两端点的距离相等)、等腰三角形的定义和性质(等边对等角)、以及三角形内角和定理,本题的难点在于容易漏掉第二种情况,出现漏解.

3.在平面直角坐标系中,点A在x轴的正半轴上,点B在y轴的正半轴上,

∆为等腰三角形,符合条件的C点有36

∠=︒,在x轴或y轴上取点C,使得ABC

ABO

__________个.

【答案】8

【解析】

【分析】

观察数轴,按照等腰三角形成立的条件分析可得答案.

【详解】

解:如下图所示,若以点A为圆心,以AB为半径画弧,与x轴和y轴各有两个交点,

但其中一个会与点B重合,故此时符合条件的点有3个;

若以点B为圆心,以AB为半径画弧,同样与x轴和y轴各有两个交点,

但其中一个与点A重合,故此时符合条件的点有3个;

线段AB的垂直平分线与x轴和y轴各有一个交点,此时符合条件的点有2个.

∴符合条件的点总共有:3+3+2=8个.

故答案为:8.

【点睛】

本题考查了等腰三角形的判定,可以观察图形,得出答案.

4.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于E ,交AC 于F ,过点O 作OD AC ⊥于D 下列结论:①EF BE CF =+;

②点O 到ABC ∆各边的距离相等;③1902

BOC A ∠=+∠;④设OD m =,AE AF n +=,则AEF S mn ∆=;⑤1()2

AD AB AC BC =

+-.其中正确的结论是.__________.

【答案】①②③⑤

【解析】

【分析】

由在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,根据角平分线的定义与三角形内角和定理,即可求得③∠BOC =90°+12

∠A 正确;由平行线的性质和角平分线的定义得出△BEO 和△CFO 是等腰三角形得出EF =BE +CF 故①正确;由角平分线的性质得出点O 到△ABC 各边的距离相等,故②正确;由角平分线定理与三角形面积的求解方法,即可求得

④设OD =m ,AE +AF =n ,则S △AEF =

12

mn ,故④错误,根据HL 证明△AMO ≌△ADO 得到AM =AD ,同理可证BM =BN ,CD =CN ,变形即可得到⑤正确.

【详解】

相关文档
最新文档