【开题报告】非线性Hammerstein模型的辨识
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开题报告
电气工程与自动化
非线性Hammerstein模型的辨识
一、选题的背景与意义
系统辨识是是现代控制理论中的一个重要分支。通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及控制器的设计。非线性系统辨识是系统辨识的一个重要的发展方向,一直是现代辨识领域中的一个主要课题,对其研究有十分重要的理论和实际意义。非线性问题的主要困难之一是一直缺乏描述各种非线性系统特性的统一的数学模型。为此,人们提出了多种类型的模型,如块联模型]1[
、神经网络模型、双线性模型、非线性参数模型等等。
]2[]3[
Hammerstein模型属于块联模型,由一个线性动态系统跟随一个非线性静态模块构成。自从Narendra& Gallman 1966年提出了Hammerstein模型后,由于模型结构简
]4[
单且能有效地描述常见的非线性动态系统特性,所以许多学者相继研究了Hammerstein 模型参数的估计方法,近年来Hammerstein模型被广泛地应用于非线性系统辨识。辨识Hammerstein模型的意义在于:利用辨识结果获得中间层输出,选择合适的性能指标,就可以把原非线性系统的控制问题分解为线性模块的动态优化问题和非线性模块的静态求根问题,因此可以有效结合线性模型预测控制的成熟理论解决这类非线性对象的控制问题,避免传统非线性控制方法计算量大,收敛性和闭环稳定性不能得到保证等诸多问题。
二、研究的基本内容与模拟解决的主要问题:
针对Hammerstein模型的辨识问题,可以归结为线性模块的动态优化问题和非线性模块的静态求根问题。因此研究的重点就是如何运用比较新颖的优化算法得到Hammerstein模型的参数解集,并能通过和传统算法的比较论证阐述采用方法的合理性,可行性及有效性。具体需要解决的问题包括以下几点:
1.什么是Hammerstein模型,它的基本结构式怎么样的;
2.确定Hammerstein非线性系统辨识的思想和实现方法;
3.熟悉PSO/BFO优化算法和熟悉最小二乘法估计方法;