《垂直于弦的直径》练习题
24.1.2垂直于弦的直径-人教版九年级数学上册练习
人教版九年级数学上册24.1.2垂直于弦的直径一.选择题(共6小题)1.如图,⊙O的半径等于4,如果弦AB所对的圆心角等于90°,那么圆心O到弦AB的距离为()A.B.2C.2D.32.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(0,3),则该圆弧所在圆的圆心坐标是()A.(0,0)B.(1,1)C.(0,1)D.(1、0)3.如图,⊙O中,OD⊥AB于点C,OB=13,AB=24,则OC的长为()A.3B.4C.5D.64.在半径为50mm的⊙O中,弦AB的长为50mm,则点O到AB的距离为()A.50mm B.25mm C.25mm D.25mm5.AB和CD是⊙O的两条平行弦,AB=6,CD=8,⊙O的半径为5,则AB与CD间的距离为()A.1B.7C.1或7D.3或46.一辆装满货物,宽为2.4米的卡车,欲通过如图的隧道,则卡车的外形高必须低于()A.4.1米B.4.0米C.3.9米D.3.8米二.填空题(共6小题)7.已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O到AB的距离为cm.8.半径等于16的圆中,垂直平分半径的弦长为.9.如图,⊙O的直径CD垂直弦AB于点E,且CE=3cm,DE=7cm,则弦AB=cm.10.如图,已知AB是半圆O的直径,弦CD∥AB,CD=8,AB=10,则CD与AB之间的距离是.11.如图,⊙O与抛物线y=x2交于A,B两点,且AB=2,则⊙O的半径等于.12.如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(5,0),直线y=kx﹣2k+3(k≠0)与⊙O交于B、C两点,则弦BC的长的最小值为.三.解答题(共3小题)13.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,求BE的长.14.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,图1,点P表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O为圆心,5m为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB长为8m,求筒车工作时,盛水桶在水面以下的最大深度.15.如图,半圆拱桥的圆心为O,圆的半径为5m,一只8m宽的船装载一集装箱,箱顶宽6m,离水面AB高3.8m,这条船能过桥洞吗?请说明理由.人教版九年级数学上册24.1.2垂直于弦的直径参考答案一.选择题(共6小题)1.如图,⊙O的半径等于4,如果弦AB所对的圆心角等于90°,那么圆心O到弦AB的距离为()A.B.2C.2D.3【解答】解:过O作OC⊥AB于C,∵OA=OB=4,∠AOB=90°,∴AB=OA=4,∴OC=AB=2,故选:C.2.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(0,3),则该圆弧所在圆的圆心坐标是()A.(0,0)B.(1,1)C.(0,1)D.(1、0)【解答】解:该圆弧所在圆的圆心坐标是:(1,0).故选:D.3.如图,⊙O中,OD⊥AB于点C,OB=13,AB=24,则OC的长为()A.3B.4C.5D.6【解答】解:∵OD⊥AB,∴AC=BC=AB=×24=12,在Rt△OBC中,OC==5.故选:C.4.在半径为50mm的⊙O中,弦AB的长为50mm,则点O到AB的距离为()A.50mm B.25mm C.25mm D.25mm【解答】解:作OC⊥AB于C,根据题意:OA=OB=AB=50mm,∴△AOB是等边三角形,∴∠AOC=30°,∴OC=OA•cos30°=25cm.故选:B.5.AB和CD是⊙O的两条平行弦,AB=6,CD=8,⊙O的半径为5,则AB与CD间的距离为()A.1B.7C.1或7D.3或4【解答】解:①当AB、CD在圆心两侧时;过O作OE⊥CD交CD于E点,过O作OF⊥AB交AB于F点,连接OA、OC,如图所示:∵半径r=5,弦AB∥CD,且AB=6,CD=8,∴OA=OC=5,CE=DE=4,AF=FB=3,E、F、O在一条直线上,∴EF为AB、CD之间的距离在Rt△OEC中,由勾股定理可得:OE2=OC2﹣CE2∴OE==3,在Rt△OF A中,由勾股定理可得:OF2=OA2﹣AF2∴OF==4,∴EF=OE+OF=3+4=7,AB与CD的距离为7;②当AB、CD在圆心同侧时;同①可得:OE=3,OF=4;则AB与CD的距离为:OF﹣OE=1;综上所述:AB与CD间的距离为1或7.故选:C.6.一辆装满货物,宽为2.4米的卡车,欲通过如图的隧道,则卡车的外形高必须低于()A.4.1米B.4.0米C.3.9米D.3.8米【解答】解:∵车宽2.4米,∴欲通过如图的隧道,只要比较距隧道中线1.2米处的高度与车高.在Rt△OCD中,由勾股定理可得:CD===1.6(m),CH=CD+DH=1.6+2.5=4.1米,∴卡车的外形高必须低于4.1米.故选:A.二.填空题(共6小题)7.已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O到AB的距离为12cm.【解答】解:如图,作OC⊥AB于C,连接OA,则AC=BC=AB=5,在Rt△OAC中,OC==12,所以圆心O到AB的距离为12cm.故答案为12.8.半径等于16的圆中,垂直平分半径的弦长为16.【解答】解:如图,OA=16,则OC=8,根据勾股定理得,AC==8,∴弦AB=16.故答案为:16.9.如图,⊙O的直径CD垂直弦AB于点E,且CE=3cm,DE=7cm,则弦AB=2cm.【解答】解:连接OA,如图,∵CE=3,DE=7,∴CD=10,∴OC=OA=5,OE=2,∵AB⊥CD,∴AE=BE,在Rt△AOE中,AE==,∴AB=2AE=2(cm).故答案为2.10.如图,已知AB是半圆O的直径,弦CD∥AB,CD=8,AB=10,则CD与AB之间的距离是3.【解答】解:过点O作OH⊥CD于H,连接OC,如图,则CH=DH=CD=4,在Rt△OCH中,OH==3,所以CD与AB之间的距离是3.故答案为3.11.如图,⊙O与抛物线y=x2交于A,B两点,且AB=2,则⊙O的半径等于.【解答】解:连接OA,设AB与y轴交于点C,∵AB=2,∴点A,B的横坐标分别为﹣1,1.∵⊙O与抛物线y=x2交于A,B两点,点A,B的坐标分别为(﹣1,),(1,),在Rt△OAC中,由勾股定理得OA===,∴⊙O的半径为.12.如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(5,0),直线y=kx﹣2k+3(k≠0)与⊙O交于B、C两点,则弦BC的长的最小值为4.【解答】解:对于直线y=kx﹣2k+3=k(x﹣2)+3,当x=2时,y=3,故直线y=kx﹣2k+3恒经过点(2,3),记为点D.过点D作DH⊥x轴于点H,则有OH=2,DH=3,OD==.∵点A(5,0),∴OA=5,∴OB=OA=5.由于过圆内定点D的所有弦中,与OD垂直的弦最短,如图所示,因此运用垂径定理及勾股定理可得:BC的最小值为2BD=2=2×=4.故答案为4.三.解答题(共3小题)13.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,求BE的长.【解答】解:如图,连接OC.∵弦CD⊥AB于点E,CD=6,∴CE=ED=CD=3.∵在Rt△OEC中,∠OEC=90°,CE=3,OC=4,∴OE==,∴BE=OB﹣OE=4﹣.14.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,图1,点P表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O为圆心,5m为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB长为8m,求筒车工作时,盛水桶在水面以下的最大深度.【解答】解:过O点作半径OD⊥AB于E,如图,∴AE=BE=AB=×8=4,在Rt△AEO中,OE===3,∴ED=OD﹣OE=5﹣3=2,答:筒车工作时,盛水桶在水面以下的最大深度为2m.15.如图,半圆拱桥的圆心为O,圆的半径为5m,一只8m宽的船装载一集装箱,箱顶宽6m,离水面AB高3.8m,这条船能过桥洞吗?请说明理由.【解答】解:如图,过点O作OF⊥DE于点F,则EF=DF=DE,假设DE=6m,则DF=3m,∵圆的半径为5m,∴OD=5m,∴OF===4>3.8,∴这条船能过桥洞.。
中考数学专题复习题:垂直于弦的直径
中考数学专题复习题:垂直于弦的直径一、单项选择题(共10小题) 1.下列说法正确的是( )A. 垂直于弦的直线平分弦所对的两条弧B. 平分弦的直径垂直于弦C. 垂直于直径的弦平分这条直径D. 弦的垂直平分线经过圆心2.如图所示,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,则下列结论中不一定成立的是( )A. CM =DMB. CB ⌢=DB ⌢C. AC ⌢=AD ⌢D. OM =MB3.如图,A 是⊙O 上一点,连接OA ,弦BC ⊥OA 于点D.若OD =2,AD =1,则BC 的长为( )A. 2√ 5B. 4C. 2√ 3D. 2√ 24.如图所示,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC =5cm ,CD =8cm ,则AE 的长为( )A. 8cmB. 5cmC. 3cmD. 2cm5.已知⊙O 的直径CD =100cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,AB =96cm ,则AC 的长为( ) A. 36cm 或64cmB. 60cm 或80cmC. 80cmD. 60cm6.如图所示,⊙O 的半径为5,弦AB =8,M 是弦AB 上的动点,则OM 长的取值范围一定是()A. 4≤OM≤5B. 3≤OM<5C. 3<OM≤5D. 3≤OM≤57.如图所示,AB,CD是⊙O的两条平行弦,且AB=4,CD=6,AB,CD之间的距离为5,则⊙O的直径是()A. √ 13B. 2√ 13C. 8D. 108.如图,半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A. 10cmB. 16cmC. 24cmD. 26cm9.一条排水管的截面如图所示,已知排水管的截面圆的半径OB=10dm,水面宽度AB 是16dm,则截面水深CD是()第9题图第10题图A. 3dmB. 4dmC. 5dmD. 6dm10.如图所示,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,如果AB=8,OC=3,那么EC的长为()A. 2√ 15B. 8C. 2√ 10D. 2√ 13二、填空题(共8小题)11.在⊙O中,弦AB的长为6,圆心O到AB的距离为4,则⊙O的半径为________.12.下列四个说法:①经过圆心的直线是圆的对称轴;②直径是圆的对称轴;③圆的对称轴有无数条;④当圆绕它的圆心旋转180∘时,仍会与原来的圆重合.其中一定正确的有________.(填序号)13.如图,工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,则这个小圆孔的宽口AB的长度为_______mm.14.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为________.15.如图所示,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15∘,半径为2,则弦CD的长为________.16.如图所示,在半径为10cm的⊙O中,AB=16cm,弦OC⊥AB于点C,则OC一定等于________cm.17.如图,AB 为⊙O 的直径,弦CD 交AB 于点P ,且PA =1,PB =5,∠DPB =30∘,则CD 的长为________.18.如图,某主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为________m .三、解答题(共5小题)19.如图,两个圆都以点O 为圆心.求证:AC =BD .20.如图,AB 是⊙O 的弦,C 是AB ⌢的中点,OC 交AB 于点D.若AB =8cm ,CD =2cm ,求⊙O 的半径.21.如图,在⊙O 中,AB ,AC 是互相垂直的两条弦,OD ⊥AB 于点D ,OE ⊥AC 于点E ,且AB =8cm ,AC =6cm ,求⊙O 的半径.22.如图所示,AB是⊙O的直径,C,D为⊙O上的点,且BC//OD,过点D作DE⊥AB 于点E.(1)求证:BD平分∠ABC;(2)若BC=3,DE=2,求⊙O的半径长.23.如图,有一座圆弧形拱桥,它的跨度AB为30m,拱高PM为9m,当洪水泛滥到跨度只有15m时,就要采取紧急措施.(1)求拱桥所在圆的半径;(2)若某次洪水中,拱顶离水面只有2m,即PN=2m,通过计算说明是否需要采取紧急措施.。
24.1.2_垂直于弦的直径精选练习题及答案
A.3v2 241.2垂直于弦的直径一、课前预习(5分神训练)1 .如图24-1-2-1, AB是。
的弦,CD是。
的直径,CD1AB,垂足为E,则可推出的相等关系是2. 圆中一条弦把和它垂直的直径分「成3 cm和4 cm两部分,则这条弦弦长为・3. 判断正误.(】)直径是圆的对称轴;(2)平分弦的直径垂直于弦.4. 圆O的半径OA=6QA的垂直平分线交圆。
于B、C,那么弦BC的长等于•二、课中强化(1。
分仲训练)1 .圆是轴对称图形,它的对称轴是 _____________ .2. 如图24-1-2-2,在。
中,直径MN垂直于弦AB,垂足为C,图中相等的线段有,相等的劣弧有______________3. 在图24-1-2-3中,弦AB的长为24 cm,弦心距O05 cm,则。
的半径区cm.4. 如图24-1-2-4所示,直径为10 cm的圆中,圆心到弦AB的距离为4 cm.求弦AB的长.图24-1-2-4三、课后巩固(30分钟训练)1 .如图24-1-2-5,00的半径OA=3,以点A为圆心QA的长为半径画弧交。
于B、C,则BC等于()C图 24-1-2-5 2. 如图24-1-2-6, AB 是。
的弦,半径OC1AB 于点D,旦AB=8 cm, OC=5 cm,则OD 的长是()A.3 cmB.2.5 cmC.2 cmD.l cm3.00半径为10,弦AB=12, CD=16,旦AB II CD.求AB 与CD 之间的距离.4.如图24-1-2-7所示,秋千链子的长度为3 m,静止时的秋千踏板(大小忽略不计)距地面0.5 m.秋千向两 边摆动时,若最大摆角(摆角指秋千链子与铅垂线的夹角)约为60。
,则秋千踏板与地面的最大距离约为 多少?5. “五段彩虹展翅飞”,我省利用国债资金修建的,横跨南渡江的琼州大桥如图24-1-2-8(1)已于今年5 月】2日正式通车,该桥的两边均有五个红色的圆拱,如图24-1-2-8(1).最高.的圆拱的跨度为110米, 拱高为22米,如图(2),那么这个圆拱所在圆的直径为 米.⑴ ⑵图 24-1-2-8图 24-1-2-6图 24-1-2-76. 如图24-1-2-9,要把破残的圆片复制完整,已知弧上三点A、B、C.(1)用尺规作图法,找出弧BAC所在圆的圆心。
人教九年级数学上册-垂直于弦的直径(附习题)
平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对 ①⑤ ②③④ 的另一条弧.
②③ ①④⑤ 弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧.
②④ ①③⑤ 垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且平 ②⑤ ①③④ 分弦和所对的另一条弧.
③④ ①②⑤ 平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于弦, ③⑤ ①②④ 并且平分弦所对的另一条弧.
圆弧形,它的跨度(弧所对的弦的长)为37m, 拱高(弧的中点
到弦的距离)为7.23m,求赵州桥主桥拱的半径(结果保留小
数点后一位).
C
7.23
A
18.5 D 37
B
R
R-7.23
O
解:设赵洲桥主桥拱的半径为R.
则R2=18.52+(R-7.23)2
解得:R≈27.3
C
因此,赵州桥的主桥拱
7.23
半径约为27.3m.
已垂知足:为在E.⊙O满圆中足是,什轴C么D对是条称直件图径才形,能呢证A?明B是弦, CD⊥AB, C
左图是轴对称图形吗?
O
E A
B
D
大胆猜想 是轴对称图形.
证明:连结OA、OB.
C
则OA=OB.
又∵CD⊥AB,
∴直径CD所在的直线是AB的垂直平分线.
O
∴对于圆上任意一点,在圆上都有关于直线
E A
综合应用
9.⊙O的半径为13cm,AB、CD是⊙O的两条弦, AB∥CD,AB=24cm,CD=10cm,求AB和CD之间 的距离.
解:分两种情况讨论. 第一种情况:当AB、CD在圆心O的同侧时. 如图(1),过点O作OM⊥CD,垂足为M,交AB于点E.
初中垂径定理试题及答案
初中垂径定理试题及答案一、选择题1. 在圆中,垂直于弦的直径是该弦的()。
A. 垂线B. 垂径C. 弦心距D. 弦长答案:B2. 垂径定理告诉我们,如果一条线段垂直于弦,并且平分弦,那么它也平分弦所对的()。
A. 弧B. 圆心角C. 弦心距D. 弦长答案:A3. 在圆中,如果一条直径垂直于弦,那么这条直径将弦分成的两段长度()。
A. 相等B. 不相等C. 无法确定D. 取决于圆的大小答案:A二、填空题4. 在圆中,如果弦AB的中点为M,且直径CD垂直于弦AB于点M,则弦AB所对的弧ACB的度数为______。
答案:90°5. 垂径定理在圆的几何学中非常重要,它说明了垂直于弦的直径将弦平分,并且平分的弦所对的弧是______。
答案:相等的三、解答题6. 已知圆O的半径为10cm,弦AB垂直于直径CD于点M,求弦AB的长度。
答案:由于直径CD垂直于弦AB,根据垂径定理,弦AB被直径CD平分,因此弦AB的长度为圆的直径,即20cm。
7. 在一个圆中,弦AC的长度为12cm,弦BC的长度为8cm,且AC和BC相交于点O,求圆的半径。
答案:由于AC和BC相交于圆心O,根据垂径定理,OA=OC,OB=OA,因此OA=OC=6cm,OB=OA=6cm。
根据勾股定理,圆的半径r满足r^2 =OA^2 + OB^2 = 6^2 + 6^2 = 72,所以r = √72 = 6√2 cm。
四、证明题8. 证明:在圆中,如果一条直径垂直于弦,那么这条直径将弦平分。
答案:设圆心为O,直径为CD,弦为AB,且CD垂直于AB于点M。
要证明CM=MD。
由于CD是直径,所以∠CMO=∠DMO=90°。
根据垂径定理,CM=MD,因此这条直径将弦平分。
人教版九年级数学上册《垂直于弦的直径》基础练习
《垂直于弦的直径》基础练习一、选择题(本大题共5小题,共25.0分)1.(5分)如图,⊙O的半径为5,圆心O到弦AB的距离为3,则AB的长为()A.4B.5C.6D.82.(5分)⊙O的半径是13,弦AB∥CD,AB=24,CD=10,则AB与CD的距离是()A.7B.17C.7或17D.343.(5分)如图,CD为圆O的直径,弦AB⊥CD,垂足为E,CE=1,半径为25,则弦AB 的长为()A.24B.14C.10D.74.(5分)如图,AB是圆O的弦,半径OC⊥AB于点D,且OC=5cm,DC=2cm,则AB =()A.6B.8C.10D.125.(5分)如图所示,⊙O的直径为20,弦AB的长度是16,ON⊥AB,垂足为N,则ON 的长度为()A.4B.6C.8D.10二、填空题(本大题共5小题,共25.0分)6.(5分)在半径为10cm的⊙O中,弦AB的长为16cm,则点O到弦AB的距离是cm.7.(5分)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=8,OE=3,则⊙O的半径为.8.(5分)在⊙O中,弦AB=24cm,圆心O到弦AB的距离为5cm,则⊙O的半径为cm.9.(5分)过⊙O内点M的最长弦长为20cm,最短弦长为16cm,那么OM的长为cm.10.(5分)如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(5,0),直线y =kx﹣2k+3(k≠0)与⊙O交于B、C两点,则弦BC的长的最小值为.三、解答题(本大题共5小题,共50.0分)11.(10分)如图所示,射线AM交一圆于点B,C,射线AN交该圆于点D,F,且BC=DE,求证:AC=AE.12.(10分)已知⊙O的半径r=4,AB、CD为⊙O的两条弦,AB、CD的长分别是方程x2﹣(4+4)x+16=0的两根,其中AB>CD,且AB∥CD,求AB与CD间的距离.13.(10分)已知点A,B,C都在⊙O上,且AB=AC,圆心O到BC的距离为6cm,圆的半径为14cm,求AB的长.14.(10分)如图在⊙O中,AB为直径,过OB的中点D作CD⊥AB交⊙O于C,M为CD 的中点,且CD=,连接AM并延长交⊙O于N.(1)求∠ANC的大小;(2)求弦CN的长.15.(10分)如图,已知AB、CD是⊙O的弦,AB⊥CD,垂足为点E,AB被CD分成3厘米、14厘米两段(AE<EB),求点O到CD的距离.《垂直于弦的直径》基础练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)如图,⊙O的半径为5,圆心O到弦AB的距离为3,则AB的长为()A.4B.5C.6D.8【分析】过O作OC⊥AB于C,连接OA,关键勾股定理求出AC长,根据垂径定理得出AB=2CA,代入求出即可.【解答】解:过O作OC⊥AB于C,连接OA,则OC=3,OA=5,由勾股定理得:AC==4,∵OC⊥AB,OC过圆心O,∴AB=2AC=8,故选:D.【点评】本题考查了勾股定理和垂径定理等知识点的应用,关键是①正确作辅助线,②求出AC的长,题目比较典型,难度不大.2.(5分)⊙O的半径是13,弦AB∥CD,AB=24,CD=10,则AB与CD的距离是()A.7B.17C.7或17D.34【分析】先作出图象根据勾股定理分别求出弦AB、CD的弦心距OE、OF,再根据两弦在圆心同侧和在圆心异侧两种情况讨论.【解答】解:如图,AE=AB=×24=12,CF=CD=×10=5,OE===5,OF===12,①当两弦在圆心同侧时,距离=OF﹣OE=12﹣5=7;②当两弦在圆心异侧时,距离=OE+OF=12+5=17.所以距离为7或17.故选:C.【点评】先构造半径、弦心距、半弦长为边长的直角三角形,再利用勾股定理求弦心距,本题要注意分两种情况讨论.3.(5分)如图,CD为圆O的直径,弦AB⊥CD,垂足为E,CE=1,半径为25,则弦AB 的长为()A.24B.14C.10D.7【分析】连接OA,根据垂径定理得到AE=EB,根据勾股定理求出AE,得到答案.【解答】解:连接OA,∵CD为圆O的直径,弦AB⊥CD,∴AE=EB,由题意得,OE=OC﹣CE=24,在Rt△AOE中,AE==7,∴AB=2AE=14,故选:B.【点评】本题考查的是垂径定理和勾股定理的应用,垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.4.(5分)如图,AB是圆O的弦,半径OC⊥AB于点D,且OC=5cm,DC=2cm,则AB =()A.6B.8C.10D.12【分析】连接OA,根据垂径定理得到∠ODA=90°,AD=BD,根据勾股定理求出AD,计算即可.【解答】解:连接OA,∵半径OC⊥AB,∴∠ODA=90°,AD=BD,由题意得,OD=OC﹣CD=3,在Rt△OAD中,AD==4,∴AB=2AD=8,故选:B.【点评】本题考查的是垂径定理,勾股定理的应用,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.5.(5分)如图所示,⊙O的直径为20,弦AB的长度是16,ON⊥AB,垂足为N,则ON 的长度为()A.4B.6C.8D.10【分析】根据⊙O的半径为10,弦AB的长度是16,ON⊥AB,可以求得AN的长,从而可以求得ON的长.【解答】解:由题意可得,OA=10,∠ONA=90°,AB=16,∴AN=8,∴ON=,故选:B.【点评】本题考查垂径定理,解题的关键是明确垂径定理的内容,利用垂径定理解答问题.二、填空题(本大题共5小题,共25.0分)6.(5分)在半径为10cm的⊙O中,弦AB的长为16cm,则点O到弦AB的距离是6cm.【分析】连接OA,作OC⊥AB于C,如图,根据垂径定理得到AC=BC=AB=8,然后根据勾股定理计算OC的长即可.【解答】解:连接OA,作OC⊥AB于C,如图,∵OC⊥AB,∴AC=BC=AB=8,在Rt△AOC中,OC===6,即点O到弦AB的距离为6cm.故答案为6.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.7.(5分)如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=8,OE=3,则⊙O的半径为5.【分析】连接OD,根据垂径定理求出DE,根据勾股定理求出OD即可.【解答】解:连接OD,∵CD⊥AB于点E,直径AB过O,∴DE=CE=CD=×8=4,∠OED=90°,由勾股定理得:OD===5,即⊙O的半径为5.故答案为:5.【点评】本题考查了垂径定理和勾股定理的应用,能根据垂径定理求出DE的长是解此题的关键.8.(5分)在⊙O中,弦AB=24cm,圆心O到弦AB的距离为5cm,则⊙O的半径为13 cm.【分析】先画图,由于OC⊥AB,根据垂径定理可知AC=BC=AB=12,再利用勾股定理易求OA.【解答】解:如图所示,O到弦AB的距离为OC,连接OA,∵OC⊥AB,∴AC=BC=AB=12,在Rt△AOC中,OA===13.故答案是13.【点评】本题考查了垂径定理、勾股定理,解题的关键是求出AC(知道垂直于弦的直径平分弦).9.(5分)过⊙O内点M的最长弦长为20cm,最短弦长为16cm,那么OM的长为6cm.【分析】据垂径定理及勾股定理即可求出.【解答】解:由已知可知,最长的弦是过M的直径AB最短的是垂直平分直径的弦CD已知AB=20cm,CD=16cm则OD=10cm,MD=8cm由勾股定理得OM==6cm.故答案为6.【点评】此题主要考查学生对垂径定理及勾股定理的运用.10.(5分)如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(5,0),直线y =kx﹣2k+3(k≠0)与⊙O交于B、C两点,则弦BC的长的最小值为4.【分析】易知直线y=kx﹣2k+3过定点D(2,3),运用勾股定理可求出OD,由条件可求出半径OB,由于过圆内定点D的所有弦中,与OD垂直的弦最短,因此只需运用垂径定理及勾股定理就可解决问题.【解答】解:对于直线y=kx﹣2k+3=k(x﹣2)+3,当x=2时,y=3,故直线y=kx﹣2k+3恒经过点(2,3),记为点D.过点D作DH⊥x轴于点H,则有OH=2,DH=3,OD==.∵点A(5,0),∴OA=5,∴OB=OA=5.由于过圆内定点D的所有弦中,与OD垂直的弦最短,如图所示,因此运用垂径定理及勾股定理可得:BC的最小值为2BD=2=2×=4.故答案为4.【点评】本题主要考查了直线上点的坐标特征、垂径定理、勾股定理等知识,发现直线恒经过点(3,4)以及运用“过圆内定点D的所有弦中,与OD垂直的弦最短”这个经验是解决该选择题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)如图所示,射线AM交一圆于点B,C,射线AN交该圆于点D,F,且BC=DE,求证:AC=AE.【分析】作OP⊥AC于P,OQ⊥AE于Q,连接OB、OD、OA,根据垂径定理得出PB=DQ,PC=QE,根据HL证得RT△OPB≌RT△OQD,RT△OP A≌RT△OQA,得出AP =AQ,进而即可证得结论.【解答】证明:作OP⊥AC于P,OQ⊥AE于Q,连接OB、OD、OA,则PB=BC,DQ=DE,∵BC=DE,∴PB=DQ,PC=QE,在RT△OPB和RT△OQD中,,∴RT△OPB≌RT△OQD(HL),∴OP=OQ,在RT△OP A和RT△OQA中,,∴RT△OP A≌RT△OQA(HL),∴AP=AQ,∴AP+PC=AQ+QE,即AC=AE.【点评】本题考查了垂径定理和三角形全等的判定和性质,作出辅助线构建直角三角形是解题的关键.12.(10分)已知⊙O的半径r=4,AB、CD为⊙O的两条弦,AB、CD的长分别是方程x2﹣(4+4)x+16=0的两根,其中AB>CD,且AB∥CD,求AB与CD间的距离.【分析】先解方程,发现常数项16可拆分为4×4,故能用因式分解法解方程,得到两弦长.过圆心分别作两弦的垂线,根据垂径定理可得垂足为弦的中点,再利用勾股定理即能求弦心距.画图分析,若两弦分别在圆心两侧,则两弦之间的距离为两弦心距之和;若两弦在圆心同侧,则距离为两弦心距之差.【解答】解:解方程x2﹣(4+4)x+16=0(x﹣4)(x﹣4)=0∴x1=4,x2=4∵AB、CD的长分别是方程的两根且AB>CD∴AB=4,CD=4过点O分别作OE⊥AB于E,OF⊥CD于F,连接OA、OC∴∠AEO=∠CFO=90°,AE=AB=2,CF=CD=2∵OA=OC=r=4∴OE=OF=若AB、CD在圆心O的两侧,如图1,则EF=OE+OF=2+2若AB、CD在圆心O的同侧,如图2,则EF=OF﹣OE=2﹣2∴AB与CD间的距离为2+2或2﹣2【点评】本题考查了解一元二次方程,垂径定理,勾股定理,考查了分类讨论思想.根据弦与圆心的位置作分类讨论是解题关键,也是垂径定理的常规题.13.(10分)已知点A,B,C都在⊙O上,且AB=AC,圆心O到BC的距离为6cm,圆的半径为14cm,求AB的长.【分析】此题分情况考虑:当三角形的外心在三角形的内部时,根据勾股定理求得BD 的长,再根据勾股定理求得AB的长;当三角形的外心在三角形的外部时,根据勾股定理求得BD的长,再根据勾股定理求得AB的长.【解答】解:如图1,当△ABC是锐角三角形时,连接AO并延长到BC于点D,∵AB=AC,O为外心,∴AD⊥BC,在Rt△BOD中,∵OB=14,OD=6,∴BD===4.在Rt△ABD中,根据勾股定理,得AB===4(cm);如图2,当△ABC是钝角三角形时,连接AO交BC于点D,同理得:BD=4.∴AD=14﹣6=8,在Rt△ABD中,根据勾股定理,得AB===4(cm).综上所述,AB的长是4cm或4cm.【点评】本题考查的是等腰三角形的性质、垂径定理和勾股定理,在解答此题时要注意进行分类讨论,不要漏解.14.(10分)如图在⊙O中,AB为直径,过OB的中点D作CD⊥AB交⊙O于C,M为CD 的中点,且CD=,连接AM并延长交⊙O于N.(1)求∠ANC的大小;(2)求弦CN的长.【分析】(1)连接OC,根据已知条件得到OD=OB=OC,根据三角形的内角和得到∠COD=60°,由邻补角的定义得到∠AOC=120°,于是得到∠ANC=∠AOC=60°,;(2)连接AC,由的第三轮得到OC==2,AM==,根据相似三角形的性质即可得到结论.【解答】解:(1)连接OC,则OC=OB,∵D是OB的中点,∴OD=OB=OC,∵CD⊥AB,∴∠CDO=90°,∴∠OCD=30°,∴∠COD=60°,∴∠AOC=120°,∴∠ANC=∠AOC=60°,;(2)连接AC,∴OC==2,∴OD=1,∴AD=3,∴AC=2,∴AM==,∵∠CAO=∠ACO=30°,∴∠ACD=60°,∴∠ACD=∠N,∵∠CAM=∠NAC,∴△ACM∽△ANC,∴=,即=,∴CN=.【点评】本题考查了勾股定理,解直角三角形,圆周角定理,正确的作出辅助线是解题的关键.15.(10分)如图,已知AB、CD是⊙O的弦,AB⊥CD,垂足为点E,AB被CD分成3厘米、14厘米两段(AE<EB),求点O到CD的距离.【分析】过O作OM⊥CD,ON⊥AB,易知四边形ONEM是矩形,所以ON=EM,再根据垂径定理和已知数据求出EM的长即可得到ON的长,即圆心O到AB的距离.【解答】解:过O作OM⊥CD,ON⊥AB,∴∠ONE=∠OME=90°,∵弦AB、CD互相垂直,∴∠NEM=90°,∴四边形ONEM是矩形,∴ON=EM,∵ON⊥AB,∴AN=BN=AB,∵AE=3cm,BE=14cm,∴AB=17cm,∴AN=8.5cm,∴EN=AN﹣AE=5.5cm,∴OM=EN=5.5cm,∴圆心O到CD的距离是5.5cm.【点评】本题考查了垂径定理、矩形的判定和性质,熟练掌握垂径定理是解本题的关键.。
人教版九年级数学上册《垂直于弦的直径》拓展练习
《垂直于弦的直径》拓展练习一、选择题(本大题共5小题,共25.0分)1.(5分)一条排水管的截面如图所示,已知排水管的截面圆的半径OB=10dm,水面宽AB 是16dm,则截面水深CD是()A.3 dm B.4 dm C.5 dm D.6 dm2.(5分)如图,半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB 的长为()A.10 cm B.16 cm C.24 cm D.26 cm3.(5分)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()A.4B.5C.6D.64.(5分)乌镇是著名的水乡,如图,圆拱桥的拱顶到水面的距离CD为8m,水面宽AB为8m,则桥拱半径OC为()A.4m B.5m C.6m D.8m5.(5分)如图是一个隧道的截面图,为⊙O的一部分,路面AB=10米,净高CD=7米,则此圆半径长为()A.5米B.7米C.米D.米二、填空题(本大题共5小题,共25.0分)6.(5分)位于黄岩西城的五洞桥桥上老街目前正在修复,如图①是其中一处中式圆形门,图②是它的平面示意图,已知AB过圆心O,且垂直CD于点B,测得门洞高度AB为1.8米,门洞下沿CD宽为1.2米,则该圆形门洞的半径为.7.(5分)如图是一个圆拱形隧道的截面,若该隧道截面所在圆的半径为3.5米,路面宽AB 为4.2米,则该隧道最高点距离地面米.8.(5分)在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”其大意为:如图,AB为⊙O的直径,弦CD⊥AB于点E,若AE=1寸,CD=10寸,则⊙O的直径等于寸.9.(5分)如图,直径为1000mm的圆柱形水管有积水(阴影部分),水面的宽度AB为800mm,则水的最大深度CD是mm.10.(5分)王江泾是著名的水乡,如图,圆拱桥的拱顶到水面的距离CD为9m,水面宽AB 为6m,则桥拱半径OC为m.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE =4米时,是否要采取紧急措施?12.(10分)图1是某奢侈品牌的香水瓶.从正面看上去(如图2),它可以近似看作⊙O割去两个弓形后余下的部分与矩形ABCD组合而成的图形(点B、C在⊙O上),其中BC∥EF;从侧面看,它是扁平的,厚度为1.3cm.(1)已知⊙O的半径为2.6cm,BC=2cm,AB=3.02cm,EF=3.12cm,求香水瓶的高度h.(2)用一张长22cm、宽19cm的矩形硬纸板按照如图3进行裁剪,将实线部分折叠制作成一个底面积为S MNPQ=9cm2的有盖盒子(接缝处忽略不计).请你计算这个盒子的高度,并且判断上述香水瓶能否装入这个盒子里.13.(10分)一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,求此时排水管水面的宽CD.14.(10分)某隧道的截面是由如图所示的图形构成,图形下面是长方形ABCD,上面是半圆形,其中AB=10米,BC=2.5米,隧道设双向通车道,中间有宽度为2米的隔离墩,一辆满载家具的卡车,宽度为3米,高度为4.9米,请计算说明这辆卡车是否能安全通过这个隧道?15.(10分)在半径为17dm的圆柱形油罐内装进一些油后,横截面如图.①若油面宽AB=16dm,求油的最大深度.②在①的条件下,若油面宽变为CD=30dm,求油的最大深度上升了多少dm?《垂直于弦的直径》拓展练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)一条排水管的截面如图所示,已知排水管的截面圆的半径OB=10dm,水面宽AB 是16dm,则截面水深CD是()A.3 dm B.4 dm C.5 dm D.6 dm【分析】由题意知OD⊥AB,交AB于点C,由垂径定理可得出BC的长,在Rt△OBC 中,根据勾股定理求出OC的长,由CD=OD﹣OC即可得出结论.【解答】解:由题意知OD⊥AB,交AB于点E,∵AB=16,∴BC=AB=×16=8,在Rt△OBE中,∵OB=10,BC=8,∴OC==6,∴CD=OD﹣OC=10﹣6=4.故选:B.【点评】本题考查的是垂径定理的应用,根据题意在直角三角形运用勾股定理列出方程是解答此题的关键.2.(5分)如图,半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB 的长为()A.10 cm B.16 cm C.24 cm D.26 cm【分析】首先构造直角三角形,再利用勾股定理得出BC的长,进而根据垂径定理得出答案.【解答】解:如图,过O作OD⊥AB于C,交⊙O于D,∵CD=8,OD=13,∴OC=5,又∵OB=13,∴Rt△BCO中,BC==12,∴AB=2BC=24.故选:C.【点评】此题主要考查了垂径定理以及勾股定理,得出AC的长是解题关键.3.(5分)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()A.4B.5C.6D.6【分析】根据垂径定理求出BC,根据勾股定理求出OC即可.【解答】解:∵OC⊥AB,OC过圆心O点,∴BC=AC=AB=×16=8,在Rt△OCB中,由勾股定理得:OC===6,故选:D.【点评】本题考查了勾股定理和垂径定理的应用;由垂径定理求出BC是解决问题的关键.4.(5分)乌镇是著名的水乡,如图,圆拱桥的拱顶到水面的距离CD为8m,水面宽AB为8m,则桥拱半径OC为()A.4m B.5m C.6m D.8m【分析】连接OA,设OB=OC=x,则OD=8﹣x,根据垂径定理得出BD,然后根据勾股定理得出关于x的方程,解方程即可得出答案.【解答】解:连接BO,由题意可得:AD=BD=4m,设B半径OC=xm,则DO=(8﹣x)m,由勾股定理可得:x2=(8﹣x)2+42,解得:x=5.故选:B.【点评】此题考查了垂径定理的应用,关键是根据题意做出辅助线,用到的知识点是垂径定理、勾股定理.5.(5分)如图是一个隧道的截面图,为⊙O的一部分,路面AB=10米,净高CD=7米,则此圆半径长为()A.5米B.7米C.米D.米【分析】根据垂径定理和勾股定理可得.【解答】解:∵CD⊥AB,AB=10米,由垂径定理得AD=5米,设圆的半径为r,由勾股定理得OD2+AD2=OA2,即(7﹣r)2+52=r2,解得r=米.故选:D.【点评】考查了垂径定理、勾股定理.特别注意此类题经常是构造一个由半径、半弦、弦心距组成的直角三角形进行计算.二、填空题(本大题共5小题,共25.0分)6.(5分)位于黄岩西城的五洞桥桥上老街目前正在修复,如图①是其中一处中式圆形门,图②是它的平面示意图,已知AB过圆心O,且垂直CD于点B,测得门洞高度AB为1.8米,门洞下沿CD宽为1.2米,则该圆形门洞的半径为1米.【分析】根据垂径定理和勾股定理解答即可.【解答】解:设该圆形门洞的半径为r,∵AB过圆心O,且垂直CD于点B,连接OC,在Rt△OCB中,可得:r2=(1.8﹣r)2+0.62,解得:r=1,故答案为:1米【点评】此题考查垂径定理,关键是根据垂径定理和勾股定理解答.7.(5分)如图是一个圆拱形隧道的截面,若该隧道截面所在圆的半径为3.5米,路面宽AB 为4.2米,则该隧道最高点距离地面 6.3米.【分析】连接OA.由垂径定理可知AD=DB=2.1,利用勾股定理求出OD即可解决问题.【解答】解:连接OA.∵OD⊥AB,∴AD=DB=2.1米,在Rt△AOD中,OD===2.8(米),∴CD=OC+OD=6.3(米)故答案为6.3.【点评】解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式r2=d2+()2成立,知道这三个量中的任意两个,就可以求出另外一个.8.(5分)在我国古代数学著作《九章算术》中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”其大意为:如图,AB为⊙O的直径,弦CD⊥AB于点E,若AE=1寸,CD=10寸,则⊙O的直径等于26寸.【分析】连接OC,由直径AB与弦CD垂直,根据垂径定理得到E为CD的中点,由CD 的长求出DE的长,设OC=OA=x寸,则AB=2x寸,OE=(x﹣1)寸,由勾股定理得出方程,解方程求出半径,即可得出直径AB的长.【解答】解:如图所示,连接OC.∵弦CD⊥AB,AB为圆O的直径,∴E为CD的中点,又∵CD=10寸,∴CE=DE=CD=5寸,设OC=OA=x寸,则AB=2x寸,OE=(x﹣1)寸,由勾股定理得:OE2+CE2=OC2,即(x﹣1)2+52=x2,解得:x=13,∴AB=26寸,即直径AB的长为26寸.故答案为:26.【点评】此题考查了垂径定理,勾股定理;解答此类题常常利用垂径定理由垂直得中点,进而由弦长的一半,弦心距及圆的半径构造直角三角形,利用勾股定理来解决问题.9.(5分)如图,直径为1000mm的圆柱形水管有积水(阴影部分),水面的宽度AB为800mm,则水的最大深度CD是200mm.【分析】先求出OA的长,再由垂径定理求出AC的长,根据勾股定理求出OC的长,进而可得出结论.【解答】解:∵⊙O的直径为1000mm,∴OA=OA=500mm.∵OD⊥AB,AB=800mm,∴AC=400mm,∴OC==300mm,∴CD=OD﹣OC=500﹣300=200(mm).答:水的最大深度为200mm.故答案为:200.【点评】本题考查的是垂径定理的应用,根据勾股定理求出OC的长是解答此题的关键.10.(5分)王江泾是著名的水乡,如图,圆拱桥的拱顶到水面的距离CD为9m,水面宽AB 为6m,则桥拱半径OC为5m.【分析】连接OA,根据垂径定理求出AD,根据勾股定理列式计算即可.【解答】解:连接OA,∵OD⊥AB,∴AD=AB=3,在Rt△AOD中,OA2=OD2+AD2,即OC2=(9﹣OC)2+32,故答案为:5.【点评】本题考查的是勾股定理和垂径定理的应用,掌握垂直于弦的直径平分弦是解题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE =4米时,是否要采取紧急措施?【分析】(1)连结OA,利用r表示出OD的长,在Rt△AOD中根据勾股定理求出r的值即可;(2)连结OA′,在Rt△A′EO中,由勾股定理得出A′E的长,进而可得出A′B′的长,据此可得出结论.【解答】解:(1)连结OA,由题意得:AD=AB=30,OD=(r﹣18)在Rt△ADO中,由勾股定理得:r2=302+(r﹣18)2,解得,r=34;(2)连结OA′,∵OE=OP﹣PE=30,∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2﹣OE2,即:A′E2=342﹣302,∴A′B′=32.∵A′B′=32>30,∴不需要采取紧急措施.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.12.(10分)图1是某奢侈品牌的香水瓶.从正面看上去(如图2),它可以近似看作⊙O割去两个弓形后余下的部分与矩形ABCD组合而成的图形(点B、C在⊙O上),其中BC ∥EF;从侧面看,它是扁平的,厚度为1.3cm.(1)已知⊙O的半径为2.6cm,BC=2cm,AB=3.02cm,EF=3.12cm,求香水瓶的高度h.(2)用一张长22cm、宽19cm的矩形硬纸板按照如图3进行裁剪,将实线部分折叠制作成一个底面积为S MNPQ=9cm2的有盖盒子(接缝处忽略不计).请你计算这个盒子的高度,并且判断上述香水瓶能否装入这个盒子里.【分析】(1)作OG⊥BC于G,延长GO交EF于H,连接BO、EO.解直角三角形分别求出OG,OH即可解决问题;(2)设盒子的高为xcm.根据S MNPQ=9,构建方程即可解决问题;【解答】解:(1)作OG⊥BC于G,延长GO交EF于H,连接BO、EO.∵EF∥BC,∴OH⊥EF,∴BG=BC,EH=EF∴GO==2.4;OH==2.08,∴h=2.4+2.08+3.02=7.5cm.(2)设盒子的高为xcm.由题意:(22﹣2x)•=9解得x=8或12.5(舍弃),∴MQ=6,MN=1.5∵2.6×2=5.2<6;1.3<1.5;7.5<8,∴能装入盒子.【点评】本题考查垂径定理,勾股定理,翻折变换,一元二次方程等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.13.(10分)一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,求此时排水管水面的宽CD.【分析】先根据勾股定理求出OE的长,再根据垂径定理求出CF的长,即可得出结论.【解答】解:如图:作OE⊥AB于E,交CD于F,∵AB=1.2m,OE⊥AB,OA=1m,∴OE=0.8m,∵水管水面上升了0.2m,∴OF=0.8﹣0.2=0.6m,∴CF==0.8m,∴CD=1.6m.【点评】本题考查的是垂径定理的应用,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.14.(10分)某隧道的截面是由如图所示的图形构成,图形下面是长方形ABCD,上面是半圆形,其中AB=10米,BC=2.5米,隧道设双向通车道,中间有宽度为2米的隔离墩,一辆满载家具的卡车,宽度为3米,高度为4.9米,请计算说明这辆卡车是否能安全通过这个隧道?【分析】如图,作OM⊥AB于M,交AB于M,图中KN=3,作KF⊥CD于H,交⊙O 于F,连接OF.求出FK的值与4.9比较即可判断.【解答】解:如图,作OM⊥AB于M,交AB于M,图中KN=3,作KF⊥CD于H,交⊙O于F,连接OF.易知四边形OHKN是矩形,四边形ABCD是矩形,OH=KM=4,AB=CD=10,OF=OD=5,在Rt△OHF中,FH===3,∵HK=BC=2.5,∴FK=2.5+3=5.5,∵5.5>4.9,∴这辆卡车能安全通过这个隧道.【点评】本题考查矩形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.15.(10分)在半径为17dm的圆柱形油罐内装进一些油后,横截面如图.①若油面宽AB=16dm,求油的最大深度.②在①的条件下,若油面宽变为CD=30dm,求油的最大深度上升了多少dm?【分析】①作OF⊥AB交AB于F,交圆于G,连接OA,根据垂径定理求出AF的长,根据勾股定理求出OF,计算即可;②连接OC,根据垂径定理求出CE的长,根据勾股定理求出答案.【解答】解:①作OF⊥AB交AB于F,交圆于G,连接OA,∴AF=AB=8,由勾股定理得,OF==15,则GF=OG﹣OF=2dm;②连接OC,∵OE⊥CD,∴CE=EF=15,OE==8,则EF=OG﹣OE﹣FG=7dm,答:油的最大深度上升了7dm.【点评】本题考查的是垂径定理和勾股定理的应用,平分弦垂直于弦的直径平分弦,并且平分弦所对的两条弧.垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.。
垂径定理经典练习题.
垂径定理经典练习题.垂径定理可是圆这部分知识里超有趣又很重要的一个定理呢!那咱们就来好好做一些垂径定理的经典练习题吧。
一、垂径定理的基础回顾垂径定理说的是垂直于弦的直径平分弦,并且平分弦所对的两条弧。
这就像一个很公平的分配规则,直径就像一个大管家,把弦和它对应的弧都给平均分好了。
比如说有一个圆,中间有一条弦,然后有一条直径和这条弦垂直相交,那么这个弦就被直径从中间平均分成了两段,而且弦对着的两条弧也被平均分成了两段呢。
二、练习题类型一:求弦长1. 有一个圆,半径是5,一条弦距离圆心的距离是3,让我们求这条弦的长。
我们可以先根据垂径定理来做辅助线,连接圆心和弦的两个端点,再作一条垂直于弦的半径。
这样就构成了一个直角三角形。
半径是斜边,弦心距(就是弦到圆心的距离)是一条直角边,弦长的一半就是另一条直角边。
根据勾股定理,弦长的一半就等于根号下(半径的平方减去弦心距的平方)。
这里半径是5,弦心距是3,那弦长的一半就是根号下(5² - 3²)= 4,所以弦长就是8啦。
2. 再比如,已知圆的直径是10,弦AB,作OC垂直于AB于点C,OC = 3,求AB的长。
同样的道理,先求出AB的一半。
因为直径是10,所以半径是5。
根据勾股定理,AB的一半等于根号下(5² - 3²)= 4,那么AB就是8。
这类型的题只要抓住垂径定理和勾股定理的结合就很好做啦。
三、练习题类型二:求半径1. 有一条弦长是6,弦心距是4,求这个圆的半径。
还是先根据垂径定理作辅助线,设半径为r。
那么根据勾股定理就有r² = (弦长的一半)²+弦心距²。
弦长是6,弦长的一半就是3,弦心距是4,所以r² = 3²+4² = 25,r = 5。
2. 已知弦AB = 8,点C为AB的中点,OC垂直于AB,OC = 3,求圆的半径。
因为C是AB的中点,OC垂直AB,这就是垂径定理的应用啦。
初三垂直于弦的直径练习题
初三垂直于弦的直径练习题一、选择题1. 若一个弦垂直于直径,那么这个弦的长度与直径的关系是:A) 垂直弦的长度是直径的两倍B) 垂直弦的长度是直径的一半C) 垂直弦的长度等于直径D) 垂直弦的长度是直径的平方根2. 在一个圆的圆心处作一个角,它的两条腿分别交于圆上两点,则这两点与圆心连线的关系是:A) 垂直B) 平行C) 重叠D) 无法确定3. 在一个圆的圆心处作一个角,它的两条腿分别与圆交于两点,则这两点的连线与直径的关系是:A) 垂直B) 平行C) 重叠D) 无法确定4. 若两个弦垂直于直径,那么这两个弦的位置关系是:A) 平行B) 垂直C) 相交D) 无法确定5. 若一个圆上两个点的连线与直径垂直相交,那么这两个点与圆心连线的关系是:A) 平行B) 垂直C) 重叠D) 无法确定二、填空题1. 在一个圆的圆心处作一个角,它的两条腿分别与圆交于A、B两点,则直径AB的度数为____。
2. 圆O的直径长度为10 cm,一条垂直弦的长度为12 cm,则圆O 的半径长为____cm。
3. 在圆O上,直径AC与一个弦BD垂直相交于点E,若直径AC 的长度为16 cm,弦BD的长度为10 cm,则直径AC与弦DB的交点E 到圆心O的距离为____cm。
三、计算题1. 在一个半径为7 cm的圆O中,弦AB垂直于直径CD,若弦AB 的长度为12 cm,则直径CD的长度为多少?2. 在圆O中,直径AC的长度为10 cm,一个弦BD与直径AC垂直,且弦BD的长度为8 cm,则弦BD与圆心O的距离为多少?四、解答题已知半径为6 cm的圆O,弦AB与直径CD垂直相交于点E。
如果弦AB的长度为8 cm,求直径CD的长度和弦AB与圆心O的距离。
解:设直径CD的长度为x cm,根据垂直弦定理,有x * 8 = 6 * 88x = 48x = 6所以直径CD的长度为6 cm。
由于直径CD垂直于弦AB,弦AB与圆心O的距离等于半径OC的长度。
垂径定理精选题35道
垂径定理精选题35道一.选择题(共15小题)1.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2B.4C.4D.82.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4B.C.D.3.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD 的长为()A.B.2C.2D.84.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.45.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC 的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4 cm6.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC 的长为()A.cm B.cm C.cm或cm D.cm或cm7.如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3B.2.5C.2D.18.如图,⊙O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM的长的取值范围是()A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<5 9.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC 互补,则弦BC的长为()A.3B.4C.5D.610.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB =8,OC=3,则EC的长为()A.B.8C.D.11.已知如图,AB是⊙O的直径,弦CD⊥AB于E,CD=6,AE=1,则⊙O的直径为()A.6B.8C.10D.1212.点P是⊙O内一点,过点P的最长弦的长为10cm,最短弦的长为6cm,则OP的长为()A.3cm B.4cm C.5cm D.6cm13.⊙O的半径为5,M是圆外一点,MO=6,∠OMA=30°,则弦AB的长为()A.4B.6C.6D.814.如图,CD为⊙O直径,CD⊥AB于点F,AE⊥BC于E,AE过圆心O,且AO=1.则四边形BEOF的面积为()A.B.C.D.15.△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点E、D,则AE的长为()A.B.C.D.二.填空题(共14小题)16.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为.17.如图,在⊙O中,弦AB=1,点C在AB上移动,连接OC,过点C作CD⊥OC交⊙O 于点D,则CD的最大值为.18.如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为.19.如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C,D 两点,点E为⊙G上一动点,CF⊥AE于F,则弦AB的长度为;当点E在⊙G 的运动过程中,线段FG的长度的最小值为.20.如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为.21.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为.22.已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是cm.23.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为cm.24.如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD=cm.25.如图,在平面直角坐标系xOy中,直线y=x+与⊙O相交于A,B两点,且点A在x轴上,则弦AB的长为.26.已知⊙O的直径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=8cm,CD=6cm,则AB与CD之间的距离为cm.27.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为.28.如图,AB为⊙O的直径,弦CD⊥AB于点H,若AB=10,CD=8,则OH的长度为.29.如图所示,在⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为.三.解答题(共6小题)30.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.31.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连接AD.(1)求证:AD=AN;(2)若AB=8,ON=1,求⊙O的半径.32.如图,在圆O中,弦AB=8,点C在圆O上(C与A,B不重合),连接CA、CB,过点O分别作OD⊥AC,OE⊥BC,垂足分别是点D、E.(1)求线段DE的长;(2)点O到AB的距离为3,求圆O的半径.33.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,BC=3.(1)求AB的长;(2)求⊙O的半径.34.如图,四边形ABCD内接于⊙O,OC=4,AC=4.(1)求点O到AC的距离;(2)求∠ADC的度数.35.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,图1,点P表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O为圆心,5m为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB长为8m,求筒车工作时,盛水桶在水面以下的最大深度.垂径定理精选题35道参考答案与试题解析一.选择题(共15小题)1.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.2B.4C.4D.8【分析】根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.【解答】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理.2.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4B.C.D.【分析】PC⊥x轴于C,交AB于D,作PE⊥AB于E,连接PB,由于OC=3,PC=a,易得D点坐标为(3,3),则△OCD为等腰直角三角形,△PED也为等腰直角三角形.由PE⊥AB,根据垂径定理得AE=BE=AB=2,在Rt△PBE中,利用勾股定理可计算出PE=1,则PD=PE=,所以a=3+.【解答】解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连接PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选:B.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.3.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD 的长为()A.B.2C.2D.8【分析】作OH⊥CD于H,连接OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.【解答】解:作OH⊥CD于H,连接OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=∠APC=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选:C.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.4.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.4【分析】连接OD,交AC于F,根据垂径定理得出OD⊥AC,AF=CF,进而证得DF=BC,根据三角形中位线定理求得OF=BC=DF,从而求得BC=DF=2,利用勾股定理即可求得AC.【解答】解:连接OD,交AC于F,∵D是的中点,∴OD⊥AC,AF=CF,∴∠DFE=90°,∵OA=OB,AF=CF,∴OF=BC,∵AB是直径,∴∠ACB=90°,在△EFD和△ECB中∴△EFD≌△ECB(AAS),∴DF=BC,∴OF=DF,∵OD=3,∴OF=1,∴BC=2,在Rt△ABC中,AC2=AB2﹣BC2,∴AC===4,故选:D.【点评】本题考查了垂径定理,三角形全等的判定和性质,三角形中位线定理,熟练掌握性质定理是解题的关键.5.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC 的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4 cm【分析】先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.【解答】解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4(cm),OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3(cm),∴CM=OC+OM=5+3=8(cm),∴AC===4(cm);当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2(cm),在Rt△AMC中,AC===2(cm).故选:C.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.6.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC 的长为()A.cm B.cm C.cm或cm D.cm或cm【分析】先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.【解答】解:如图,连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4cm,OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3cm,∴CM=OC+OM=5+3=8cm,∴AC===4cm;当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2cm,在Rt△AMC中,AC===2cm.故选:C.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.7.如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3B.2.5C.2D.1【分析】根据垂径定理以及勾股定理即可求答案.【解答】解:连接OA,设CD=x,∵OA=OC=5,∴OD=5﹣x,∵OC⊥AB,∴由垂径定理可知:AD=4,由勾股定理可知:52=42+(5﹣x)2∴x=2,∴CD=2,故选:C.【点评】本题考查垂径定理,解题的关键是熟练运用垂径定理以及勾股定理,本题属于基础题型.8.如图,⊙O的直径为10,弦AB的长为6,M是弦AB上的一动点,则线段的OM的长的取值范围是()A.3≤OM≤5B.4≤OM≤5C.3<OM<5D.4<OM<5【分析】由垂线段最短可知当OM⊥AB时最短,当OM是半径时最长.根据垂径定理求最短长度.【解答】解:如图,连接OA,作OM⊥AB于M,∵⊙O的直径为10,∴半径为5,∴OM的最大值为5,∵OM⊥AB于M,∴AM=BM,∵AB=6,∴AM=3,在Rt△AOM中,OM====4;此时OM最短,所以OM长的取值范围是4≤OM≤5.故选:B.【点评】本题考查了垂径定理、勾股定理,解决本题的关键是确定OM的最小值,所以求OM的范围问题又被转化为求弦的弦心距问题,而解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,若设圆的半径为r,弦长为a,这条弦的弦心距为d,则有等式r2=d2+()2成立,知道这三个量中的任意两个,就可以求出另外一个.9.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC 互补,则弦BC的长为()A.3B.4C.5D.6【分析】首先过点O作OD⊥BC于D,由垂径定理可得BC=2BD,又由圆周角定理,可求得∠BOC的度数,然后根据等腰三角形的性质,求得∠OBC的度数,利用余弦函数,即可求得答案.【解答】解:过点O作OD⊥BC于D,则BC=2BD,∵△ABC内接于⊙O,∠BAC与∠BOC互补,∴∠BOC=2∠A,∠BOC+∠A=180°,∴∠BOC=120°,∵OB=OC,∴∠OBC=∠OCB=(180°﹣∠BOC)=30°,∵⊙O的半径为4,∴BD=OB•cos∠OBC=4×=2,∴BC=4.故选:B.【点评】此题考查了圆周角定理、垂径定理、等腰三角形的性质以及三角函数等知识.注意掌握辅助线的作法,注意数形结合思想的应用.10.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB =8,OC=3,则EC的长为()A.B.8C.D.【分析】根据垂径定理求出AC=BC,根据三角形的中位线求出BE,再根据勾股定理求出EC即可.【解答】解:连接BE,∵AE为⊙O直径,∴∠ABE=90°,∵OD⊥AB,OD过O,∴AC=BC=AB==4,∵AO=OE,∴BE=2OC,∵OC=3,∴BE=6,在Rt△CBE中,EC===2,故选:D.【点评】本题考查了垂径定理,勾股定理,三角形的中位线等知识点,能根据垂径定理求出AC=BC是解此题的关键.11.已知如图,AB是⊙O的直径,弦CD⊥AB于E,CD=6,AE=1,则⊙O的直径为()A.6B.8C.10D.12【分析】连接OC,根据题意OE=OC﹣1,CE=3,结合勾股定理,可求出OC的长度,即可求出直径的长度.【解答】解:连接OC,∵弦CD⊥AB于E,CD=6,AE=1,∴OE=OC﹣1,CE=3,∴OC2=(OC﹣1)2+32,∴OC=5,∴AB=10.故选:C.【点评】本题主要考查了垂径定理、勾股定理,解题的关键在于连接OC,构建直角三角形,根据勾股定理求半径OC的长度.12.点P是⊙O内一点,过点P的最长弦的长为10cm,最短弦的长为6cm,则OP的长为()A.3cm B.4cm C.5cm D.6cm【分析】根据直径是圆中最长的弦,知该圆的直径;最短弦即是过点P且垂直于过点P 的直径的弦;根据垂径定理即可求得CP的长,再进一步根据勾股定理,可以求得OP的长.【解答】解:如图所示,CD⊥AB于点P.根据题意,得:AB=10cm,CD=6cm.∵AB是直径,且CD⊥AB,∴CP=CD=3cm.根据勾股定理,得OP===4(cm).故选:B.【点评】此题综合运用了垂径定理和勾股定理.正确理解圆中,过一点的最长的弦和最短的弦是解题的关键.13.⊙O的半径为5,M是圆外一点,MO=6,∠OMA=30°,则弦AB的长为()A.4B.6C.6D.8【分析】过O作OC⊥AB于C,连接OA,根据含30°角的直角三角形的性质得出OC=MO=3,根据勾股定理求出AC,再根据垂径定理得出AB=2AC,最后求出答案即可.【解答】解:过O作OC⊥AB于C,连接OA,则∠OCA=90°,∵MO=6,∠OMA=30°,∴OC=MO=3,在Rt△OCA中,由勾股定理得:AC===4,∵OC⊥AB,OC过O,∴BC=AC,即AB=2AC=2×4=8,故选:D.【点评】本题考查了含30°角的直角三角形的性质,勾股定理,垂径定理等知识点,能熟记垂直于弦的直径平分弦是解此题的关键.14.如图,CD为⊙O直径,CD⊥AB于点F,AE⊥BC于E,AE过圆心O,且AO=1.则四边形BEOF的面积为()A.B.C.D.【分析】根据垂径定理求出AF=BF,CE=BE,=,求出∠AOD=2∠C,求出∠AOD=2∠A,求出∠A=30°,解直角三角形求出OF和BF,求出OE、BE、BF,根据三角形的面积公式求出即可.【解答】解:∵CD为直径,CD⊥AB,∴=,∴∠AOD=2∠C,∵CD⊥AB,AE⊥BC,∴∠AFO=∠CEO=90°,在△AFO和△CEO中∴△AFO≌△CEO(AAS),∴∠C=∠A,∴∠AOD=2∠A,∵∠AFO=90°,∴∠A=30°,∵AO=1,∴OF=AO=,AF=OF=,同理CE=,OE=,连接OB,∵CD⊥AB,AE⊥BC,CD、AE过O,∴由垂径定理得:BF=AF=,BE=CE=,∴四边形BEOF的面积S=S△BFO+S△BEO=××+=,故选:C.【点评】本题考查了垂径定理,圆周角定理,解直角三角形等知识点,能够综合运用定理进行推理是解此题的关键.15.△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点E、D,则AE的长为()A.B.C.D.【分析】在Rt△ABC中,由勾股定理可直接求得AB的长;过C作CM⊥AB,交AB于点M,由垂径定理可得M为AE的中点,在Rt△ACM中,根据勾股定理得AM的长,从而得到AE的长.【解答】解:在Rt△ABC中,∵AC=3,BC=4,∴AB==5.过C作CM⊥AB,交AB于点M,如图所示,由垂径定理可得M为AE的中点,∵S△ABC=AC•BC=AB•CM,且AC=3,BC=4,AB=5,∴CM=,在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即9=AM2+()2,解得:AM=,∴AE=2AM=.故选:C.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二.填空题(共14小题)16.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为4.【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【解答】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴OD==4.故答案为4.【点评】题考查了垂径定理、勾股定理,本题非常重要,学生要熟练掌握.17.如图,在⊙O中,弦AB=1,点C在AB上移动,连接OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为.【分析】连接OD,如图,利用勾股定理得到CD,利用垂线段最短得到当OC⊥AB时,OC最小,再求出即可.【解答】解:连接OD,如图,∵CD⊥OC,∴∠DCO=90°,∴CD==,当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时D、B两点重合,∴CD=CB=AB=×1=,即CD的最大值为,故答案为:.【点评】本题考查了垂线段最短,勾股定理和垂径定理等知识点,能求出点C的位置是解此题的关键.18.如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为.【分析】连接OC,由垂径定理得出CE=CD=2,设OC=OA=x,则OE=x﹣1,由勾股定理得出CE2+OE2=OC2,得出方程,解方程即可.【解答】解:连接OC,如图所示:∵AB是⊙O的直径,CD⊥AB,∴CE=CD=2,∠OEC=90°,设OC=OA=x,则OE=x﹣1,根据勾股定理得:CE2+OE2=OC2,即22+(x﹣1)2=x2,解得:x=;故答案为:.【点评】本题考查了垂径定理、勾股定理、解方程;熟练掌握垂径定理,并能进行推理计算是解决问题的关键.19.如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C,D 两点,点E为⊙G上一动点,CF⊥AE于F,则弦AB的长度为2;当点E在⊙G的运动过程中,线段FG的长度的最小值为﹣1.【分析】作GM⊥AC于M,连接AG.因为∠AFC=90°,推出点F在以AC为直径的⊙M上推出当点F在MG的延长线上时,FG的长最小,最小值=FM﹣GM,想办法求出FM、GM即可解决问题;【解答】解:作GM⊥AC于M,连接AG.∵GO⊥AB,∴OA=OB,在Rt△AGO中,∵AG=2,OG=1,∴AG=2OG,OA==,∴∠GAO=30°,AB=2AO=2,∴∠AGO=60°,∵GC=GA,∴∠GCA=∠GAC,∵∠AGO=∠GCA+∠GAC,∴∠GCA=∠GAC=30°,∴AC=2OA=2,MG=CG=1,∵∠AFC=90°,∴点F在以AC为直径的⊙M上,当点F在MG的延长线上时,FG的长最小,最小值=FM﹣GM=﹣1.故答案为2,﹣1.【点评】本题考查垂径定理、直角三角形30度角的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.20.如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为(﹣1,﹣2).【分析】连接CB,作CB的垂直平分线,根据勾股定理和半径相等得出点D的坐标即可.【解答】解:连接CB,作CB的垂直平分线,如图所示:在CB的垂直平分线上找到一点D,CD=DB=DA==,所以D是过A,B,C三点的圆的圆心,即D的坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2),【点评】此题考查垂径定理,关键是根据垂径定理得出圆心位置.21.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为.【分析】由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径AD最短,此时线段EF=2EH=20E•sin∠EOH=20E•sin60°,因此当半径OE最短时,EF最短,连接OE,OF,过O点作OH⊥EF,垂足为H,在Rt△ADB中,解直角三角形求直径AD,由圆周角定理可知∠EOH=∠EOF=∠BAC=60°,在Rt△EOH中,解直角三角形求EH,由垂径定理可知EF=2EH.【解答】解:由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径AD最短,如图,连接OE,OF,过O点作OH⊥EF,垂足为H,∵在Rt△ADB中,∠ABC=45°,AB=2,∴AD=BD=2,即此时圆的直径为2,由圆周角定理可知∠EOH=∠EOF=∠BAC=60°,∴在Rt△EOH中,EH=OE•sin∠EOH=1×=,由垂径定理可知EF=2EH=.故答案为:.【点评】本题考查了垂径定理,圆周角定理,解直角三角形的综合运用.关键是根据运动变化,找出满足条件的最小圆,再解直角三角形.22.已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是2或14cm.【分析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可,小心别漏解.【解答】解:①当弦AB和CD在圆心同侧时,连接OA,OC,过点O作OE⊥AB于点E并延长交CD于点F.如图,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF﹣OE=2cm;②当弦AB和CD在圆心异侧时,如图,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB与CD之间的距离为14cm或2cm.故答案为:2或14.【点评】本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.23.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O的半径为4cm.【分析】连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径.【解答】解:连接OC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE=CD=4cm,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE为△AOC的外角,∴∠COE=45°,∴△COE为等腰直角三角形,∴OC=CE=4cm,故答案为:4【点评】此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.24.如图,在⊙O中,半径OD垂直于弦AB,垂足为C,OD=13cm,AB=24cm,则CD=8cm.【分析】根据垂径定理,可得AC的长,根据勾股定理,可得OC的长,根据线段的和差,可得答案.【解答】解:由垂径定理,AC=AB=12cm.由半径相等,得OA=OD=13cm.由勾股定理,得OC===5.由线段的和差,得CD=OD﹣OC=13﹣5=8cm,故答案为:8.【点评】本题考查了垂径定理,利用垂径定理得出直角三角形OAC是解题关键,又利用了勾股定理.25.如图,在平面直角坐标系xOy中,直线y=x+与⊙O相交于A,B两点,且点A在x轴上,则弦AB的长为2.【分析】设直线AB交y轴于C,过O作OD⊥AB于D,先求出A、C坐标,得到OA、OC长度,可得∠CAO=30°,Rt△AOD中求出AD长度,从而根据垂径定理可得答案.【解答】解:设直线AB交y轴于C,过O作OD⊥AB于D,如图:在y=x+中,令x=0得y=,∴C(0,),OC=,在y=x+中令y=0得x+=0,解得x=﹣2,∴A(﹣2,0),OA=2,Rt△AOC中,tan∠CAO===,∴∠CAO=30°,Rt△AOD中,AD=OA•cos30°=2×=,∵OD⊥AB,∴AD=BD=,∴AB=2,故答案为:2.【点评】本题考查一次函数、锐角三角函数及垂径定理等综合知识,解题的关键是利用tan∠CAO=得到∠CAO=30°.26.已知⊙O的直径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=8cm,CD=6cm,则AB与CD之间的距离为1或7cm.【分析】作OE⊥AB于E,延长EO交CD于F,连接OA、OC,如图,利用平行线的性质OF⊥CD,根据垂径定理得到AE=BE=4,CF=DF=3,则利用勾股定理可计算出OE=3,OF=4,讨论:当点O在AB与CD之间时,EF=OF+OE;当点O不在AB与CD 之间时,EF=OF﹣OE.【解答】解:作OE⊥AB于E,延长EO交CD于F,连接OA、OC,如图,∵AB∥CD,OE⊥AB,∴OF⊥CD,∴AE=BE=AB=4cm,CF=DF=CD=3cm,在Rt△OAE中,OE===3cm,在Rt△OCF中,OF===4cm,当点O在AB与CD之间时,如图1,EF=OF+OE=4+3=7cm;当点O不在AB与CD之间时,如图2,EF=OF﹣OE=4﹣3=1cm;综上所述,AB与CD之间的距离为1cm或7cm.故答案为1或7.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.注意分类讨论.27.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为4.【分析】根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.【解答】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故答案为4.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰直角三角形的性质和圆周角定理.28.如图,AB为⊙O的直径,弦CD⊥AB于点H,若AB=10,CD=8,则OH的长度为3.【分析】根据垂径定理由CD⊥AB得到CH=CD=4,再根据勾股定理计算出OH=3.【解答】解:连接OC,∵CD⊥AB,∴CH=DH=CD=×8=4,∵直径AB=10,∴OC=5,在Rt△OCH中,OH==3,故答案为:3.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.29.如图所示,在⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为20.【分析】延长AO交BC于D,根据∠A、∠B的度数易证得△ABD是等边三角形,由此可求出OD、BD的长;过O作BC的垂线,设垂足为E;在Rt△ODE中,根据OD的长及∠ODE的度数易求得DE的长,进而可求出BE的长;由垂径定理知BC=2BE,由此得解.【解答】解:延长AO交BC于D,作OE⊥BC于E;∵∠A=∠B=60°,∴∠ADB=60°;∴△ADB为等边三角形;∴BD=AD=AB=12;∴OD=4,又∵∠ADB=60°,∴DE=OD=2;∴BE=10;∴BC=2BE=20;故答案为20.【点评】此题主要考查了等边三角形的判定和性质以及垂径定理的应用.三.解答题(共6小题)30.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.【分析】(1)先根据CD=16,BE=4,得出OE的长,进而得出OB的长,进而得出结论;(2)由∠M=∠D,∠DOB=2∠D,结合直角三角形可以求得结果;【解答】解:(1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x﹣4)2+82,解得:x=10,∴⊙O的直径是20.(2)∵∠M=∠BOD,∠M=∠D,∴∠D=∠BOD,∵AB⊥CD,∴∠D=30°.【点评】本题考查了圆的综合题:在同圆或等圆中,相等的弧所对的圆周角相等,直径所对的圆周角为直角;垂直于弦的直径平分弦,并且平分弦所对的弧.31.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连接AD.(1)求证:AD=AN;(2)若AB=8,ON=1,求⊙O的半径.【分析】(1)先根据同角的余角相等得到∠CNM=∠B,利用等量代换得到∠AND=∠B,利用同弧所对的圆周角相等得到∠D=∠B,则得∠AND=∠D,利用等角对等边可得出结论;(2)先根据垂径定理求出AE的长,连接AO,设OE的长为x,则DE=NE=x+1,OA =OD=2x+1,在Rt△AOE中根据勾股定理可得出x的值,进而得出结论.【解答】(1)证明:∵CD⊥AB∴∠CEB=90°∴∠C+∠B=90°,同理∠C+∠CNM=90°∴∠CNM=∠B∵∠CNM=∠AND∴∠AND=∠B,∵,∴∠D=∠B,∴∠AND=∠D,∴AN=AD;(2)解:设OE的长为x,连接OA∵AN=AD,CD⊥AB∴DE=NE=x+1,∴OD=OE+ED=x+x+1=2x+1,∴OA=OD=2x+1,∴在Rt△OAE中OE2+AE2=OA2,∴x2+42=(2x+1)2.解得x=或x=﹣3(不合题意,舍去),∴OA=2x+1=2×+1=,即⊙O的半径为.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.32.如图,在圆O中,弦AB=8,点C在圆O上(C与A,B不重合),连接CA、CB,过点O分别作OD⊥AC,OE⊥BC,垂足分别是点D、E.(1)求线段DE的长;(2)点O到AB的距离为3,求圆O的半径.【分析】(1)由OD⊥AC知AD=DC,同理得出CE=EB,从而知DE=AB,据此可得答案;(2)作OH⊥AB于点H,连接OA,根据题意得出OH=3,AH=4,利用勾股定理可得答案.【解答】解:(1)∵OD经过圆心O,OD⊥AC,∴AD=DC,同理:CE=EB,∴DE是△ABC的中位线,∴DE=AB,∵AB=8,∴DE=4.(2)过点O作OH⊥AB,垂足为点H,OH=3,连接OA,∵OH经过圆心O,∴AH=BH=AB,∵AB=8,∴AH=4,在Rt△AHO中,AH2+OH2=AO2,∴AO=5,即圆O的半径为5.【点评】本题主要考查垂径定理,解题的关键是掌握垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了中位线定理与勾股定理.33.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,BC=3.(1)求AB的长;(2)求⊙O的半径.【分析】(1)连接AC,如图,利用垂径定理可判断CD垂直平分AB,则CA=CB=3,同理可得AE垂直平分BC,所以AB=AC=3;(2)先证明△ABC为等边三角形,则AE平分∠BAC,所以∠OAF=30°,然后利用含30度的直角三角形三边的关系求出OA即可.【解答】解:(1)连接AC,如图,∵CD⊥AB,∴AF=BF,即CD垂直平分AB,∴CA=CB=3,∵AO⊥BC,∴CE=BE,即AE垂直平分BC,∴AB=AC=3;(2)∵AB=AC=BC,∴△ABC为等边三角形,∴∠BAC=60°,∴AE⊥BC,∴AE平分∠BAC,即∠OAF=30°,在Rt△OAF中,∵OF=AF=×=,∴OA=2OF=,即⊙O的半径为.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.34.如图,四边形ABCD内接于⊙O,OC=4,AC=4.(1)求点O到AC的距离;(2)求∠ADC的度数.【分析】(1)作OM⊥AC于M,根据等腰直角三角形的性质得到AM=CM=2,根据勾股定理即可得到结论;(2)连接OA,根据等腰直角三角形的性质得到∠MOC=∠MCO=45°,求得∠AOC=90°,根据圆内接四边形的性质即可得到结论.【解答】解:(1)作OM⊥AC于M,∵AC=4,∴AM=CM=2,∵OC=4,∴OM==2;(2)连接OA,∵OM=MC,∠OMC=90°,∴∠MOC=∠MCO=45°,∵OA=OC,∴∠OAM=45°,∴∠AOC=90°,∴∠B=45°,∵∠D+∠B=180°,∴∠D=135°.【点评】本题考查了垂径定理,勾股定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.35.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,图1,点P表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O为圆心,5m为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB长为8m,求筒车工作时,盛水桶在水面以下的最大深度.【分析】过O点作半径OD⊥AB于E,如图,利用垂径定理得到AE=BE=4,再利用勾股定理计算出OE,然后计算出DE的长即可.【解答】解:过O点作半径OD⊥AB于E,如图,∴AE=BE=AB=×8=4(m),在Rt△AEO中,OE===3(m),∴ED=OD﹣OE=5﹣3=2(m),答:筒车工作时,盛水桶在水面以下的最大深度为2m.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.。
圆的定义圆的确定垂直于弦的直径练习
练习1 圆1.如下图,(1)若点O为⊙O的圆心,则线段__________是圆O的半径;线段________是圆O的弦,其中最长的弦是______;______是劣弧;_____半圆.(2)若∠A=40°,则∠ABO=______,∠C=______,∠ABC=______.2.已知:如图,在同心圆中,大圆的弦AB交小圆于C,D两点.(1)求证:∠AOC=∠BOD;(2)试确定AC与BD两线段之间的大小关系,并证明你的结论.3.已知:如图,AB是⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E,若AB=2DE,∠E=18°,求∠C及∠AOC的度数.4.已知:如图,△ABC,试用直尺和圆规画出过A,B,C三点的⊙O.练习2 垂直于弦的直径【基础知识填空】1.圆是______对称图形,它的对称轴是________。
2.垂直于弦的直径的性质定理是____________________________________________.3.平分________的直径________于弦,并且平分________________________________.【练习题】4.圆的半径为5cm,圆心到弦AB的距离为4cm,则AB=______cm.5.如图,CD为⊙O的直径,AB⊥CD于E,DE=8cm,CE=2cm,则AB=______cm.6.如图,⊙O的半径OC为6cm,弦AB垂直平分OC,则AB=______cm,∠AOB=______.7.如图,AB为⊙O的弦,∠AOB=90°,AB=a,则OA=______,O点到AB的距离=______.8.如图,⊙O的弦AB垂直于CD,E为垂足,AE=3,BE=7,且AB=CD,则圆心O到CD 的距离是______.9.如图,P为⊙O的弦AB上的点,PA=6,PB=2,⊙O的半径为5,则OP=______.10.如图,⊙O的弦AB垂直于AC,AB=6cm,AC=4cm,则⊙O的半径等于______cm.11.已知:如图,AB是⊙O的直径,弦CD交AB于E点,BE=1,AE=5,∠AEC=30°,求CD的长.12.已知:如图,试用尺规将它四等分.13.今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何.(选自《九章算术》卷第九“句股”中的第九题,1尺=10寸).14.已知:⊙O的半径OA=1,弦AB、AC的长分别为2,3,求∠BAC的度数.圆的定义圆的确定垂直于弦的直径练习一、选择题 1. 在Rt△ABC,∠C=90°,BC=5,AB=13,D是AB的中点,以C为圆心,BC为半径作⊙C,则⊙C与点D的位置关系是()A. D在圆内B.D在圆上C.D在圆外D.不能确定2.下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶角的距离相等;④半径相等的两个半圆是等弧.其中正确的有()A.4个B.3个C.2个D.1个3.下面的四个判断中,正确的一个是()A.过圆内的一点的无数条弦中,有最长的弦,没有最短的弦;B.过圆内的一点的无数条弦中,有最短的弦,没有最长的弦;C. 过圆内的一点的无数条弦中,有一条且只有一条最长的弦,也有且只有一条最短的弦;D.过圆内的一点的无数条弦中,既没有最长的弦,也没有最短的弦.4.下列说法中,正确的有()①菱形的四个顶点在同一个圆上;②矩形的四个顶点在同一个圆上;③正方形四条边的中点在同一个圆上;④平行四边形四条边的中点在同一个圆上.A.1个B.2个C.3个D.4个5.如图所示,在⊙0中,直径MN⊥AB,垂足为C,则下列结论中错误的是() A.AC=CB B. C. D. OC=CN6.过⊙O内一点M的最长的弦长为4 cm,最短的弦长为2 cm,则OM的长等于()A.B . C. 8 cm D .7.如图所示,AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP:PB=1:5,那么⊙O的半径等于()A.6 cm B .C.8 cm D .8.如果⊙O中弦AB与直径CD垂直,垂足为E,AE=4,CE=2,那么⊙O的半径等于() A. 5 B. C. D.9. 如图所示,AB是⊙O的一固定直径,它把⊙O分成上、下两个半圆,自上半圆上一点C作弦CD⊥AB.∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A、B两点)上移动时,点P()A.到CD的距离保持不变B.位置不变C. 等分D.随C点的移动而移动10. 如图所示,同心圆中,大圆的弦AB交小圆于C、D两点,且AC=CD,AB的弦心距等于CD的一半。
垂径定理专项练习.doc
cm.垂直于弦的直径1. 圆 摘al 形,它的对称轴 ;圆又是 _____________________________________ 对称图形, 它的对称中心是 ___________________ ・2. 垂直于弦的直径的性质定理・3. ___________ 平分 _________ 的直® ________________________________________ ^弦,并且平分 _______4.圆的半径为5cm,圆心到弦AB 的距离为4cm,则AB=5.如图,CD 为OO 的直径,AB1CD 于 E, DE=8cm, CE=2cm, 则 AB=cm.6.如图,。
的半径OC 为6cm,弦AB 垂直平分OC,则 AB=cm, ZAOB=.7.如图,AB 为。
O 的弦,ZAOB=90° , AB=a,则 OA=, O点到AB 的距离=8.如图,。
的弦AB 垂直于CD, E 为垂足,AE=3, BE=7,且AB=CD,9. 如图,P 为。
的弦AB 上的点,PA=6, PB=2,。
的半径为5,则OP=10. 如图,OO 的弦AB 垂直于AC, AB=6cm, AC=4cm,则OO 的半径等于.综合、运用、诊断11. 已知:如图,AB 是。
的直径,弦CD 交AB 于E 点,BE=1,AE=5, ZAEC=30° ,求 CD 的长.则圆心。
到 CD 的距离是 cm.12.已知:如图扁,试用尺规将它四等分.13.今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何.(选自《九章算术》卷第九“句股”中的第九题,1尺=1。
寸).14.已知:OO的半径OA=1,弦AB、AC的长分别为",占,求ZBAC的度数.15,已知:OO的半径为25cm,弦AB=40cm,弦CD=48cm, AB//CD.求这两条平行弦AB, CD 之间的距离.16.已知:如图,A, B是半。
垂直于弦的直径 练习题
24.1.2 垂直于弦的直径练习题一、单选题.1.如图,在⊙O中,弦AB=5,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为()A.5B.2.5C.3D.22.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,若BE=CD=8,则⊙O的半径的长是()A.5B.4C.3D.23.如图,在⊙O中,直径AB=8,弦DE⊥AB于点C,若AD=DE,则BC的长为()A.B.C.1D.24.已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若P A=4,PB=6,则OP=()A.B.4C.D.55.把半径长为2.5的球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知CD=4,则EF=()A.2B.2.5C.4D.56.如图,点A,C,D均在⊙O上,点B在⊙O内,且AB⊥BC于点B,BC⊥CD于点C,若AB=4,BC=8,CD=2,则⊙O的面积为()A.B.C.D.二.填空题7.如图,在⊙O中,弦AB⊥OC于E点,C在圆上,AB=8,CE=2,则⊙O的半径AO=.8.如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为.(结果保留π)9.如图,AB是⊙O的直径,弦CD交AB于点P,AP=4,BP=12,∠APC=30°,则CD的长为.10.如图,矩形ABCD与圆心在AB上的⊙O交于点G,B,F,E,GB=5,EF=4,那么AD=.三.解答题11.如图,在⊙O中,AB、AC是互相垂直且相等的两条弦,OD⊥AB,OE⊥AC,垂足分别为D、E.(1)求证:四边形ADOE是正方形;(2)若AC=2cm,求⊙O的半径.12.如图,线段AB=10,AC=8,点D,E在以AB为直径的半圆O上,且四边形ACDE是平行四边形,过点O作OF⊥DE于点F,求AE的长.。
九上 圆 垂径定理 知识点+例题+练习 5种题型 (分类全面)
九上圆垂径定理知识点+例题+练习5种题型(分类全面)篇一垂径定理那可是咱九上圆这部分的重要知识点呐。
垂径定理就是垂直于弦的直径平分弦,并且平分弦所对的两条弧。
咱来看看这个图哈,一个圆,中间有条弦,过圆心作这条弦的垂线,那这条直径就把弦平分啦,而且弦所对的两条弧也被平分。
比如说,圆O 中,直径AB 垂直于弦CD,那AC 就等于AD,弧BC 等于弧BD,弧AC 等于弧AD。
咱先看个基础例题,已知圆O 的半径为5,弦AB 长为8,求圆心O 到弦AB 的距离。
这时候就可以连接OA,过O 作OC 垂直于AB 于C,根据垂径定理,AC 等于4,在直角三角形OAC 中,用勾股定理就能求出OC 等于3,这就是圆心到弦的距离。
再看个拓展题型,圆O 中,弦AB 把圆分成1:3 两部分,求弦AB 所对圆心角的度数和AB 的长。
先求出圆心角是90 度,然后再根据垂径定理和勾股定理求出AB 的长。
下面咱来做几个练习。
练习一,已知圆的半径为6,弦长为 6 倍根号3,求圆心到弦的距离。
练习二,弦AB 长为10,圆心到弦的距离为4,求圆的半径。
通过这些练习,咱就能更好地掌握垂径定理啦。
篇二垂径定理,那可是咱九年级上册圆这部分的重要知识点呐。
垂径定理说的是垂直于弦的直径平分弦且平分这条弦所对的两条弧。
条件就是得有一条直径垂直于一条弦,结论呢,就是这条直径会平分弦以及弦所对的两条弧。
咱先来个例题哈。
比如有个圆,半径是5,一条弦长为8,有一条直径垂直于这条弦。
那咱就可以根据垂径定理,先算出弦的一半是4。
再根据勾股定理,能求出圆心到弦的距离。
设圆心到弦的距离为d,半径r = 5,弦长一半是4,那根据勾股定理可得 d = √(5² - 4²)=3。
再说说练习。
一种题型就是判断是否满足垂径定理条件。
给出一个圆和一条线段,让你判断这条线段是不是直径且垂直于某条弦。
另一种题型呢,可以给出圆的半径和弦长,让你求圆心到弦的距离。
人教版初三数学上册作业.1.2垂直于弦的直径练习与作业
垂直于弦的直径(必做)
1. 如图,O O 直径AB 和弦CD 相交于点 E , AE=2 EB=6,/ DEB=30,求弦CD 长.
2、如图,O O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( )
A 、4
B 、6
C 、7
D 、8
3、某居民小区一处圆形下水管道破裂,维修人员准备更换一段新管道,如图所示,污水水面宽度为
水面到管道顶部距离为 10cm,则修理人员应准备 ______________ cm 内径的管道(内径指内部直径)
4、如图,在O O 中,弦AB 的长为8cm,圆心O 到AB 的距离为3cm.求:O O 的半径.
60cm, D
5、如图,将半径为4cm的圆折叠后,圆弧恰好经过圆心,则折痕的长为(
A、4 3cm 、2 3cm 、 3 cm 、2cm
分层作业:(选做:从下列两题中任选一题完成)
1.一条公路的转变处是一段圆弧弧CD,点0是弧CD的圆心,其中CD=600m,E为弧CD上的一点,且OE丄CD垂足为F,EF=90m.求这段弯路的半径.
2•赵州桥主桥是圆弧形,它的跨度(弧所对的弦长)为37.4m,拱高(弧的中点到弦的距离)为7.2m ,
问:你能求岀赵州桥主桥拱的半径吗?现有一艘宽16米,船舱顶部为长方形并高岀水面 5.9米的船要
经过这里,此船能顺利通过赵州桥吗?。
(含答案)九年级数学人教版上册课时练第24章《24.1.2 垂直于弦的直径》(2)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练第24章圆24.1.2垂直于弦的直径一、单选题^于点D,若OC=10,AB=16,则CD的长1.如图,在⊙O中,AB是弦,半径OC AB为()A.6B.5C.4D.3 2.如图所示,AB是⊙O的直径,CD为弦,CD⊥AB于点E,则下列结论中不成立的是()A.∠COE=∠DOE B.CE=DEC.OE=BE D.BD BC=3.如图,⊙O的半径为4,弦心距OC=2,则弦AB的长为()A.3B.C.6D.4.如图,在⊙O中,弦AB,AC互相垂直,D,E分别为AB,AC的中点,则四边形OEAD 是()A .梯形B .矩形C .菱形D .正方形5.如图,O 的直径AB ^弦CD 于点E ,连接BD .若8CD =,3OE =,则BD 的长为()A B .C D .6.如图,⊙O 的半径为5,弦AB =8,P 是弦AB 上的一个动点(不与A 、B 重合),下列符合条件的OP 的值是()A .5.8B .3.8C .1.3D .2.57.如图,AB 是⊙O 的弦,OC ⊥AB ,垂足为点C ,将劣弧AB 沿弦AB 折叠交于OC 的中点D ,若AB =,则⊙O 的半径为()A .B .C .D .8.数学活动课上,同学们想测出一个残损轮子的半径,小宇的解决方案如下:如图,在轮子圆弧上任取两点A ,B ,连接AB ,再作出AB 的垂直平分线,交AB 于点C ,交AB于点D ,测出,AB CD 的长度,即可计算得出轮子的半径.现测出40cm,10cm AB CD ==,则轮子的半径为()A .50cmB .35cmC .25cmD .20cm二、填空题9.如图,⊙O 的半径为2,弦AB =C 是弦AB 上一动点,OC 长为整数,则OC 的长为______.10在场地上砸出了一个坑口直径约为10cm 、深约为2cm 的小坑,则该铅球直径约为____cm .11.如图,在半径为10cm 的⊙O 中,弦AB =12cm ,OC ⊥AB ,垂足为C ,则OC 的长为_____cm .12.如图,在⊙O 中,直径AB 的长为10,弦CD 的长为6,且AB ⊥CD 于E ,则AE 的长为_____.13.如图,某下水管道的横截面为圆形,水面宽AB 的长为8dm ,水面到管道上部最高处点D 的距离为2dm ,则管道半径为________dm .14.如图,在平面直角坐标系中,以原点O 为圆心的圆过点(5,0)A ,一直线过点(2,3)D 与圆O 交于B 、C 两点,则弦BC 的长的最小值为________.15.如图所示一个圆柱体容器内装入一些水,截面AB 在圆心O 下方,若⊙O 的直径为60cm ,水面宽AB =48cm ,则水的最大深度为_____cm .16.⊙O 的半径为13cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB =24cm ,CD =10cm .则AB和CD之间的距离_____.三、解答题17.如图翠湖公园一石拱桥是圆弧形(劣弧),其跨度AB=24米,拱高CD为8米,求圆弧所在的圆的半径是多少米?18.如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分,如图EM经过圆心交⊙O于点E,EM⊥CD,并且CD=4cm,EM=6cm,求⊙O的半径.19.如图,AB是⊙O的直径,CB是弦,OD⊥CB于E,交BC于D,连接AC.(1)请写出三个不同类型....的正确结论;(2)若CB=8,ED=2,求⊙O的半径.20.如图,在⊙O中,AB、AC是互相垂直且相等的两条弦,OD^AB,OE^AC,垂足分别为D、E.(1)求证:四边形ADOE是正方形;(2)若AC=2cm,求⊙O的半径.7/7参考答案1.C 2.C 3.D 4.B 5.D 6.B 7.C 8.C 9.1或210.29211.812.913.514.15.1216.7cm 或17cm 17.1318.10cm 319.520.cm。
部编数学九年级上册24.4垂直于弦的直径垂径定理(基础篇)(人教版)含答案
专题24.4 圆的对称性-垂径定理(基础篇)(专项练习)一、单选题1.AB为⊙O的直径,弦CD⊥AB于点E,已知CD=16,OE=6,则⊙O的直径为( )A.8B.10C.16D.202.如图,⊙O的直径AB垂直于弦CD,垂足为点E,连接AC,∠CAB=22.5°,AB=12,则CD的长为( )A.B.6C.D.3.如图以CD为直径的⊙O中,弦AB⊥CD于M.AB=16,CM=16.则MD的长为()A.2B.4C.6D.84.如图,CD是⊙O的直径,弦AB⊥CD于点E,则下列结论不一定成立的是()A .AE =BEB .OE =DEC .»»AC BC =D .»»AD BD=5.如图,点A ,B ,C ,D 在圆上,弦AB 和CD 交于点E ,则下列说法正确的是( )A .若CD 平分AB ,则CD AB ^B .若CD AB ^,则CD 平分ABC .若CD 垂直平分AB ,则圆心在CD 上D .若圆心在CD 上,则CD 垂直平分AB 6.如图,CD 是O e 的直径,弦AB CD ^于点E ,连接BC 、BD ,下列结论中不一定正确的是( )A .AE BE =B .»»AD BD =C .OE DE =D .»»AC BC=7.下列命题中假命题是( )A .平分弦的半径垂直于弦B .垂直平分弦的直线必经过圆心C .垂直于弦的直径平分这条弦所对的弧D .平分弧的直径垂直平分这条弧所对的弦8.如图,在⊙O 中,半径OC ⊥AB 于点E ,AE =2,则下列结论正确的是( )EC=A.2OE=B.2C.AB垂直平分OC D.OC垂直平分AB9.如图,⊙O的半径为5,弦AB=8,点C是AB的中点,连接OC,则OC的长为( )A.1B.2C.3D.410.如图,在⊙O中,弦AB的长是半径OA C为»AB中点,AB、OC交于点P,则四边形OACB是()A.平行四边形B.矩形C.菱形D.正方形11.如图,在平面直角坐标系中,点A、B、C的坐标分别为(1,4),(5,4),(1,0),则以A、B、C为顶点的三角形外接圆的圆心坐标是()A .(3,2)B .(2,3)C .(1,3)D .(3,1)12.我国古代数学名著《九章算术》中有一个经典的“圆材埋壁”问题: “今有圆材埋壁中,以锯锯之,深一寸,锯道长一尺,问径几何? "意思是: 如图,CD 是⊙O 的直径, 弦 AB ⊥CD 于P ,CP =1寸,AB =10寸,则直径CD 的长是 ( )寸A .20B .23C .26D .30二、填空题13.圆的半径为5cm ,圆心到弦AB 的距离为4cm ,则AB =_______cm .14.如图,OE ⊥AB 于E ,若⊙O 的半径为10,OE =6,则AB =_______.15.如图,O e 的半径为4,AB ,CD 是O e 的弦,且//AB CD ,4AB =,CD =则AB 和CD 之间的距离为______.16.某隧道口横截面如图所示,上部分是圆弧形,下部分是矩形、已知隧道口最高点E与DC的距离EF为4米,且弧DC所在圆的半径为10米,则路面AB的宽度为_____米.17.如图,CD是⊙O的直径,弦AB⊥CD于点H,若∠D=30°,AD=,则AB=________cm.Ð的度数为18.如图,在⊙O中,弦AB的长为4,圆心O到弦AB的距离为2,则AOC______.19.如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,4),(5,4),(1,﹣2),则△ABC外接圆的圆心坐标是_________.20.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(0,3),则该圆弧所在圆的圆心坐标是______.21.在进行垂径定理的证明教学中,老师设计了如下活动:先让同学们在圆中作了一条直径MN,然后任意作了一条弦(非直径).如图1,接下来老师提出问题:在保证弦AB长度不变的情况下,如何能找到它的中点?在同学们思考作图验证后,小华说了自己的一种想法:只要将弦AB与直径MN保持垂直关系,如图2,它们的交点就是弦AB的中点,请你说出小华此想法的依据是__.22.如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是______度.23.如图,某小区的一个圆形管道破裂,修理工人准备更换一段新管道,现在量得污水水面宽度为80cm,水面到管道顶部的距离为20cm,则修理工人应准备的新管道的内直径是______cm.24.已知O e 的半径为2,弦BC =,A 是O e 上一点,且»»AB AC =,直线AO 与BC 交于点D ,则AD 的长为________.三、解答题25.如图,在⊙O 中,直径AB =10,弦AC =8,连接BC .(1)尺规作图:作半径OD 交AC 于E ,使得点E 为AC 中点;(2)连接AD ,求三角形OAD 的面积.26.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就,它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(1ED =寸),锯道长1尺(AB =1尺=10寸).问这块圆形木材的直径(AC )是多少?”如图所示,请根据所学的知识解答上述问题.27.已知:如图,在O e 中,AB AC 、为互相垂直的两条弦,,OD AB OE AC ^^,D 、E 为垂足.(1)若AB AC =,求证:四边形ADOE 为正方形.(2)若AB AC >,判断OD 与OE 的大小关系,并证明你的结论.28.如图,AB 为⊙O 的直径,弦CD AB ^于点F ,OE AC ^于点E ,若3OE =,OB=,求OF的长.5参考答案1.D【分析】连接OC ,由垂径定理可知,点E 为CD 的中点,且OE ⊥CD ,在Rt △OEC 中,根据勾股定理,即可得出OC ,从而得出直径.解:连接OC ,∵AB 为⊙O 的直径,弦CD ⊥AB 于点E∴CE=12CD=8,∵OE=6.在Rt △OEC 中,由勾股定理得:OC 2=OE 2+EC 2,即OC 2=62+82解得:OC=10∴直径AB=2OC=20.故选D .【点拨】本题考查垂径定理,勾股定理.熟练掌握定理是解答关键.2.C【分析】连接OC ,求出∠COB =45°,根据垂径定理求出CD =2CE ,根据勾股定理求出CE 即可.解:连接OC ,则OC =12AB =12×12=6, ∵OA =OC ,∠CAB =22.5°,∴∠CAB =∠ACO =22.5°,∴∠COB=∠CAB+∠ACO=45°,∵AB⊥CD,AB为直径,∴CD=2CE,∠CEO=90°,∴∠OCE=∠COB=45°,∴OE=CE,∵CE2+OE2=OC2,∴2CE2=62,解得:CE,即CD=2CE,故选:C.【点拨】本题考查了等腰三角形的性质,勾股定理,三角形的外角性质,垂径定理等知识点,能求出CE=OE是解此题的关键.3.B【分析】连接OA,如图,设⊙O的半径为r,则OA=r,OM=16-r,根据垂径定理得到AM=BM=8,再根据勾股定理得到82+(16-r)2=r2,解方程求出r=10,然后计算CD-CM即可.解:连接OA,如图,设⊙O的半径为r,则OA=r,OM=16-r,∵AB⊥CD,∴AM=BM=12AB=8,在Rt△AOM中,82+(16-r)2=r2,解得r=10,∴MD=CD-CM=20-16=4.故选:B.【点拨】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.4.B【分析】根据垂径定理即可判断.解:CD Q 是O e 的直径,弦AB CD ^于点E ,AE EB \=,»»AC BC =, »»AD BD=.故选:B .【点拨】本题主要考查垂径定理,掌握垂径定理是解题的关键.5.C【分析】根据垂径定理的内容和垂径定理的推论的内容进行判断.解:A 、平分弦(不是直径)的直径垂直于弦,原说法错误,不符合题意;B 、垂直于弦的直径平分弦,原说法错误,不符合题意;C 、弦的垂直平分线必经过圆心,原说法正确,符合题意;D 、AB 若也是直径,则原说法不符合题意;故选:C .【点拨】本题考查了垂径定理以及推论,解答时熟悉垂径定理的内容以及推论的内容是关键.6.C【分析】根据垂径定理判断即可;解:∵直径CD 垂直于弦AB 于点E ,则由垂径定理可得,AE BE =,»»AD BD=,»»AC BC=,故选项A ,B ,D 正确;OE DE =无法得出,故C 错误.故选C .【点拨】本题主要考查了垂径定理的应用,准确分析判断是解题的关键.7.A【分析】根据垂径定理及其推论分别进行判断.解:A、平分弦(非直径)的半径垂直于弦,所以A为假命题;B、垂直平分弦的直线必经过圆心,所以B选项为真命题;C、垂直于弦的直径平分这条弦所对的弧,所以C选项为真命题;D、平分弧的直径垂直平分这条弧所对的弦,所以D选项为真命题.故选:A.【点拨】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理,也考查了垂径定理的性质.8.D【分析】由垂径定理和勾股定理分别对各个选项进行判断即可.解:连接OA,条件不足,不能求出OE和EC的长,故选项A、B不符合题意;∵OC⊥AB于点E,∴OC是线段AB的垂直平分线,故选项D正确,符合题意;选项C不符合题意,故选:D.【点拨】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.9.C【分析】根据垂径定理的推论,勾股定理即可求得OC的长解:OA OBQ点C是AB的中点,=Q ⊙O 的半径为5,弦AB =8,1,42OC AB AC BC AB \^===在Rt AOC △中3OC ==故选C【点拨】本题考查了垂径定理,勾股定理,掌握垂径定理是解题的关键.10.C【分析】根据弦AB 的长是半径OA C 为»AB 的中点,判定出四边形OACB 是平行四边形,再由AB OC ^,即可判定四边形OACB 是菱形.解:∵弦AB 的长是半径OA C 为»AB 的中点,OC 为半径,∴12AP AB AO AB OC ==^,,∴1122OP OA OC ===,∴12PC OC =,即OP PC =,∴四边形OACB 是平行四边形,又∵AB OC ^,∴四边形OACB 是菱形.【点拨】本题主要考查了勾股定理,菱形的判定,以及垂径定理的推论,读懂题意是解题的关键.11.A【分析】根据垂径定理的推论“弦的垂直平分线必过圆心”作两条弦的垂直平分线,交点即为圆心.解:如图,作弦AB 、AC 的垂直平分线,∵点A 、B 、C 的坐标分别为(1,4),(5,4),(1,0),所以弦514AB =-=,弦404AC =-=,∴弦AB 的垂直平分线与x 轴相交于点(30),,弦AC 的垂直平分线与y 轴相交于点(0)2,,∴两条垂直平分线的交点1O即为三角形外接圆的圆心,且1O点的坐标是(3,2).故选:A.【点拨】本题考查了垂径定理,三角形的外接圆与圆心,熟知垂径定理是解题的关键.12.C【分析】连接OA构成直角三角形,先根据垂径定理,由DP垂直AB得到点P为AB的中点,由AB=6可求出AP的长,再设出圆的半径OA为x,表示出OP,根据勾股定理建立关于x 的方程,解方程直接可得2x的值,即为圆的直径.解:连接OA,∵AB⊥CD,且AB=10寸,∴AP=BP=5寸,设圆O的半径OA的长为x,则OC=OD=x,∵CP=1,∴OP=x-1,在直角三角形AOP中,根据勾股定理得:x2-(x-1)2=52,化简得:x2-x2+2x-1=25,即2x=26,∴CD =26(寸).故选:C .【点拨】本题考查了垂径定理和勾股定理,正确作出辅助线构造直角三角形是关键.13.6【分析】根据题意,画出图形,利用垂径定理,可得2AB AC = ,然后利用勾股定理求出3AC cm =,即可求解.解:根据题意画出如下图形,半径5OA cm = ,OC AB ^ ,则4OC cm = ,∵半径5OA cm = ,OC AB ^ ,∴2AB AC = ,在Rt AOC △ 中,由勾股定理得:3A C cm === ,∴26A B A C cm == .故答案为:6 .【点拨】本意主要考查了垂径定理,勾股定理,利用垂径定理,得到2AB AC =是解题的关键.14.16【分析】连接OA ,由垂径定理可得2AB AE =,在Rt AOE D 中利用勾股定理即可求得AE 的长,进而求得AB .解:连接OA ,∵OE ⊥AB 于E ,∴2AB AE =,在Rt AOE D 中,10OA =,OE =6,∴8AE ==,∴216AB AE ==,故答案为:16【点拨】本题考查了垂径定理和勾股定理,构造直角三角形是解题的关键.15.±【分析】作OE AB ^于E ,交CD 于F ,连结OA ,OC ,根据平行线的性质等到OF CD ^,再利用垂径定理得到1122AE AB CF CD ==,,再由勾股定理解得OE ,OF 的长,继而分类讨论解题即可.解:作OE AB ^于E ,交CD 于F ,连结OA ,OC ,如图,//AB CDQ OF CD\^11222AE BE AB CF DF CD \======,在Rt OAE △中,42OA AE ==Q ,\==OEV中,在Rt OCFQ,C F4OC==\==OF当圆心O在AB与CD之间时,=+=EF OF OE当圆心O不在AB与CD之间时,=-=-EF OF OE即AB和CD之间的距离为故答案为:【点拨】本题考查勾股定理、垂径定理、分类讨论等知识,是重要考点,难度较易,掌握相关知识是解题关键.16.16【分析】先根据勾股定理CF8=米,根据垂径定理求出DF=CF=8米,然后根据四边形ABCD为矩形,得出AB=DC=16米即可.解:∵EF=4米,OC=OE=10米,∴OF=OE-EF=6米,在Rt△OEC中,CF8=米,∵OF⊥DC,DC为弦,∴DF=CF=8米,∴DC=2×8=16米,∴四边形ABCD为矩形,∴AB=DC=16米,故答案为:16.【点拨】本题考查勾股定理,垂径定理,矩形性质,掌握勾股定理,垂径定理,矩形性质是解题关键.17.【分析】根据∠D =30°,直角三角形中30°角对应的直角边等于斜边的一半计算出AH ,再根据垂直于弦的直径平分弦得到AB =2AH 计算出AB .解:在Rt AHD V 中,∠D =30°∴2AD AH=∴AH =cm∵弦AB ⊥CD∴2==AB AH故答案为:【点拨】本题考查直角三角形和圆的性质,解题的关键是熟练掌握直角三角形和圆的相关知识.18.45°【分析】先根据垂径定理可得122AC AB ==,再根据等腰直角三角形的判定与性质即可得.解:由题意得:OC AB ^,4AB =,122AC AB \==,2OC =Q ,AC OC \=,Rt AOC \V 是等腰直角三角形,45AOC =\а,故答案为:45°.【点拨】本题考查了垂径定理、等腰直角三角形的判定与性质,熟练掌握垂径定理是解题关键.19.(3,1)【分析】根据垂径定理的推论“弦的垂直平分线必过圆心”,作两条弦的垂直平分线,交点即为圆心.解:根据垂径定理的推论,则作弦AB、AC的垂直平分线,交点D即为圆心,且坐标是(3,1).故答案为:(3,1).【点拨】此题考查了垂径定理的推论,能够准确确定一个圆的圆心.20.(1,0).【分析】直接利用垂径定理推论得出圆心位置,进而利用A点坐标得出原点位置即可得出答案.解:如图示,∵点A的坐标为(0,3),据此建立平面直角坐标系如下图所示,连接AB,AC,作AB,AC的中垂线,交点是点D则,该圆弧所在圆的圆心坐标是:(1,0).故答案是:(1,0).【点拨】本题主要考查了垂径定理以及坐标与图形的性质,正确得出圆心位置是解题关键.21.等腰三角形三线合一的性质【分析】连接OA、OB,则△OAB是等腰三角形,依据等腰三角形的性质判断.解:连接OA、OB,则△OAB是等腰三角形,当MN⊥AB时,一定有MB过AB的中点,依据三线合一的性质可得.故答案是:等腰三角形三线合一的性质.【点拨】本题考查了垂径定理,正确转化为等腰三角形的性质解决问题是关键.22.48【分析】根据点D是弦AC的中点,得到OD⊥AC,然后根据∠DOC=∠DOA即可求得答案:解:∵AB是⊙O的直径,∴OA=OC.∵∠A=42°,∴∠ACO=∠A=42°.∵D为AC的中点,∴OD⊥AC.∴∠DOC=90°﹣∠DCO=90°﹣42°=48°.故答案为:48.23.100【分析】由垂径定理和勾股定理计算即可.解:如图所示,作管道圆心O,管道顶部为A点,污水水面为BD,连接AO,AO与BD垂直相交于点C.设AO=OB=r则OC=r-20,BC=140 2BD=有222 OB OC BC=+222(20)40r r =-+化简得r =50故新管道直径为100cm .故答案为:100.【点拨】本题为垂径定理的实际应用题,主要是通过圆心距,圆的半径及弦长的一半构成直角三角形,并应用勾股定理,来解决问题.24.1或3【分析】根据垂径定理建立直角三角形,再运用勾股定理求得OD ,进而分两种情况讨论即可.解:如图,连接OB ,»»AB AC =Q ,\由垂径定理可知,OA BC ^,BD CD ==则在Rt OBD △中,1OD ==,211AD r OD \=-=-=或213AD r OD =+=+=,故答案为:1或3.【点拨】本题考查了垂径定理,勾股定理计算圆周上点到弦得距离,熟练掌握基本定理,准确分类讨论是解题关键.25.(1)见分析(2)10【分析】(1)过点O 作OD ⊥AC ,交AC 于点E ,交⊙O 于点D ;(2)由题意可得OD =5,由(1)得:OE ⊥AC ,点E 为AC 中点,继而可得118422AE AC ==´=,然后根据三角形的面积公式即可求得答案.(1)解:如图,点E 即为所求;(2)解:如图,连接AD ,∵⊙O 的直径是10,∴OD =5,由(1)得:OE ⊥AC ,点E 为AC 中点,∴118422AE AC ==´=,∴11541022OAD S OD AE =×=´´=V .【点拨】本题主要考查了垂径定理、三角形的面积公式,熟练掌握垂径定理是解题的关键.26.这块圆形木材的直径(AC )是26寸【分析】设O e 的半径为x 寸,根据题意可得AD BD =,在Rt AOD △中,OA x =,1OD x =-,勾股定理求解即可.解:设O e 的半径为x 寸,∵OE AB ^,10AB =寸,∴152AD BD AB ===寸,在Rt AOD △中,OA x =,1OD x =-,由勾股定理得()22215x x =-+,解得13x =.∴O e 的直径226AC x ==(寸).答:这块圆形木材的直径(AC )是26寸.【点拨】本题考查了垂径定理的应用,掌握垂径定理是解题的关键.27.(1)见分析(2)OD <OE【分析】(1)先根据垂径定理,由OD ⊥AB ,OE ⊥AC 得到AD =12AB ,AE =12AC ,且∠ADO =∠AEO =90°,加上∠DAE =90°,则可判断四边形ADOE 是矩形,由于AB =AC ,所以AD =AE ,于是可判断四边形ADOE 是正方形;(2)由(1)得四边形ADOE 是矩形,可得OE =AD =12AB ,OD =AE =12AC ,又AB >AC ,即可得出OE 和OD 的大小关系.(1)证明:∵OD ⊥AB ,OE ⊥AC ,AB ⊥AC ,∴四边形ADOE 为矩形,且OD 平分AB ,OE 平分AC ,∴BD =AD =12AB ,AE =EC =12AC ,∵AB =AC ,∴AD =AE ,∴四边形ADOE 为正方形.(2)解:OD <OE ,理由如下:由(1)得四边形ADOE 是矩形,∴OE =AD ,OD =AE ,∵AD =12AB ,AE =12AC ,∴OE =12AB ,OD =12AC ,又∵AB >AC ,∴OD <OE .【点拨】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧、也考查了正方形的判定.28.1.4【分析】根据垂径定理得到AE EC =,CF FD =,根据勾股定理求出AE .设OF x =,再次根据勾股定理得到等式2222AC AF OC OF -=-,代入求值即可解答.解:连接OC ,∵AB CD ^,OE AC ^,∴AE EC =,CF FD =,∵3OE =,5OB =,∴5OB OC OA ===,∴在Rt OAE △中,4AE ===,∴4AE EC ==,∴8AC =,设OF x =,∵在Rt CAF V 中,222CF AC AF =-,在Rt OFC V 中,222CF OC OF =-,∴2222AC AF OC OF -=-,∴()2222855x x -+=-,解得: 1.4x =,即 1.4OF =.【点拨】本题考查了垂径定理、勾股定理知识,关键在于合理运用垂径定理和勾股定理求出边的长度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.1.2 垂直于弦的直径
5分钟训练(预习类训练,可用于课前)
1.如图24-1-2-1,AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,则可推出的相等关系是___________.
图24-1-2-1
思路解析:根据垂径定理可得.
答案:OC=OD、AE=BE、弧AC=弧BC、弧AD=弧BD
2.圆中一条弦把和它垂直的直径分成3 cm和4 cm两部分,则这条弦弦长为__________.
思路解析:根据垂径定理和勾股定理计算.
答案:43 cm
3.判断正误.
(1)直径是圆的对称轴;
(2)平分弦的直径垂直于弦.
思路解析:(1)圆的对称轴是直线,而不是线段;(2)这里的弦是直径,结论就不成立.由于对概念或定理理解不透,造成判断错误.
答案:两个命题都错误.
4.(2010上海普陀新区调研)圆O的半径OA=6,OA的垂直平分线交圆O于B、C,那么弦BC的长等于___________.
思路解析:由垂径定理及勾股定理可得或可证△BCO是等边三角形.
答案:6
10分钟训练(强化类训练,可用于课中)
1.圆是轴对称图形,它的对称轴是______________.
思路解析:根据圆的轴对称性回答.
答案:直径所在的直线
2.如图24-1-2-2,在⊙O中,直径MN垂直于弦AB,垂足为C,图中相等的线段有__________,相等的劣弧有______________.
图24-1-2-2 图24-1-2-3
思路解析:由垂径定理回答. 答案:OM=ON ,AC=BC 弧AM=弧BM
3.在图24-1-2-3中,弦AB 的长为24 cm ,弦心距OC=5 cm ,则⊙O 的半径R=__________ cm.
思路解析:连结AO ,得Rt △AOC ,然后由勾股定理得出. 答案:13
4.如图24-1-2-4所示,直径为10 cm 的圆中,圆心到弦AB 的距离为4 cm.求弦AB 的长.
图24-1-2-4
思路分析:利用“圆的对称性”:垂直于弦的直径平分这条弦.
由OM ⊥AB 可得OM 平分AB ,即AM=2
1AB.连结半径OA 后可构造Rt △,利用勾股定理求解. 解:连结OA. ∵OM ⊥AB , ∴AM=21AB.
∵OA=2
1×10=5,OM=4,
∴AM=22OM OA =3.∴AB=2AM=6(cm). 快乐时光
医学院的口试
教授问一学生某种药每次口服量是多少? 学生回答:“5克.”
一分钟后,他发现自己答错了,应为5毫克,便急忙站起来说:“教授,允许我纠正吗?”
教授看了一下表,然后说:“不必了,由于服用过量的药物,病人已经不幸在30秒钟以前去世了!”
30分钟训练(巩固类训练,可用于课后)
1.(安徽合肥模拟)如图24-1-2-5,⊙O 的半径OA=3,以点A 为圆心,OA 的长为半径画弧交⊙O 于B 、C,则BC 等于( )
A.32
B.33
C.2
2
3 D.
2
3
3
图24-1-2-5 图24-1-2-6
思路解析:连结AB 、BO ,由题意知:AB=AO=OB ,所以△AOB 为等边三角形.AO 垂直平分BC, 所以BC=2×2
3
3=33. 答案:B
2.(北京丰台模拟)如图24-1-2-6,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB=8 cm ,OC=5 cm ,则OD 的长是( ) A.3 cm B.2.5 cm C.2 cm
D.1 cm
思路解析:因为AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB=8 cm ,OC=5 cm ,连结OA ,在Rt △ODA 中,由勾股定理得OD=3 cm. 答案:A
3.⊙O 半径为10,弦AB=12,CD=16,且AB ∥CD.求AB 与CD 之间的距离. 思路分析:本题目属于“图形不明确型”题目,应分类求解.
解:(1)当弦AB 与CD 在圆心O 的两侧时,如图(1)所示. 作OG ⊥AB ,垂足为G ,延长GO 交CD 于H ,连结OA 、OC. ∵AB ∥CD ,GH ⊥AB , ∴GH ⊥CD. ∵OG ⊥AB ,AB=12, ∴AG=2
1AB=6. 同理,CH=21
CD=8.
∴Rt △AOG 中,OG=22AG OA -=8. Rt △COH 中,OH=22CH OC -=6. ∴GH=OG +OH=14.
(2)当弦AB 与CD 位于圆心O 的同侧时,如图(2)所示. GH=OG-OH=8-6=2.
4.(江苏连云港模拟)如图24-1-2-7所示,秋千链子的长度为3 m ,静止时的秋千踏板(大小忽略不计)距地面0.5 m.秋千向两边摆动时,若最大摆角(摆角指秋千链子与铅垂线的夹角)约为60°,则秋千踏板与地面的最大距
离约为多少?
图24-1-2-7
思路分析:设秋千链子的上端固定于A 处,秋千踏板摆动到最高位置时踏板位于B 处.过点A 、B 的铅垂线分别为AD 、BE ,点D 、E 在地面上,过B 作BC ⊥AD 于点C.解直角三角形即可.
解:设秋千链子的上端固定于A 处,秋千踏板摆动到最高位置时踏板位于B 处.过点A 、B 的铅垂线分别为AD 、BE ,点D 、E 在地面上,过B 作BC ⊥AD 于点C.如图.
在Rt △ABC 中,∵AB=3,∠CAB=60°, ∴AC=3×2
1=1.5(m ). ∴CD=3+0.5-1.5=2(m ). ∴BE=CD=2(m ).
答:秋千摆动时踏板与地面的最大距离约为2 m.
5.(经典回放)“五段彩虹展翅飞”,我省利用国债资金修建的,横跨南渡江的琼州大桥如图24-1-2-8(1)已于今年5月12日正式通车,该桥的两边均有五个红色的圆拱,如图24-1-2-8(1).最高的圆拱的跨度为110米,拱高为22米,如图(2),那么这个圆拱所在圆的直径为___________米.
图24-1-2-8
思路解析:本题考查垂径定理的应用,用列方程的方法解决几何问题,会带来许多方便.
连结OC.设圆拱的半径为R 米,则OF=(R -22)(米). ∵OE ⊥CD ,∴CF=2
1
CD=2
1×110=55(米).
根据勾股定理,得OC 2=CF 2+OF 2,即R 2=552+(R -22)2.
解这个方程,得R=79.75(米).所以这个圆拱所在圆的直径是79.75×2=159.5(米). 答案:159.5
6.如图24-1-2-9,要把破残的圆片复制完整,已知弧上三点A 、B 、C.
图24-1-2-9
(1)用尺规作图法,找出弧BAC 所在圆的圆心O ;(保留作图痕迹,不写作法)
(2)设△ABC 为等腰三角形,底边BC=10 cm ,腰AB=6 cm ,求圆片的半径R ;(结果保留根号)
(3)若在(2)题中的R 满足n <R <m(m 、n 为正整数),试估算m 和n 的值. 思路分析:(1)作AB 、AC 的中垂线即得圆片圆心O ;(2)已知BC 和AB 的长度,所以可以构造直角三角形利用勾股定理可求得半径R ;(3)根据半径的值确定m 、n 的值.
(1)作法:作AB 、AC 的垂直平分线,标出圆心O.
(2)解:连结AO 交BC 于E ,再连结BO.∵AB=AC ,∴AB=AC.∴AE ⊥BC.∴BE=2
1
BC=5.
在Rt △ABE 中,AE=22BE AB -=2536-=11. 在Rt △OBE 中,R 2=52+(R-11)2,解得R=11
18(cm ).
(3)解:∵5<3
9=
12
18<
11
18<
9
18=6,
∴5<R <6.
∵n <R <m ,∴m=6,n=5.
7.⊙O 的直径为10,弦AB 的长为8,P 是弦AB 上的一个动点,求OP 长的取值范围.
思路分析:求出OP 长的最小值和最大值即得范围,本题考查垂径定理及勾股定理.该题创新点在于把线段OP 看作是一个变量,在动态中确定OP 的最大值和最小值.事实上只需作OM ⊥AB ,求得OM 即可.
解:如图,作OM ⊥AB 于M ,连结OB ,则BM=2
1
AB=2
1×8=4. 在Rt △OMB 中,OM 22BM OB -=2245-=3. 当P 与M 重合时,OP 为最短;当P 与A (或B )重合时,OP 为最长.所以
OP 的取值范围是3≤OP ≤5.。