静水剪力和弯矩曲线

合集下载

船体强度 第一章 外载荷计算

船体强度 第一章 外载荷计算

1、船舶在波浪上的受力与变形特征
2、计算工况:满载出港、满载到港、压载出 港、压载到港(10%消耗品) 3、船体产生弯矩和剪力的原因
4、船体断面弯矩的组成:静水弯矩+波浪附 加弯矩
船舶与海洋工程系
中拱变形(hogging) 船体受正弯矩作用,中 部的浮力大于重力,首尾部 的浮力小于重力;船舶上甲 板受拉,船底受压,发生中 部上拱的变形。 中垂变形(sagging) 船体受负弯矩作用,中部 的浮力小于重力,首尾部的 浮力大于重力;船舶上甲板 受压,船底受拉,发生中部 下垂的变形。
q ( x ) W( x ) ( x )
4、剪力曲线(Shear curve) N (x)
q
0
(x)
dx
5、弯矩曲线(Bending moment curve)
M(x)
N
0
x
(x)
dx
q
0 0
x x
(x)
dx
船舶与海洋工程系
1、W( x )
2、 ( x ) 3、q ( x ) W( x ) ( x )
船舶与海洋工程系
手工计算时,通常将船舶重力按 20个理 论站距分布 (民船的理论站号从船艉至 船艏,军船则是从船艏至船艉编排)。 ������ ������ 每个理论站距内的重力可以认为均 匀分布 ,从而作出阶梯形重力分布曲线, 并以此来代替真实的重力分布曲线。
船舶与海洋工程系
船舶与海洋工程系
船舶与海洋工程系
波长λ和波高h间没有固定的关系。所以, 在世界的造船实践中都采用用波长来确定 计算波高。我国以前采用的军标GJB64.1A 中波高按下列公式确定:
M(x)
0 X
0.5t/m

船体结构与强度设计总结新

船体结构与强度设计总结新

1、结构的安全性是指结构能承受在正常施工和正常使用时大概浮现的各种载荷和(或)载荷效应,同时在偶然事件发生时及发生后,仍能保持必须的整体稳定性。

此外,结构在正常使用时,还必须适合营运的要求,并在正常的维护保养条件下,具有足够的耐久性。

2、船体强度计算包括:(1) 确定作用在船体或各个结构上的载荷的大小及性质,即外力问题;外载荷(2) 确定结构剖面中的应力与变形,即结构的响应分析(亦称载荷效应分析);或者求使结构失去它应起的各种作用中的任何一种作用时的载荷,即结构的极限状态分析(亦或求载荷效应的极限值),即内力问题。

响应(3) 确定合适的强度标准,并检验强度条件。

衡准(结构的安全性衡准都普遍采纳确定性的许用应力法)3、通常将船体强度分为总强度和局部强度来研究。

4、结构的安全性是属于概率性的。

5、把船体当做一根漂移的空心薄壁梁(成为船体梁),从整体上研究其变形规律和抵抗破坏的能力,通常成为总强度。

总强度就是研究船体梁纵弯曲问题。

从局部上研究局部构件变形规律和抵抗破坏的能力,通常称为局部强度。

6、作用在船体结构上的载荷,按其对结构的阻碍可分为:总体性载荷、局部性载荷。

按载荷随时刻变化的性质可分为:不变载荷、静变载荷、动变载荷和冲击载荷。

7、总体性载荷是指引起整个船体的变形或破坏的载荷和载荷效应。

局部性载荷是指引起局部结构、构件变形或破坏的载荷。

冲击载荷,是指在特别短的时刻内猛然作用的载荷,例如砰击。

8、结构设计的基本任务是:抉择合适的结构材料和结构型式,决定全部构件的尺寸和连接方式,在保证具有足够的强度和安全性等要求下,使结构具有最佳的技术经济性能。

9、船体结构设计,一般随全船设计过程分为三个时期,即初步设计、详细设计和生产设计。

10、结构设计应考虑:安全性、营运适合性、船舶的整体配合性、耐久性、工艺性、经济性。

11、大多数结构的优化设计都以最小重量(或最小体积)作为设计的目标。

然而,减小结构尺寸、降低结构重量,往往会增加建筑工作量,从而增加制造成本同时还会引起维护保养费用的增加。

2-4 船体静波浪剪力和弯矩的计算

2-4  船体静波浪剪力和弯矩的计算

N20 0.025 Nmax
M 20 0.05 M max
如果误差不满足上述两个条件,则需要分析引起误差的原 因,检查计算过程。如果误差满足上述不等式,则允许对剪 力和弯矩曲线进行修正。
Friday, November 11, 2011
剪力和弯矩曲线修正方法
剪力修正

N Ni Ni
(3)剪力和弯矩曲线的特征
1)首尾端剪力和弯矩为零; 2)弯矩曲线上任意点的斜率,等于该剖面的剪力, 因此弯矩 最大剖面,剪力为零 ; 3)在1/4船长剖面,弯矩曲线出现拐点,该剖面剪 力出现极大值。
Friday, November 11, 2011
(4)剪力和弯矩曲线的修正
原因:由于采用数值计算方法,出现累积误差,导致 20#站剖面的剪力和弯矩不为零,但是一般满足下列误差条 件:
对于船长大于波长的内河船,需要用将船舶斜置于波浪上的方法进行静 波浪弯矩计算,斜置的目的在于使船体受力最不利。 斜置的影响: 在各个非船中剖面,浮力沿船宽的分布不是均匀的了,而是按坦谷曲 线。因此船舶除受到总纵弯曲力矩的作用外,还将受到扭转力距的作用。
Friday, November 11, 2011
20 L V xb 3 0 6 b 7 2 20 L
利用表格计算出上述五个积分系数后,可由上式解出和 值,于是就得到了船舶静置于波浪上的实际平衡位置。
Friday, November 11, 2011
(四)船舶斜置在波浪上的静波浪弯矩计算
Friday, November 11, 2011
3、利用平衡条件,即排水量和浮心位置与静水中相 等的条件,则△b必须满足以下条件:
L 0 b x dx 0 L 0 xb x dx 0

船体静波浪剪力和弯矩的计算讲解

船体静波浪剪力和弯矩的计算讲解

(二)坦谷波的绘制方法: 坦谷波为:车轮滚动时,轮盘内任一点的运动轨迹。 1. 按坦谷波面方程原理
其公式如下:【推导】
x
?
? 2?
?
?
r sin?
? ? ?
y ? ? r cos?
??
V
2. 坦谷波曲线的计算表 1-3 【p24】 按波长/波高 比的不同; 求各站的 y/λ值,制成表格。
(三)静波浪剪力及弯矩计算
2、波浪上平衡位置的确定
假定:船舶静置在波浪上,尾垂线较静水时下沉 ζ[可西] (下沉为正),纵倾角变化为Ψ[普西](首下沉为正),则 在距尾垂线x处剖面下沉或上浮的距离:
? x ? ? 0 ? x?
*** 结论:求船舶在波浪上的平衡位置,实际上可归结为
求平衡时波浪轴线的位置? 0 和 ?
3、利用平衡条件,即排水量和浮心位置与静水中相等的条件, 则△b必须满足以下条件:
项目二 船体强度计算基本知识 【3】
§2-4 船体静波浪剪力和弯矩的计算
教学目标 : 1、掌握传统的标准计算方法; 2、了解坦谷波的绘制 3、掌握静波浪剪力和弯矩表格计算方法
四、 静波浪剪力和弯矩计算
船舶由静水状态进入到波浪状态中时,浮力分 布将改变。浮力分布的变化引起附加波浪剪力 与弯矩。
(一)传统的标准计算方法
利用直壁式假设,实际波面下的浸水面积的计算为:
? ? FCi
?
FAi
?
? Fi
?
FAi
?
FBi
?
?
F Ai
?i
?
FAI
?
FBi
?
?
FAi
? 0 ? xi?
利用平衡条件,即排水量和浮心位置与静水中 相等的条件

工程力学(静力学与材料力学)弯曲强度(剪力图与弯矩图)-PPT文档资料

工程力学(静力学与材料力学)弯曲强度(剪力图与弯矩图)-PPT文档资料

第7章A 弯曲强度(1)-剪力图与弯矩图
梁的内力及其与外力的相互关系
所谓剪力和弯矩变化规律是指表示剪力和弯矩变 化的函数或变化的图线。这表明,如果在两个外力 作用点之间的梁上没有其他外力作用,则这一段梁 所有横截面上的剪力和弯矩可以用同一个数学方程 或者同一图线描述。
第7章A 弯曲强度(1)-剪力图与弯矩图
范钦珊教育与教学工作室
工程力学(静力学与材料力学)
课堂教学软件
返回总目录
工程力学(静力学与材料力学)
材料力学
弯曲强度-剪力图与弯矩图
返回总目录
第7章A 弯曲强度-剪力图与弯矩图
杆件承受垂直于其轴线的外力或位于其轴线所在平面 内的力偶作用时,其轴线将弯曲成曲线,这种受力与变形 形式称为 弯曲 ( bending )。主要承受弯曲的杆件称为 梁 (beam)。 在外力作用下,梁的横截面上将产生剪力和弯矩两种 内力。
第7章A 弯曲强度(1)-剪力图与弯矩图
工程中的弯曲构件 梁的内力及其与外力的相互关系
剪力方程与弯矩方程
载荷集度、剪力、弯矩之间的微分关系 剪力图与弯矩图
结论与讨论
返回总目录
第7章A 弯曲强度(1)-剪力图与弯矩图
工程中的弯曲构件
返回
第7章A 弯曲强度(1)-剪力图与弯矩图
在很多情形下,剪力和弯矩沿梁长度方向的分布不是 均匀的。 对梁进行强度计算,需要知道哪些横截面可能最先发 生失效,这些横截面称为危险面。弯矩和剪力最大的横截 面就是首先需要考虑的危险面。研究梁的变形和刚度虽然 没有危险面的问题,但是也必须知道弯矩沿梁长度方向是 怎样变化的。
第7章A 弯曲强度(1)-剪力图与弯矩图
返回
第7章A 弯曲强度(1)-剪力图与弯矩图

船体强度

船体强度

1一引起船体梁总纵弯曲的外力计算1 在船体总纵强度计算中,通常将船体理想化为一变断面的空心薄壁梁,简称船体梁。

船体梁在外力作用下沿其纵向铅垂面内所发生的弯曲,称为总纵弯曲。

船体梁抵抗总纵弯曲的能力,称为总纵强度。

2 船体总纵强度计算的传统方法:将船舶静置在波浪上,求船体梁横剖面上的剪力和弯曲力矩以及相应的应力,并将它与许用应力相比较以判断船体强度。

3 重力p(x)与浮力b(x)是引起船体梁总纵弯曲的主要外力。

载荷q(x),剪力N(x),弯矩M(x)。

4 中拱:船体梁中部向上拱起,首、尾两端向下垂。

中垂:船中部下垂,首、尾两端向上翘起。

5重量曲线:船舶在某一计算状态下,描述全船重量沿船长分布状况的曲线。

绘制重量曲线的方法:静力等效原则。

6 重量的分类:按变动情况来分,①不变重量,即空船重量,包括:船体结构、舾装设备、机电设备等各项固定重量。

②变动重量,即装载重量,包括货物、燃油、淡水、粮食、旅客、压载等各项可变重量。

按分布情况来分,①总体性重量,即沿船体梁全长分布的重量,通常包括:主体结构、油漆、锁具等各项重量。

②局部性重量,即沿船长某一区段分布的重量。

7 重量的分布原则:静力等效原则。

①保持重量的大小不变,这就是说要使近似分布曲线所围成的面积等于该项实际重量。

②保持重量重心的纵向坐标不变,即要使近似分布曲线所围的面积的形心纵坐标与该项重量的重心坐标相等。

③近似分布曲线的范围与该项重量的实际分布范围相同或大体相同。

8 浮力曲线:船舶在某一装载情况下,描述浮力沿船长分布状况的曲线29 载荷曲线:在某一计算状态下,描述引起船体梁总纵弯曲的载荷沿船长分布状况的曲线。

10 静水剪力、弯矩曲线:船体梁在静水中所受到的剪力和弯矩沿船长分布状况的曲线。

11 静波浪剪力和弯矩计算:船舶由静水进入波浪时,重量曲线p(x)并未改变,但水面线发生了变化,从而导致浮力的重新分布。

波浪下浮力曲线相对静水状态的浮力增量是引起静波浪剪力和弯矩的载荷。

第7章 静水剪力与弯矩计算

第7章  静水剪力与弯矩计算

da
邦戎曲线 计算排水体积和浮心得纵向位置, 计算排水体积和浮心得纵向位置,得到
xb1
V1
比较排水体积和 V0 ,比较 浮心纵向位置xb1 和重心的纵向位置 xg ,
V −V0 ≤ 0.5% 0 V 1
xg − xb1 ≤ 0.1%L
当上述条件不满足时,说明船舶仍未达到受力和力矩的平衡, 当上述条件不满足时,说明船舶仍未达到受力和力矩的平衡,继续改 变首尾吃水,进行调整。 变首尾吃水,进行调整。
q( x) = p( x) − b( x) = [ p( x ) − bs ( x )] + [ −∆b( x )]
2)剪力计算公式 )
x
N( x) = ∫ q( x )dx = ∫ [ p( x ) − bs ( x )]dx + ∫ [ −∆b( x )]dx
x 0
x
= Ns ( x ) + Nw( x )
3、局部性重量分配 、
1)分布在两个站距内的重量 )
p = p1 + p 2
p1 = p ( 0 .5 + p2
∆L ∆L p a = p1 × − p2 2 2
a ) ∆L a = p ( 0 .5 − ) ∆L
2)站外重量的分配 )
a
p 18 19
p1
20
p2
4.重量汇总 重量汇总
序号 名称
垂向力矩 序号 名称 重量 垂向 力臂 力矩
横向力矩 横向 力臂 力矩
纵向力矩 纵向 力臂 力矩
Ⅰ 1 2 3 4 5
固定重量= 固定重量=空船重量 主体钢料、焊条、 主体钢料、焊条、 油漆 甲板室24 甲板室 #~34# 电气设备15 电气设备 #~48# 机舱设备16 机舱设备 #~24# 尾部左舷锚绞车 1#~10# 尾部右舷锚绞车 19#~24# 首部左舷锚绞车 92#~97# 首部右舷锚绞车 92#~97# 尾部锚2 尾部锚2只2#~7# 885 6.612 5.308 13.00 45.0 2.23 6.02 2.29 2.0 1.96 5 1.96 5 1.96 5 1.96 5 5.1 1973.6 39.82 12.18 26.0 88.43 -0.3 -265.5 0.8 708

静水剪力和弯矩曲线-PPT课件

静水剪力和弯矩曲线-PPT课件

Wxg Bxb 0
注:载荷曲线的这一特点,表明了作用在船体梁上的所 有外力是平衡的。
三、静水剪力、弯矩曲线
1. 静水载荷曲线的一次积分是静水剪力曲线,二次积分 是静水弯矩曲线。即:
x
Ns (x) 0 qs (x)dx
x
xx
M s (x) 0 Ns (x)dx 0 0 qs (x)dxdx
3)弯矩曲线在两端与纵坐标轴相切。
3.曲线的不封闭性
由于误差的累积,曲线端点处剪力和弯矩为零的条 件一般很难达到。
计算精度如下:
Ns (L) 0.025, Nsmax
曲线不封闭的端点修正:
M s (L) 0.05 M smax
四、计算状态的选取
计算状态,指在总纵强度计算中为确定最大弯矩所选取的的船舶 典型装载状态。
一起。
例2.3.1长方形浮码头,长20m,宽5m,深3m,空载时吃水为1m(淡水)。当其 中部8m范围内承受均布载荷时,吃水增加至2m。假定浮码头船体重量沿其长度方 向均布。试绘出该载荷条件下的浮力曲线、载荷 曲线、剪力曲线和弯矩曲线,并 求出最大剪力和最大弯矩值。 解:已知船体质量沿船长均匀分布,则
平衡计算终止条件:
否则进行第二次近似计算。
3)第二次近似计算可按下式确定新的首、尾吃水
d f2
d f1
W B1
gA
L 2
x
f
xg
xf R
d a2
d a1
W B1
gA
L 2
xf
xg
xf R
再次衡量条件是否满足,否则进行第三次计算。
二、载荷曲线
1、概念:在某一计算状态下,描述引起船体梁总纵弯 曲的载荷沿船长分布状况的曲线称为载荷曲线。

船体结构强度直接计算指南 概述

船体结构强度直接计算指南 概述

一般情况下取满载工况和压载工况为计算工况。
#)!)% 船舶的横摇惯性半径
在船舶设计阶段,船舶的横摇惯性半径可按下式求得:
油船和散装货船: " ) !* !(压载)
" ) !# !(满载)
集装箱船:
" ) !% !
#)!)* 船舶的横摇临界阻尼系数:
在船舶设计阶段,船舶的横摇临界阻尼系数可按下式求得:
!"# 应力 !"#"! 结构中任一点的主应力 在平面应力状态下结构任一点的主应力为:
! !!
! !"
# !$ $
#
(!"
% $
!$
)$
#
"$"$
% & ’’$
! !$
! !"
# !$ $
%
(!"
% $
!$
)$
#
"$"$
% & ’’$
!"#"$ 相当应力 在船体结构强度直接计算中有时采用相当应力!&(或称 ()* +,-.应力)来衡量应力的许用程度。平面应力状态的相当应力按下式确定:
)
$( "
!&"’ )/")/]345!#
&
*#
*
!
" !
# 为其他值
式中:" ———波浪圆频率,678 9 5; %$ " # ———有义波高,’; &’ ———波浪跨零周期,5;
"! 345!# ———能量扩散函数; # ———组合波与主浪向之间的夹角,80:6005。
# 波浪资料采用 ;<=) 建议的波浪资料; $ 进行波浪载荷长期预报时认为对应每一周期的波高呈

12 弯曲中的静力学:剪力图和弯矩图

12 弯曲中的静力学:剪力图和弯矩图
梁的几何尺寸及梁横截面各部分的命名是相当标准的:如图1所示,L 为长度或跨度;b 为宽度; h 为高度(也称为深度)。梁横截面的形状不一定是矩形,倒是常常采用由垂直的
腹板和位于梁1顶、底部的水平翼缘所组成的截面。
图 1 梁的几何尺寸及梁横截面各部分的命名 在模块13和14中将看到,弯曲载荷引起的梁的应力和位移沿着梁的长度方向和高度方向
7
因此该处的剪力为 (−q0 L / 8) + (q0L / 2) = (3q0 L / 8) 。然后,剪力突变、突变值与约束反力 RB = (3q0 L / 8) 反向,使剪力跌落至零。(V、M 图应该永远是封闭的,这是检验图形的
一个方法。)
4、如图10(e)所示,弯矩图在开始时为零,因为梁的左端没有集中力偶的作用。然后,M (x) 曲线保持斜率 + q0 L / 8 (此即前半段梁的剪力值)不变。当 x = L / 2 时,弯矩值已增加到 q0L2 /16 。 5、在 x = L / 2 以后,随着剪力值的增大,弯矩曲线的斜率开始减小。由于弯矩函数总是比 剪力函数高一次,故此时弯矩曲线呈抛物线状。剪力曲线在 x = 5L / 8 处穿过V = 0 轴,在 该点处,弯矩曲线的斜率也将减小至零值。弯矩的最大值为 9q0L2 /128 ,此即V 曲线下直
_______________________________________________________________________________
图10 简支梁
例3 为说明这一过程,考虑图10所示的简支梁,该梁长为 L ,其右半段作用负的分布 载荷 q = −q0 。求解V (x) 、 M (x) 的步骤如下: 1、 由静力平衡方程求出支座的约束反力。将分布载荷用集中载荷 Q = −q0 (L / 2) 来代替, 集中载荷作用在 q 分布区中点处(见图10(b))。对A点取矩:

船体静波浪剪力和弯矩的计算

船体静波浪剪力和弯矩的计算
*** 1)相对位置对弯矩的影响:
A:波峰、波谷位于船中: 船中剖面会产生最大的 波浪弯矩。* 其它剖面中的最大弯矩并不发生在波 峰或波谷在船中时;
B:波长远小于船长:船长范围内有几个波峰和波谷,波高较 小,浮力分布未产生明显的变化;
C:波长远大于船长: 也不会引起过大的波浪弯矩;
D:波长稍大开船长:得到最大的波浪弯矩--但此时的弯矩与 波长等于船长时的弯矩相差不大【实际计算时取波长等于船 长,并且按波峰在船中或波谷在船中两种典型状态进行计算】
(四)船舶斜置在波浪上的静波浪弯矩计算
对于船长大于波长的内河船,需要用将船舶斜置于波浪上的 方法进行静波浪弯矩计算,斜置的目的在于使船体受力最不利。 斜置的影响:
在各个非船中剖面,浮力沿船宽的分布不是均匀的了,而 是按坦谷曲线。因此船舶除受到总纵弯曲力矩的作用外,还将 受到扭转力距的作用。
(五)波浪浮力修正(或称史密斯修正) 1.考虑了波浪的惯性力; 2.修正之后浮力曲线将会变得更平坦(不论波峰或波谷), 因而静波浪弯矩与剪力也将变小。 3. 修正后反而偏危险!! 4.结果表明:
一般船舶在满载吃水时,静波浪弯矩可减少20%~ 30%左右,而总纵弯矩大约减少10%~15%
如图1-28 29
六、总纵弯矩 1. 船舶在同一计算状态下,静水弯矩和静波浪弯矩的代数 和,称为总纵弯矩,即
M (x) M s (x) M w (x)
2. 其他各个剖面的最大弯矩的确定: 其他剖面处的Mmax 的不在中垂或中拱状态时出现,因此: 将按标准计算状态得到的弯矩曲线,分别向两端移动


2

0
5
b b 20
V L

3

0
6

船舶静水剪力和弯矩的计算及分析

船舶静水剪力和弯矩的计算及分析

船舶静水剪力和弯矩的计算及分析船舶静水剪力和弯矩是船舶稳定性分析的关键性要素,它们可以帮助船舶企业或设计者了解船舶的屈服状态及其结构性能。

此外,这些计算结果还可以帮助船舶设计者实现最优设计。

船舶静水剪力计算可以采用水动力过程,帮助船舶分析师对船舶行驶过程中受力状况进行分析,绘制拖拉力曲线,并计算船舶设计师所需要的力矩和力矩。

船舶弯矩计算可以帮助船舶分析师准确地模拟船舶碰撞、拖曳斜堤以及转向的情况,以及在船舶行驶过程中的耗能。

船舶静水剪力和弯矩的计算包括三个主要步骤: firstly, 进行船舶航行路线的分析,确定船舶在路线不同时间点的航行参数,并计算相应的拖拉力、弯矩和功率; secondly, 计算改变船舶航行路线和参数时的拖拉力、弯矩和功率; three, 绘制最后的静水剪力和弯矩图表,并对计算结果分析。

此外,船舶静水剪力和弯矩的计算还与船舶结构特性有关,不同船舶的结构特性可能会影响到计算的结果。

因此,在计算过程中,应该考虑到不同结构特性会对静水剪力和弯矩造成的影响,从而提高计算精度。

综上所述,船舶静水剪力和弯矩的计算和分析,对于船舶制造业具有重要的意义,它能够帮助船舶设计者准确地测试船舶在不同航行参数下的动力性能,并且能够有效地提高船舶制造设计的精度。

同时,为
了确保结果的准确性,必须注意不同的船舶结构特性对计算结果的影响。

船舶强度与结构设计习题集

船舶强度与结构设计习题集

《船舶强度与结构设计》习题集第一章船体外载荷模块1、空船在重量曲线可用抛物线和矩形之和表示,即把空船重量的一半作为均匀分布,另一半作为二次抛物线分布.如下图所示 .试求证距船中x 处单位长度的重量为:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+=2175.05.02)(l x i w x ω (kN/m)式中W ——空船重量,kN;l ——船长的一半,m.2、某长方形货驳和10m ,均匀装载正浮于静水中。

若认为货驳自身质量沿船长均匀分布,此时在货驳中央加10t 集中装载荷。

试画出其载荷、剪力和弯矩曲线,并求出最大剪力和最大弯矩。

3、长方形浮码头,长20m 、宽5m 、深3m,空载时吃 水1m (淡水)。

当中部8m 范围内承受布载荷时,吃水增加到2m 。

假定船体质量沿船长均匀分布。

试作出该载荷条件下的浮力曲线、载荷曲线、静水剪力和弯矩曲线,并求出最大剪力与最大弯矩值。

4、某箱形船,长100m 、宽18m ,在淡水中正浮时吃水为5m 。

假定船体质量沿船长均匀分布。

将一个150t 的载荷加在船中后50m 处的一点上,试画出其载荷、剪力和弯矩曲线,并计算此时船中的变矩值。

5、水线面形状如下图所示的一直壁式船,静置于L z h y π2cos 2=的余弦波上,试计算波谷在船中时的最大静波浪弯矩。

6、若将题1.3的船静置于波高h=0.5m 的余弦波上,试求最大静波浪弯矩。

第二章总纵强度模块1、某型深3.5m 的横骨架式船舶,第一次近似计算船中剖面要素时,参考轴选在基线上1.5m 处,并得到以下各数值(对半剖面):(1)使船底板在第二次计算时的折减系数不小于0.5(肋距为500mm ,每四档肋距设一实肋板),该船底板的最小厚度至少应为多少?(2)剖面上甲板宽度为2m ,舱口旁的甲板厚度为5mm ,舷侧板厚度为6mm 。

若该剖面受到1600kN 剪力的作用,求甲板距中心线4m 处和舷侧板在中和轴处的剪应力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
判断标准: xg xb 0.05% ~ 0.1% L
如不满足标准,则存在纵倾。设纵倾角为ψ
由于实船的纵稳性半径R远远大于KC,则有
tg xg xb
R
计算得到首尾吃水
首吃水
d f1
dm
L 2
xf
xg
xb R
尾吃水
d a1
dm
L 2
xf
xg
xb R
该结果为第一次近似。利用此结果在邦戎曲线上求出
例2.3.1长方形浮码头,长20m,宽5m,深3m,空载时吃水为1m(淡水)。当其 中部8m范围内承受均布载荷时,吃水增加至2m。假定浮码头船体重量沿其长度方 向均布。试绘出该载荷条件下的浮力曲线、载荷 曲线、剪力曲线和弯矩曲线,并 求出最大剪力和最大弯矩值。 解:已知船体质量沿船长均匀分布,则
q(x)
1.3 静水剪力和弯矩计算
教学目标: 1、掌握浮力曲线的得到方法 2、掌握载荷曲线的含义 3、掌握静水剪力、弯矩曲线的含义及修正方法
一、浮力曲线
1、浮力曲线的概念: 船舶在一定装载情况下,描述浮力沿船
长分布状况的曲线称为浮力曲线。 2、浮力曲线常按邦戎曲线及静水力曲线求得:
邦戎曲线表示船舶各横剖面在不同吃水状态下的面积 所围成的曲线,当船舶的浮态确定后,便能在邦戎曲线上得到 各站在确定浮态下的横剖面面积,从而绘出沿船长分布的横剖 面面积曲线,该曲线的纵坐标值乘以密度便得到了浮力曲线。 所以绘制浮力的关键在于确定浮态。
3.曲线的不封闭性
由于误差的累积,曲线端点处剪力和弯矩为零的条 件一般很难达到。
计算精度如下:
Ns (L) 0.025, Nsmax
曲线不封闭的端点修正:
M s (L) 0.05 M smax
四、计算状态的选取
计算状态,指在总纵强度计算中为确定 最大弯矩所选取的的船舶典型装载状态。
一般包括满载、压载、空载等和按装载 方案可能出现的最不利以及其它正常营运时 可能出现的更为不利的装载状态。
载荷曲线与纵向坐标轴之间所围的面积之和为零,该面 积对纵轴上任一点的静力矩为零。即:
L
L
L
0 q(x)dx 0 p(x)dx 0 b(x)dx
L
L
L
0 xq(x)dx 0 xp(x)dx 0 xb(x)dx
Wxg Bxb 0
注:载荷曲线的这一特点,表明了作用在船体梁上的所 有外力是平衡的。
xg
xf R
d a2
d a1
W B1
gA
L 2
xf
xg
xf R
再次衡量条件是否满足,否则进行第三次计算。
二、载荷曲线
1、概念:在某一计算状态下,描述引起船体梁总纵弯 曲的载荷沿船长分布状况的曲线称为载荷曲线。
2、特点
因: q(x) p(x) b(x)
所以可以根据浮力曲线和重量曲线得出如下的载荷曲线
5
o
10
17.5 6
5
14
20
x
10
q(x)
-o 5
7.5 6
20
14
-5
x
N(x)
o
-30
30 10
20 x
M(x)
o
10 -150
l x
该出吃水时的浮力分布,计算出总浮力B1及xb1。判断 是否满足以下要求。
平衡计算终止条件: W Bi W
(0.1 ~ 0.5)%
xg xbi L
(0.05 ~ 0.1)%
否则进行第二次近似计算。
3)第二次近似计算可按下式确定新的首、尾吃水
d f2
d f1
W B1
gA
L 2
x
f
弯矩应为零,亦即剪力和弯矩曲线在端点处是封 闭的
2)由于载荷、剪力和弯矩之间存在下列微分关系
dNS x
dx
qs
x,
dM z x
dx
N
s
x
所以,零载荷点与剪力的极值对应,零剪力
点与弯矩的极值对应
剪力曲线是反对称的,零点在靠近船中的某
处,而在首、尾端约船长的1/4处具有最大正值与 负值。度对静水弯矩的影响 1、船体挠度对静水弯矩的影响 中拱:中部浮力下降,两端浮力增加中拱弯曲程度减 弱; 中垂则相反。 结论:船体挠度对静水弯矩的影响是有利的。
2、货物分布对静水弯矩的影响 1) 对于内河船一般应采用货物自首至尾(或自尾自首)的连续装卸顺序。
2)对于海船(特别是散货船)要将满、空货舱分散且间隔安排,而不是集中在 一起。
三、静水剪力、弯矩曲线
1. 静水载荷曲线的一次积分是静水剪力曲线,二次积分 是静水弯矩曲线。即:
x
Ns (x) 0 qs (x)dx
x
xx
M s (x) 0 Ns (x)dx 0 0 qs (x)dxdx
因而,可以存在如下的图示关系:
2.曲线特点:
1) 船体两端是完全自由的,因此首尾端点处的剪力和
下面请同学计算一下6~8站船体的浮力值:
b(6~8)
(gF6
gF8 )
L 2
进而,可以求出全船在浮力。
但是,在进行计算前,请同学注意有个必要的条件,即知 道该船的浮态。
3、静水平衡计算
1)根据给定计算状态的船舶排水量M,从静水力曲线图上 查得如下数据:
平均吃水dm(m)、浮心距船中的距离xb、(中前 为正,m)、纵稳心半径R(m)、水线面面积A(m2)、 漂心距船中的距离xf(中前为正,m) 2)静水平衡计算确定船舶浮态
相关文档
最新文档