七年级数学上册几何图形初步单元测试卷附答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学几何模型部分解答题压轴题精选(难)
1.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.
(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=________;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;
(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.
【答案】(1)25°
(2)解:∠BOC=65°,OC平分∠MOB
∠MOB=2∠BOC=130°
∠BON=∠MOB-∠MON=130°-90°=40°
∠CON=∠COB-∠BON=65°-40°=25°
(3)解:∠NOC= ∠AOM ∠AOM=4∠NOC ∠BOC=65°
∠AOC=∠AOB-∠BOC=180°-65°=115°
∠MON=90°
∠AOM+∠NOC=∠AOC-∠MON=115°-90°=25°
4∠NOC+∠NOC=25°
∠NOC=5°
∠NOB=∠NOC+∠BOC=70°
【解析】【解答】解:(1)∠MON=90,∠BOC=65°
∠MOC=∠MON-∠BOC=90°-65°=25°
【分析】(1)根据∠MON和∠BOC的度数可以得到∠MON的度数;(2)根据角平分线的性质,由∠BOC=65°,可以求得∠BOM的度数,然后由∠NOM-90°,可得∠BON的度
数,从而得解;(3)由∠BOC=65°,∠NOM=90°,∠NOC= ∠AOM,从而可求得∠NOC的度数,然后由∠BOC=65°,从而得解.
2.在数轴上、两点分别表示有理数和,我们用表示到之间的距离;例如表示7到3之间的距离.
(1)当时,的值为________.
(2)如何理解表示的含义?
(3)若点、在0到3(含0和3)之间运动,求的最小值和最大值.
【答案】(1)5或-3
(2)解:∵ = ,
∴表示到-2的距离
(3)解:∵点、在0到3(含0和3)之间运动,
∴0≤a≤3, 0≤b≤3,
当时, =0+2=2,此时值最小,
故最小值为2;
当时, =2+5=7,此时值最大,
故最大值为7
【解析】【解答】(1)∵,
∴a=5或-3;
故答案为:5或-3;
【分析】(1)此题就是求表示数a的点与表示数1的点之间的距离是4,根据表示数a的点在表示数1的点的右边与左边两种情况考虑即可得出答案;
(2)此题就是求表示数b的点与表示数-2的点之间的距离;
(3)此题就是求表示数a的点与表示数2的点之间的距离及表示数b的点与表示数-2的点之间的距离和,而0≤a≤3, 0≤b≤3, 借助数轴当时,的值最小;当时,的值最大.
3.感知:如图①,∠ACD为△ABC的外角,易得∠ACD=∠A+∠B(不需证明) ;
(1)探究:如图②,在四边形ABDC中,试探究∠BDC与∠A、∠B.、∠C之间的关系,并说明理由;
(2)应用:如图③,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ 恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX=________度;(直接填答案,不需证明) (3)拓展:如图④,BE平分∠ABD,CE平分∠ACD,若∠BAC=100°,∠BDC=150°,则∠BEC=________度. (直接填答案,不需证明)
【答案】(1)解:如图5,连接AD并延长至点F.
∵∠BDF为△ABD的外角,
∴∠BDF=∠BAD+∠B,
同理可得∠CDF=∠CAD+∠C,
∴∠BDF+∠CDF=∠BAD+∠B+∠CAD+∠C,
即∠BDC=∠BAC+∠B+∠C;
(2)40°
(3)125°
【解析】【解答】解:(2)由题意可得∠BXC=90°,由(1)中结论可得∠BXC=∠A+∠ABX+∠ACX,
∵∠A=50°,
∴∠ABX+∠ACX=90°-50°=40°;(3)如图6,∵∠A=100°,∠BDC=150°,∠BDC=∠A+∠ABD+∠ACD,
∴∠ABD+∠ACD=150°-100°=50°,
∵BE平分∠ABD,CE平分∠ACD,
∴∠ABE+∠ACE= (∠ABD+∠ACD)=25°,
又∵∠BEC=∠A+∠ABE+∠ACE,
∴∠BEC=100°+25°=125°.
【分析】(1)如图5,连接AD并延长至F,然后利用三角形外角的性质进行分析证明即可得到∠BDC=∠BAC+∠B+∠C;(2)由题意可知∠BXC=90°,结合∠A=50°和(1)中所得结论即可得到∠ABX+∠ACX=90°-50°=40°;(3)如图6,利用(1)中所得结论结合已知条件进行分析解答即可.
4.如图,点C在线段AB上,AC=8 cm,CB=6 cm,点M、N分别是AC、BC的中点.
(1)求线段MN的长;
(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;
(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由;
(4)你能用一句简洁的话,描述你发现的结论吗?
【答案】(1)MN=MC+NC= AC+ BC= (AC+BC)= ×(8+6)= ×14=7
(2)MN=MC+NC= (AC+BC)= a
(3)MN=MC-NC= AC- BC= (AC-BC)= b
(4)如图,只要满足点C在线段AB所在直线上,点M、N分别是AC、BC的中点.那么MN就等于AB的一半.
【解析】【分析】(1)根据M、N分别是AC、BC的中点,我们可得出MC、NC分别是