数字通信系统概述

合集下载

数字通信系统的分类

数字通信系统的分类

数字通信系统的分类数字通信系统是指利用数字信号来传输信息的通信系统。

它可以分为两大类:1. 基带数字通信系统基带数字通信系统是指数字信号直接传输的通信系统。

这种系统通常用于短距离通信,因为数字信号在远距离传输时容易受到噪声和干扰的影响。

基带数字通信系统的优点是实现简单,成本低廉。

其缺点是传输距离有限,抗噪声和干扰能力较差。

2. 载波数字通信系统载波数字通信系统是指数字信号经过调制后,再通过载波进行传输的通信系统。

这种系统通常用于远距离通信,因为调制后的数字信号在远距离传输时受到噪声和干扰的影响较小。

载波数字通信系统的优点是传输距离远,抗噪声和干扰能力强。

其缺点是实现复杂,成本较高。

基带数字通信系统基带数字通信系统可以进一步分为两类:1. 不归零制数字通信系统不归零制数字通信系统是指数字信号在传输过程中,不改变其极性的通信系统。

这种系统通常用于短距离通信,因为数字信号在远距离传输时容易受到噪声和干扰的影响。

不归零制数字通信系统的优点是实现简单,成本低廉。

其缺点是传输距离有限,抗噪声和干扰能力较差。

2. 归零制数字通信系统归零制数字通信系统是指数字信号在传输过程中,在每个比特结束时都要归零的通信系统。

这种系统通常用于远距离通信,因为数字信号在远距离传输时受到噪声和干扰的影响较小。

归零制数字通信系统的优点是传输距离远,抗噪声和干扰能力强。

其缺点是实现复杂,成本较高。

载波数字通信系统载波数字通信系统可以进一步分为两类:1. 调幅数字通信系统调幅数字通信系统是指数字信号调制载波的幅度后进行传输的通信系统。

这种系统通常用于短距离通信,因为调幅数字信号在远距离传输时容易受到噪声和干扰的影响。

调幅数字通信系统的优点是实现简单,成本低廉。

其缺点是传输距离有限,抗噪声和干扰能力较差。

2. 调相数字通信系统调相数字通信系统是指数字信号调制载波的相位后进行传输的通信系统。

这种系统通常用于远距离通信,因为调相数字信号在远距离传输时受到噪声和干扰的影响较小。

数字通信系统介绍

数字通信系统介绍

数字通信系统介绍数字通信系统是指利用数字技术进行信息传送和传输的系统。

它采用数字信号代替传统的模拟信号进行信息传输,比传统的模拟通信系统具有更高的可靠性、更广泛的应用领域和更强大的功能。

数字通信系统可以分为数字语音通信系统、数字数据通信系统、数字图像通信系统和数字视频通信系统等几个类别。

数字语音通信系统是最基本的数字通信系统,它是利用模拟到数字信号的变换实现对语音信号的数字化。

数字语音通信系统在电话通信、网络电话、语音门禁等方面有着广泛的应用。

其中,电话通信是数字语音通信系统应用最为广泛的一个领域。

数字电话通信系统将语音信号转换成数字信号,通过数字电路进行传输。

这种方式可以提高电话通话质量,同时也可以提高语音数据的安全性和充分利用传输带宽。

数字数据通信系统是利用数字信号传输和接收数据信息的通信系统。

数字数据通信系统在计算机网络、互联网、局域网、广域网、移动通信等领域得到广泛的应用。

数字数据通信系统将原来的模拟信号转换成数字信号,提高了数据的可靠性和传输速率。

数字数据通信系统设计了一系列传输协议,不同的传输协议对数据传输的需求采用不同的传输方式和传输速率。

同时,数字数据传输还可以采用压缩技术,压缩数据更有效地利用传输带宽。

数字图像通信系统是以数字图像为主要传输内容的通信系统。

它采用数字信号传输图像,可以有效地提高图像的传输速度和质量。

数字图像通信系统广泛应用于图像传输、广播电视、监控和医学影像诊断等领域。

数字图像通信系统可以将图像分为连续值和离散值两类,常用的连续值图像传输方式是基于JPEG压缩技术,离散值图像传输方式是基于数字水印技术。

数字视频通信系统是以数字视频为主要传输内容的通信系统。

它采用数字信号传输视频,可以提高视频的传输速度和质量。

数字视频通信系统广泛应用于电视广播、电影、会议等领域。

数字视频通信系统在传输过程中,需要针对不同的视频序列采用不同的压缩方法。

在视频传输过程中,数字视频通信系统还需要对信号进行传输和处理,所以数字视频通信系统特别关注传输带宽和瓶颈问题。

数字通信系统的构成

数字通信系统的构成

有线通信 无线通信
模拟通信 数字通信
电通信 光通信
三、模拟信号和数字信号
任何电信号的波形都可以用幅度和时间两个参量 来描述。根据信号幅度的取值方式不同,可将信号分
为两大类:模拟信号和数字信号。
1.模拟信号——连续性(时间连续,幅值连续)
2.数字信号——离散性(时间离散,幅值离散)
判断模拟信号和数字信号的标准:信号幅值是否离散(或连续)
数字通信系统的构 成
一、信息与信号
• 通信——信息的传递与交换。 • 信息——对收信者来说还不知道的,待传送、
存储、或提取的内容。 • 信号——信息的载体,运载信息的工具。如语
言、文字、图像、编出来的电码等。 • 数字通信系统——完成数字信号产生、变换、
传递及接收全过程的系统。
二、通信的分类 说一说
包括上图中所有方框。
随堂练习
试画出数字通信基带传输系统的组成框图。
资料整理
• 仅供参考,用药方面谨遵医嘱
四、数字通信系统的模型
8
信 源
信 源 编 码
加 密 器Hale Waihona Puke 信 道 编 码调 制
6 信道
解 调
信 道 解 码
解 密 器
信 源 解 码
信 宿
1 2345
噪声源
7
1 信源:把信息变换成原始电信号。
2 信源编码 :把模拟信号变换成数字信号。 3 加密器:对数字信号进行加密。 纠错编码:纠错作用 4 信道编码 线路编码:码型变换
5 调制:将编码后的数字信号频谱变换到高频范围内。
基带信号


调制
频带信号
6 信道:传输信号的媒介(通道)。 有线信道:电缆、光缆等 无线信道:微波、卫星通信等

数字通信概述

数字通信概述

第一章 数字通信概述第一节 数字通信的基本知识一、通信系统的组成1. 通信:通信是将信息从一个地方传送到另一个地方。

2. 通信系统的组成:3. 信源:产生和发出信息的人或机器。

4. 变换器:把信源发出的信号进行加工处理,变换成适合在信道上传输的信号。

5.反变换器:把信道送来的电信号按相反过程变换成原始信息,最后由信宿接收。

6. 信宿:信息最后的归宿,它是最后接收信息的处所,可以是人和各种终端设备。

7. 信道:传递信号的通道,按传输媒介有无线信道和有线信道之分。

8. 噪声源:因信号传递时,不可避免地会受到噪声或干扰的影响,且干扰会始终存在。

为了便于分析干扰的影响,所以把始端、终端及传输信道中所在干扰都折合到信道中,等效为一个总的噪声源。

9. 模拟通信系统:若信源的信息是一个幅度和时间连续变化着的模拟信号, 则利用模拟信号进行信息传递的通信方式称为该系统。

10。

数字通信系统:若信源的信息是一个幅度限制个数值之内,不是连续的而是离散的数字信号,则利用数字信号进行传递的通信方式称为该系统。

二.数字通信系统的模型。

1.数字通信系统的基本任务:是把信源产生的信息变换成一定格式的数字信号,通过信道传输,在终端再变成适宜信宿接收的信息形式。

2.数字通信系统的基本模型:接收器 发送器3.信源编码的主要任务:(1)将信源送出的模拟信号数字化,即对连续信息进行模拟/数字(A/D )变换,用一定的数字脉冲组合来表示信号的一定幅度。

(2)将信源输出的数字信号按实际信息的统计特性进行变换,以提高信号传输的有效性。

4.信道编码(抗干扰编码):是一种代码变换,产要解决数字通信的可靠问题。

5.同步:通信系统的收、发端要有统一的时间标准,使收端和发端步调一致。

6.数字通信系统的基本模型图中,若信源是数字信息时,则信源编码或信源解码可以去掉,构成数据通信系统。

若在没有用调制器和解调器,构成的是最单的通信系统称为基带传输系统,该系统实际上是将基带信号直接进行传输的系统。

数字通信系统的一般模型

数字通信系统的一般模型

数字通信系统的一般模型
数字通信系统是指将模拟信号转换成数字信号,并通过媒介传输到接收端,再将数字信号转换回模拟信号的一种通信系统。

数字通信系统的一般模型包含以下几个部分:
1. 发送端:数字信号的产生器、编码器、调制器和发射机等组成的系统,主要负责将模拟信号转换成数字信号并进行相关处理和调制,然后通过天线或其他传输媒介发送出去。

2. 传输媒介:数字信号在传输媒介上进行传输,如光纤、电缆、无线电波等。

4. 噪声:传输过程中会受到各种干扰和噪声的影响,可能导致数字信号的失真和误码。

5. 控制反馈环路:控制系统可以通过反馈传递控制信号来实现数字通信系统的自适应和自校准。

6. 用户界面:数字通信系统还可以提供用户界面和人机交互功能,以方便用户进行控制和监测。

(信源)+编码器→(调制器)+发射机→(通信媒介)+接收机←(解调器)+(解码器)+(数字信号处理器)+(数模转换器)+(载波频率反馈器)
其中,信源指数字通信系统输入的模拟信号;编码器是将信源信号进行数字化编码的模块;调制器将数字信号转化成模拟信号的模块,如将数字信号调制成模拟信号的频率、相位或幅度;发射机是通过天线或其他传输媒介将模拟信号发送出去的模块;噪声是在传输过程中可能会受到的各种噪声和干扰;通信媒介是数字信号在传输过程中的传输媒介,如光纤、电缆和无线电波等;接收机是接收从传输媒介中接收到的信号,将其转换成数字信号的模块,具有解调、解码、数字信号处理和数模转换等功能;控制反馈环路能够实现数字通信系统的控制和校准;用户界面则是方便用户进行控制和监测的接口。

数字通信系统中各组成部分之间的通信和交互过程是复杂的,但是通常采取层次化结构,如协议层次结构,使得整个数字通信系统更加简洁、高效、可靠。

现代通信系统课件:数字光纤通信系统

现代通信系统课件:数字光纤通信系统
低损耗,耐水压,耐张力
高密度,多芯和低、中损耗
2~20
重量轻,线径细,可挠性好
数字光纤通信系统
下面介绍几种有代表性的光缆结构形式。
(1)层绞式光缆。它是将若干根光纤芯线以强度元件为中心绞合在一起的一种结构, 如 图5. 9(a)所示。特点是成本低,芯线数不超过10根。 (2)单位式光缆。它是将几根至十几根光纤芯线集合成一个单位,再由数个单位以强 度 元件为中心绞合成缆,如图5.9(b)所示,其芯线数一般适用于几十芯。 (3)骨架式光缆。这种结构是将单根或多根光纤放入骨架的螺旋槽内,骨架中心是强 度 元件,骨架上的沟槽可以是V型、U型或凹型,如图5. 9(c)所示。由于光纤在骨架沟槽 内具有较大空间,因此当光纤受到张力时,可在槽内做一定的位移,从而减少了光纤芯 线 的应力应变和微变,这种光纤具有耐侧压、抗弯曲、抗拉的特点。 (4)带状式光缆。它是将4~12根光纤芯线排列成行,构成带状光纤单元,再将多个 带 状单元按一定方式排列成缆,如图5. 9(d)所示。这种光缆的结构紧凑,采用此种结构可 做成上千芯的高密度用户光缆。
若使光束从光密媒质射向光疏媒质时,则折射角大于入射角,如图5. 4所示。
图5. 3 光的折射示意图
图5. 4 临界角和光线的全反射
数字光纤通信系统
如果不断增大θ 0可使折射角达到90°,这时的θ 1称为临界角。如果继续增大 队,则折射角会大于临界角,使光线全部返回光密媒质中,这种现象称为光的全反 射。
因光纤是石英玻璃材料,所以不怕高温,有防火的性能。因而可用于易燃易爆的环境中。 6.光纤通信保密性好
由于光纤在传输光信号时向外世漏小,不会产生串话等干扰,因而光纤通信保密性好。
5. 1.数2字数光纤字通光信系纤统通信系统的组成

《数字通信原理》课件

《数字通信原理》课件
信道编码
为了提高数字信号传输的可靠性和稳定性,通过增加冗余信息对数字信号进行 编码。
常见信道编码技术
线性分组码、循环码、卷积码等。
差错控制编码
差错控制编码
通过在数字信号中添加额外的信息,以检测和纠正传输过程中可能出现的错误。
常见差错控制编码技术
奇偶校验码、海明码、循环冗余校验(CRC)等。
加密与解密技术
THANKS
抗干扰能力
抗噪声干扰能力
数字通信系统在存在噪声干扰的情况 下仍能正常工作的能力。
抗多径干扰能力
数字通信系统抵抗多径效应干扰的能 力。
误码率与信噪比
误码率(BER)与信噪比(SNR)的关系
随着信噪比的增加,误码率逐渐降低,通信质量提高。
信噪比优化
通过合理配置信号功率和噪声抑制措施,降低误码率,提高通信性能。
数字信号在传输过程中可能会受到噪声 、干扰和衰减的影响,需要进行相应的 处理和补偿。
数字信号的同步技术
01
载波同步
通过提取载波频率和相位信息 ,使接收端与发射端保持一致
的载波频率和相位。
02
位同步
使接收端的抽样时钟与发送端 的时钟保持一致,以便正确地
进行抽样判决。
03
帧同步
使接收端正确地识别出数字信 号中的帧结构,以便正确地提
物联网与智能家居系统的组成
物联网与智能家居系统由传感器、控制器、智能家电等组成,实现家庭设施的远程控制和 智能化管理。
物联网与智能家居系统的特点
物联网与智能家居系统具有便捷性、智能化、节能环保等特点,能够提高家庭生活的舒适 度和便利性。
未来数字通信技术的发展趋势
01
未来数字通信技术的发展趋势概述

数字通信基础知识

数字通信基础知识
1. 数字频带传输通信系统 数字频带传输通信系统 说明: 说明 加密器为了实现保密通信对基带信号的扰乱 加密器为了实现保密通信对基带信号的扰乱 编码器信道的噪声对数字信号的传输造成的差错 编码器信道的噪声对数字信号的传输造成的差错 通过编码器/ 通过编码器/解码器来控制 该环节因为其位置往往不是固定未画出 该环节因为其位置往往不是固定未画出, 同步 该环节因为其位置往往不是固定未画出,但 在该系统中是不可缺少的. 在该系统中是不可缺少的.
1 接 收 设 备 发 送 设 备 接 收 设 备 …
(a)
(b)
1.1.3 通信方式
3. 按通信网络形式分
(a) 两点间直通方式 (b) 分支方式 (c) 交换方式
终端A (a) 终端B 终端 A 终端 B 终端 C 终端 A 终端 B (b) 图1-3 终端 C … 终端 N (c) 终端 N 交换设备
1.3 通信技术发展概况
年到20世纪80 (2)近代通信阶段。从1948年到20世纪80年代光纤通信 )近代通信阶段。 1948年到20世纪80年代光纤通信 系统等投入使用共30多年,主要是通信统计理论、 30多年 系统等投入使用共30多年,主要是通信统计理论、数字 传输理论及技术、 彩色电视、 卫星通信等方面的发展, 传输理论及技术 、 彩色电视 、 卫星通信等方面的发展 , 此阶段模拟通信用于普通产品,数字通信用于高端产品。 此阶段模拟通信用于普通产品,数字通信用于高端产品。 世纪80年代商用通信卫星、 (3)现代通信阶段。20世纪80年代商用通信卫星、程控 )现代通信阶段。20世纪80年代商用通信卫星 数字交换机、光纤通信系统等陆续投入使用至今共20 20多 数字交换机、光纤通信系统等陆续投入使用至今共20多 主要是卫星通信、 光纤通信、 移动通信、 年 , 主要是卫星通信 、 光纤通信 、 移动通信 、 多媒体通 信等方面的发展,数字通信进入寻常百姓家庭。 信等方面的发展,数字通信进入寻常百姓家庭。 3. 通信技术发展史上的重大事件 通信技术发展史上的重大事件 现把从1838年到20世纪80 1838年到20世纪80年代通信发展上的重大事 现把从1838年到20世纪80年代通信发展上的重大事 件列于表1 从中可清楚地看到通信的发展过程。 件列于表1-2,从中可清楚地看到通信的发展过程。 1Biblioteka 3.2 通信技术的现状和发展趋势

数字光纤通信系统课件

数字光纤通信系统课件

光接收机
将光信号转换为电信号,实现 信息的接收。
数字信号处理单元
对电信号进行调制和解调处理 ,以及实现信号的编解码等功
能。
02
数字光纤通信系统关键 技术
调制技术
调相技术
调频技术
通过改变光载波的相位信息承载信号,常 见有二进制相位移位键控(BPSK)和四进 制相位移位键控(QPSK)。
利用光载波的频率变化携带信息,常见有 最小频移键控(MSK)和偏移四相相位移 位键控(OQPSK)。
05
数字光纤通信系统发展 趋势与挑战
超高速率与超长距离传
总结词
随着数据需求的爆炸式增长,超高速率和超长距离传输成为数字光纤通信系统的 重要发展方向。
详细描述
目前,商用数字光纤通信系统的传输速率已经达到Tbps级别,同时,超长距离传 输技术也在不断发展,以满足大规模数据中心和跨国网络之间的连接需求。
传输距离
总结词
传输距离是数字光纤通信系统覆盖范围的直接体现,它决定了系统的服务范围和应用场景。
详细描述
传输距离是指数字光纤通信系统在保证一定通信质量的前提下,光信号能够传输的最大距离。传输距离受到光纤 损耗、光信号衰减、中继器性能等多种因素的影响。长传输距离的系统可以提供更广泛的网络覆盖,满足不同地 区和领域的通信需求。
误码率与Q因子
要点一
总结词
误码率与Q因子是衡量数字光纤通信系统传输质量的指标 ,它们反映了系统传输二进制位错误的概率。
要点二
详细描述
误码率是指数字光纤通信系统在传输过程中,接收端接收 到的二进制位中出现错误的概率,是评估系统传输质量的 重要参数。Q因子是另一种衡量系统传输质量的参数,它 综合考虑了系统的误码率和信号质量,能够更全面地反映 系统的性能。低误码率和高的Q因子意味着系统传输质量 更高,信息传递更准确。

数字通信系统报告..

数字通信系统报告..
图3-2 2ASK信号调制的模型方框图
其中正弦信是载波信号,方波代表S(t)序列的信号塬,正弦信号和方波相乘后就得到键控2ASK信号。
(2)参数设置
建立好模型之后就要设置系统参数,以达到系统的最佳仿真。从正弦信号源开始依次的仿真参数设置如图3-3和3-4所示:
图3-3 正弦信号参数设置
其中sin函数是幅度为2频率为1Hz采样周期为0.002的双精度DSP信号
(3)光导纤维的出现更是将通信容量提高到了以前无法想象的地步。
(4)电子计算机的出现将通信技术推上了更高的层次,借助现代电信网和计算机的融合,人们将世界变成了地球村。
(5)微电子技术的发展,使通信终端的体积越来越小,成本越来越低,范围越来越广。
例如,2003年我国的移动电话用户首次超过了固定电话用户。根据国家信息产业部的统计数据,到2005年底移动电话用户近4亿。
图3-7 低通滤波器的参数设置图
(3)系统仿及各点时间波形图,如图3-8所示:
图3-8 2ASK信号解调的各点时间波形图
由上图可以看出由于载波频率的提高使的示波器在波形显示上出现了一定的困难,不过要想显示调制部分的理想波形只要调整示波器的显示范围即可。
3.2
3.2.1
频移键控。就是用数字信号去调制载波的频率。是信息传输中使用得较早的一种调制方式,它的主要优点是: 实现起来较容易,抗噪声与抗衰减的性能较好。在中低速数据传输中得到了广泛的应用。它是利用基带数字信号离散取值特点去键控载波频率以传递信息的一种数字调制技术。
第一章
1.1
通信就是克服距离上的障碍,从一地向另一地传递和交换消息。消息是信息源所产生的,是信息的物理表现,例如,语音、文字、数据、图形和图像等都是消息(Message)。消息有模拟消息(如语音、图像等)以及数字消息(如数据、文字等)之分。所有消息必须在转换成电信号(通常简称为信号)后才能在通信系统中传输。所以,信号(Signal)是传输消息的手段,信号是消息的物质载体。

数字通信系统工作原理

数字通信系统工作原理

数字通信系统工作原理数字通信系统是一种利用数字信号进行信息传输的系统。

它的工作原理是将要传输的信息转换为数字信号,并通过传输介质传送到接收端,然后再将数字信号转换为原始信息。

数字通信系统的工作原理可以分为三个主要步骤:信号采样、信号编码和信号调制。

信号采样是将模拟信号转换为数字信号的过程。

模拟信号是连续变化的信号,而数字信号是离散的信号。

为了将模拟信号转换为数字信号,需要对模拟信号进行采样。

采样是指在一定时间间隔内对模拟信号进行采集,将连续的模拟信号转换为离散的数字信号。

采样的频率越高,转换后的数字信号越接近原始信号。

接下来,信号编码是将数字信号转换为二进制码的过程。

在数字通信系统中,常用的编码方式有脉冲编码调制(PCM)、差分编码调制(DM)、正交振幅调制(QAM)等。

脉冲编码调制是将离散的数字信号转换为一系列脉冲,通过控制脉冲的幅值和宽度来表示不同的数字。

差分编码调制是将每个样本值与前一个样本值之间的差异进行编码,减少了传输数据量。

正交振幅调制是将数字信号分为实部和虚部,通过不同的幅度和相位来表示不同的数字。

信号调制是将数字信号转换为适合传输的信号。

传输介质通常是电磁波,所以需要将数字信号转换为电磁波信号进行传输。

常用的调制方式有频移键控调制(FSK)、相移键控调制(PSK)和正交幅度调制(QAM)等。

频移键控调制是通过改变载波的频率来表示数字信号。

相移键控调制是通过改变载波的相位来表示数字信号。

正交幅度调制是通过改变载波的幅度和相位来表示数字信号。

在接收端,需要对传输过程中产生的噪声进行处理,以保证信号的质量。

常用的方式有信号解调、信号解码和信号重构。

信号解调是将调制过程中产生的信号转换为数字信号。

信号解码是将数字信号转换为原始信息。

信号重构是将数字信号转换为模拟信号。

数字通信系统具有许多优点。

首先,数字信号具有较好的抗干扰能力,能够更好地传输信号。

其次,数字信号可以进行压缩和加密,提高了信息传输的效率和安全性。

简述数字通信系统的组成

简述数字通信系统的组成

简述数字通信系统的组成
数字通信系统通常由以下几个部分组成:
1. 数据编码和调制:数字通信系统中,数据被编码和调制到信号中,以便在传输过程中进行传输和处理。

编码和调制的主要目的是产生传输数据的压缩和优化。

2. 信道:信道是数字通信系统中的一个重要组成部分。

在信道中,数据传输过程中产生的噪声、干扰、失真等都会对数据的准确性和完整性产生影响。

因此,数字通信系统需要对信道进行适当的控制和滤波,以保证数据传输的质量和可靠性。

3. 数字信号处理:数字通信系统需要对数字信号进行适当的处
理和变换,以使其适合传输和处理。

数字信号处理包括信号编码、调制、解调、滤波、采样和量化等。

4. 数字通信协议:数字通信系统中的协议是指一组标准和方法,用于控制数据传输的格式、数据结构、错误检测和纠正等内容。

常见的数字通信协议包括TCP/IP、HTTP、HTTPS、FTP、SMTP等。

5. 数字通信设备:数字通信系统需要配备相应的数字通信设备,如路由器、交换机、防火墙、调制解调器、数字信号处理器等。

这些
设备的作用是支持数字通信系统的运行和实现数据传输和处理。

数字通信系统需要数据编码、调制、信道控制、数字信号处理、数字通信协议和数字通信设备等多个组成部分相互协作,以实现数据的高效、可靠、安全传输。

数据通信系统概述

数据通信系统概述
2.1 数据通信系统概述
01
数据通信的 产生和发展
现代意义上的数据通信是在电流发现之后产生的,大致分为三个阶段: 初级阶段 近代阶段 现代阶段
初级阶段:
1837年,莫尔斯——电报系统,通过铜线中发送短的或长的电流脉冲来传送Morse码,实 现长距离文本传输。(著名的摩斯密码),现代数据通信系统的先驱。
1876年,贝尔——有线电话,可实时传输完整语音信号,模拟原始语音的电信号直接通 过电话线路传输,实现语音信息的长距离传输。
1901年,马尼克发明了无线电报,为无线数据通信开辟了一个崭新的领域。 1938年,出现了电视广播,从单一文本、语音发展到实时图像。
近代阶段:
1946年——计算机的产生和数字化技术的崛起,对数据通信中数字传输的兴起、发展起 到了至关重要的作用,计算机技术是现代数据通信产生的基础。
ENIAC
1960年集成电路
20世纪70年代,光纤传输、卫星通信 20世纪80年代,蜂窝移动网络
02
数据通信的信号
数据通信是借助于电信号或光信号通过传输线路,在发送端和接收端 之间进行数据的传输。
信号是数据信息的载体,通过电压、电流、电荷及电磁波等物理量在 强度的变化来携载各种形式的数据信息(语音、文本、图像、视频)。
04
数据通信衡量标准
带宽:最高频率和最低频率之差,单位Hz 数据传输速率(比特率):每秒传输多少位数据,单位b/s,bit/s,bps 信道容量:信道无误传送的最大信息量,是信道传输信息的速率上限。单 位b/s 波特率(传码率或调制速率):传输信道的码元传输速率,单位:码元/ 秒,波特 吞吐量:信道在单位时间内成功传输的信息量,单位bit/s 延迟:发送方传出第一个数据到接收方成功接收到最后一个数据所经历的 时间,传输延迟和传播延迟(距离)

数字通信系统

数字通信系统

1、数字通信系统概念及其优缺点数字通信系统就是信道中传输的是数字信号的通信方式称为数字通信,它包括将基代数字信号直接送往信道传输的数字基代传输和经载波调制后在送往信道传输的数字载波传输。

对应的通信系统称为数字通信系统。

一、数字通信系统的优点二、数字通信系统的缺点1、抗干扰能力强1、频带利用率不高2、差错可控2、系统设备比较复杂3、易加密4、易于与现代技术相结合2、SSB信号的产生方法及各自的技术难点单边带信号的产生,通常采用滤波法和相移法两种。

滤波法技术难点:滤波特性很难做到具有陡峭的截止特性;多级滤波需要多次调制;当调制信号中含有直流及低频分量时滤波法就不适用。

相移法技术难点:宽带相移网络Hh(w)的制作。

3、FM、PM的概念,两者之间的关系在调制时,若载波的频率随调制信号变化,称为频率调制或调频(FM)。

若载波的相位随调制信号而变称为相位调制或调相(PM)。

由于频率和相位之间存在微分和积分关系,所以FM与PM之间是可以转换的。

4、简述AMI码的优缺点。

针对其缺点有何改进码型AMI码优点:没有直流成分,且高低频分量少,能量集中在频率为1/2码速外,编解码电路简单,可利用信号极性交替这一规律观察误码情况。

缺点:当原信码出现长连“0”串时,信号的电平长时间不跳变造成提取定时信号的困难。

针对其缺点的改进码型:HDB3码。

5、ASK、FSK、PSK的概念,及其产生和解调方法ASK:振幅键控是利用载波的幅度变化来传递数字信息,而其频率和初始相位保持不变。

产生方法:模拟调制法(相乘器法)和键控法。

解调方法:非相干解调(包络检波法)和相干解调(同步检测法)。

FSK:频移键控是利用载波的频率变化来传递数字信息。

产生方法:采用模拟调频电路,采用键控法。

解调方法:非相干解调(包络检波法)和相干解调。

PSK:相移键控是利用载波的相位变化来传递数字信息,而振幅和频率不变。

产生方法:模拟调制、键控法。

解调方法:相干解调法。

计算机网络 数字通信系统

计算机网络  数字通信系统

计算机网络数字通信系统
数字通信系统是指利用数字信号传递数据的通信系统,它具有抗干扰能力强、可靠性高、保密强等特点。

例如,计算机网络、数字电视网络都属于数字通信系统。

下面我们介绍数字通信系统的相关知识。

数字通信系统通常由信源、编码器、信道、解码器、信宿以及发送端和接收端时钟同步组成,如图3-4所示,为数字通信系统组成结构示意图。

在数字通信系统中,发送端所产生的原始信号需要利用编码器进行编码后才能通过信道传输,而在接收端需要利用解码器对接收到的信号进行解码将其还原后才能够获取相应的数据。

图3-4 数字通信系统
数字通信系统的信源可以是模拟信号或数字信号。

如果是模拟信号,通过编码器对其进行采样、量化和编码,将其转换为数字信号,再通过数字信道进行传输,在接收端再经过解码器解码还原成模拟信号。

该过程被称为模拟数据数字化传输,编/解码过程就是模拟信号与数字信号转换的过程。

如果对于二进制形式的数字数据,可以直接用两种电平来表示。

为了适合信道传输,通常对二进制数据进行编码,将其转换成数字信号,然后再通过信道进行传输。

在数字通信系统中,时钟同步也是重要的一部分。

为了保证接收端能够正确的接收数据,接收端和发送端必须有各自的发送和接收时钟,并且接收端的接收时钟必须与发送端的发送时钟保持一致。

数字通信系统工作原理

数字通信系统工作原理

数字通信系统工作原理数字通信系统是现代通信领域中广泛应用的一种通信技术,它以数字信号为基础进行信息传输。

数字通信系统的工作原理主要可以分为信源编码、数字调制、信道传输、数字解调和信源译码等几个关键步骤。

本文将详细介绍数字通信系统的工作原理及相关技术。

一、信源编码在数字通信系统中,信息源产生的信号通常是模拟信号。

为了便于数字化处理和传输,需要将模拟信号转换为数字信号。

信源编码的目的就是对模拟信号进行数字化表示,常用的信源编码方法包括脉冲编码调制(PCM)和差分脉冲编码调制(DPCM)等。

其中,PCM是一种广泛应用的信源编码方法,将模拟信号离散化,并按照一定的采样率进行采样,将每个采样值用二进制码表示。

二、数字调制数字调制是指将数字信号映射到模拟信号空间中,通过模拟信号传输进行信息传递的过程。

常用的数字调制方法有调幅(AM)、调频(FM)和调相(PM)等。

其中,调幅是一种常用的数字调制方式,通过对数字信号进行幅度的调制来表示信息。

调幅信号可以通过载波信号的幅度变化来表达数字信号中的0和1。

三、信道传输信道传输是指数字信号在传输介质中传输的过程。

在数字通信系统中,传输介质可以是导线、光纤或者无线通信频段。

在信道传输中,常会受到信号损耗、干扰和传播时延等影响。

为了保证传输质量,常常使用调制和编码技术来提高传输效率和可靠性。

四、数字解调数字解调是数字通信系统中的重要环节,其目的是将接收到的模拟信号恢复为数字信号。

在数字解调中,需要进行信号的解调、时钟恢复和抗干扰等处理。

解调是将经调制的信号恢复为原始的数字信号,时钟恢复是为了在解调过程中同步恢复传输信号的时钟频率,抗干扰技术可以在传输过程中减少噪声和干扰的影响。

五、信源译码信源译码是对数字信号进行译码,将数字信号转换为原始信息。

在数字通信系统中,经过信源编码和数字调制后的信号到达接收端,需要通过信源译码将其恢复为原始的信息。

常用的信源译码方法有译码器、反脉冲编码调制(NRZ)和解调解码器等。

数字通信原理(1.1)

数字通信原理(1.1)

处理的目的在于使单位时间内传输更多的消息。
从信息论的观点来说,消息传输速度可用单位时间内传送的 信息量来衡量。
模拟通信中还有一个重要性能指标:均方误差。它是衡 量发送的模拟信号与接收端复制的模拟信号之间误差程度的 质量指标。均方误差越小,复制的信号越逼真。
2001 Copyright
SCUT DT&P Labs
log以2为底时,单位为比特:bit log以e为底时,单位为奈特:nit。
2001 Copyright
信息量的单位与对数的底有关:
SCUT DT&P Labs
22
3. 离散信源的信息量


下面先来讨论等概率出现的离散消息的度量: 传递M个消息之一,只需采用一个M进制的波形来传递; 任意一个M进制波形总可用若干个二进制波形来表示。 定义:传送两个等概的二进制波形之一的信息量为1, 单位:比特 则: I log ( 1 ) 1(bit)
2)模拟通信系统的优缺点 优点:通过信道的信号频谱比较窄,因此信道的利用 率高。 缺点: (1)传输的信号是连续的 ,混入噪声干扰后不易清除, 即抗干扰能力差。 (2)不易保密通信,即安全性差。 (3)设计不易大规模集成化。 (4)不适于飞速发展的计算机通信要求。
2001 Copyright
SCUT DT&P Labs

信息的度量方式还应满足可加性; 信息量应该是事件发生概率的函数;
2001 Copyright
SCUT DT&P Labs
20
1.2 信息的度量
3. 离散信源的信息量
离散信源统计特性的描述--概率场
设离散信源包含N种可能的符号,相应的概率场: x1 p(x1) x2 p(x2) x3 . . . . . xN
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字复接分:按位—按码位时隙宽度进行时隙叠加;
如图4.6(b)所示, 按字--按码位进行数字编码,如采用8位编码。
帧结构:数字通信中同频、同相管理联络,收端准确 接收等。
时隙叠加是码字宽度缩小,即码率提高。
《现代通信系统》
第16页/共84页
第4章 数字通信系统概述
CH1(第 一 路 )
1
0
1
1
0
1
《现代通信系统》
图4.1 数字通信系统
第2页/共84页
信 源受 解信 码者 器
第4章 数字通信系统概述
1采用数字信号传输-----数字通信:抗干扰性强、躁声不 积累
2传输信道: 采用频带宽,衰减小,抗干扰性强
《现代通信系统》
第3页/共84页
第4章 数字通信系统概述
4.1.2
1. 1) 信息传输速率
t0
根据离散和计算有
(4.2.2)
(4.2.3)
《现代通信系统》
第13页/共84页
第4章 数字通信系统概述
如第2章PCM脉冲编码技术所述,由抽样定理把每
路话音信号按8000次/s抽样,对每个样值编8位码,那么第
一个样值到第二个样值出现的时间,即1/8000s(=125μs),
称为抽样周期T(=125μs)。在这个T时间内可间插许多 路信号直至n路,这就是时间的可分性(离散性),就能实现
指在单位时间(每秒)传送的信息量。
2) 码元(符号)
转换公式为 fB N1bM
(4.1.1)
话音频谱(300---3400Hz) 模数变换A/D或D/A 单路话路模块变换64kb/s 视频频率6.3MHz
《现代通信系统》
第4页/共84页
第4章 数字通信系统概述
2.
1) 在数字通信中是用的脉冲信号,即用“1”和“0”携
要经调制后再送入信道中。 信道:指传输信号的通道。
注意:概念区别: 不经调制的数字信号称为基带(无载频 PCM)经过制的数字信号称为频带(带载频)
《现代通信系统》
第1页/共84页
第4章 数字通信系统概述
数字 传输系统
信 信源 息编 源码

信数
数信
道 字 信字 道
编调
解解
码 制 道调 码
器器
器器
噪声 源
PeBi
i 1
《现代通信系统》
第7页/共84页
(4.1.3) (4.1.4)
第4章 数字通信系统概述
3. 1) 所谓抖动,是指在噪声因素的影响下,数字信号的 有效瞬间相对于应生成理想时间位置的短时偏离。
《现代通信系统》
第8页/共84页
第4章 数字通信系统概述
① 发送脉冲
② 接收脉冲
脉冲间距
③ 抖动函数
许多路信号在T时间内的传输。其多路通信模型如图 4.5所示。
时分多路编码
《现代通信系统》
第14页/共84页
第4章 数字通信系统概述
《现代通信系统》
图4.5 时分多路复用示意图
第15页/共84页
第4章 数字通信系统概述
4.2.2
数字复接,就是利用时间的可分性,采用时隙叠加的
方法把多路低速的数字码流(支路码流),在同一时隙内 合并成为高速数字码流的过程。
t
图4.2 噪声叠加在数字信号上的波形
《现代通信系统》
第6页/共84页
第4章 数字通信系统概述
Pe
lim
n
产生错误码元(个数) 传输的总码元(个数)
(4.1.2)
2) 在实际的数字通信系统中,含有多个再生中继段,上 面讲的误判产生的误码率是指在一个中继段内产生的。 当经m个中继段后产生误码率
m
PeB
《现代通信系统》
第11页/共84页
第4章 数字通信系统概述
f1(t)
A
t1 t2 t3 T0
t
f2(t)
0 t1 t2 t3 T0
t
《现代通信系统》
图4.4 脉冲信号的正交
第12页/共84页
第4章 数字通信系统概述
对于不是连续信号,如时分制中的脉冲信号,只能用 离散和来代替以上积分,即
T0
R(T ) f1(t) f2(t)
0
1 P CM3 0/ 3基2 群(1 )
P CM3 0/ 3基2 群(2 )
P CM3 0/ 3基2 群(3 )
P CM3 0/ 3基2 群(4 ) (a)
P CM3 0/ 3基2 群(1 )
11 110 1011001111 00 11 11 01 0 0 0 01111 1
P CM3 0/ 3(21 )
带信息。由于噪声、串音及码间干扰以及其他突发因 素的影响,当干扰幅度超过脉冲信号再生判决的某一门
限值时,将会造成误判成为误码。
把“1”判为“0”情况,称减码;反之则称加码。
但均为误码。如图4.2所示。
《现代通信系统》
第5页/共84页
第4章 数字通信系统概述
“ 1”码
A
A
2
0
“ 0”码 TB
判决 门限 电平U门
t1
t1
j(t)
t2 t2
t3 t3
t4
t5
t
t4
t5
《现代通信系统》
图4.3 脉冲抖动的意义
第9页/共84页
第4章 数字通信系统概述
2) 抖动容限一般是用峰—峰抖动Jp-p来描述的。它是指 某个特定的抖动比特的时间位置相对于该比特抖动时 的时间位置的最大部分偏离。 传输话音,系统抖动容限小于等于4%UI。 数字信号,彩电抖动容限小于等于0.2%UI或更小。
第4章 数字通信系统概述
4.1 数字通信系统模型
4.1.1 数字通信系统模型结构 通信就是信息的传递。
信息源:如声音、数据、文字、图像、代码等电信号; 信源编码器:把模拟信号变换为数字信号(PCM); 信道编码:完成多路数字信号复接,实现宽带(高频)数字信号
传输。 数字调制:根据信道媒质特性对编码后的数字信号还
① 帧同步信号(帧定位信号)及同步对告信号; ② 信息信号; (传输话音内容) ③ 其他特殊信号(地址、信令、纠错等信号); ④ 勤务信号。(监测、告警、控制)
(b)
CH1
1 01 101 0 11 1 011 00 1 100 11 1 01 11 1 01 0 11 (c)
图4.6 (a)一次群(基群);(b)二次群(按位数字复接);(c)二次群(按字数字复接)
《现代通信系统》
第17页/共84页
第4章 数字通信系统概述
4.3
帧结构一般都采用由世界电信组织建议的统一格 式,为保证数字通信系统正常工作,在一帧的信号中应有 以下基本信号:
《现代通信系统》
第10页/共84页
第4章 数字通信系统概述
4.2 数字复接技术
4.2.1
数字多路通信也叫做分多路时通信,所谓时分多路
通信,是利用多路信号(数字信号)在信道上占有不同的 时间间隙来进行通信的。多路通信的基础源于数学上 信号的正交性:
F
t2 t1
f1(t) f2(t)dt 0
(4.2.1)
相关文档
最新文档