AW6131数字图像处理芯片_V1.0
ICP DAS I-7018BL 8通道AI、温度传感器数据采集模块快速启动指南说明书

I-7018BL 8-channel AI, thermocouple DAQ Module - QuickStart (Dec/2017)I-7018BL8 Channel Voltage Input, Current Input, & Thermocouple Input Data Acquisition ModuleQuick Start GuideProduct Website:https:///i_7018bl.html/dcon_utility_pro.html1. IntroductionI-7018BL is a cost-effective solution for a wide range of valuable industrial control signals and systems. The DCON utility can help users to configure and test I-7018 modules. Plenty of library functions and demo programs are provided to let users develop programs easily under Windows, Linux and DOS operating systems. Users may mount the modules on a DIN rail, panel or wall. Modules have a screw-terminal block to connect to the signals. I-7018 comes with FREE EZ Data Logger Software.2. Terminal Assignment, Block Diagram3. Wiring Diagram4. Default SettingsDefault settings for the I-7018 modules are:▫ Module address: 01▫ Analog input type:Type 08, -10V to 10V, for the I-7017 and I-7019 seriesType 1B, -150V to +150V for the I-7017R-A5Type 0D, -20mA to +20mA for the I-7017C, I-7017FC and I-7017RC Type 05, -2.5V to 2.5V, for the I-7018 series▫ Baud Rate: 9600 bps▫ Checksum disabled▫ Engineering unit format▫ Filter set at 60Hz rejection▫ JP1 set to single-ended mode for I-7018, I-7018P and I-7018BL.I-7018BL 8-channel AI, thermocouple DAQ Module - QuickStart (Dec/2017)5. ConfigurationTo install the module, follow the steps below:1. Connect the analog input.2. Connect the module to the RS-485 network using the DATA+ and DATA- terminals. If the host is only equipped with an RS-232 interface, then an RS-232 to RS-485 converter will be required.3. Connect the module to the power supply using the +Vs and GND terminals. Note that the voltage supplied should be in the range of +10 to +30V DC.I-7018BL 8-channel AI, thermocouple DAQ Module - QuickStart (Dec/2017)4. Open DCON utility proclick on COM port(first icon).It can select multi-options such as Baud Rate, Protocol, Checksum, and Format to search module. The default settings for the module can be found in Section 3. Click OK after selecting the COM port setting.I-7018BL 8-channel AI, thermocouple DAQ Module - QuickStart (Dec/2017)5. DCON utility pro will search for the selected COM port according the setting previously set. DCON Utility Pro supports DCON and Modbus protocol for all ICPDAS and the others modules.6. Configuration I/O module setting on PCI-7018BL 8-channel AI, thermocouple DAQ Module - QuickStart (Dec/2017)7. For I-7000 modules, DCON utility pro terminal can send command to the module. See user manual Sections 2 for details command.Configure the module: sending the %AANNTTCCFF command. See user manual Section 2 for detail commands. To configure the I-7017Z, I-7018Z and I-7019 series, the $AA7CiRrr command must also be sent.Read data from the input channels: send either the #AA or #AAN command to the module.I-7018BL 8-channel AI, thermocouple DAQ Module - QuickStart (Dec/2017)8. If user doesn’t know the command, user can select Address and ID, it will show some refer commands as below. User can select necessary command to test or debug modules.I-7018BL 8-channel AI, thermocouple DAQ Module - QuickStart (Dec/2017)。
M61311SP中文资料

M61311SP/M61316SP is Semiconductor Integrated Circuit for CRT Display Monitor.It includes OSD Blanking, OSD Mixing, Retrace Blanking,Video Detector, Sync Separator, Wide Band Amplifier,Brightness Control.Main/Sub Contrast, Video Response Adjust, Ret BLK Adjust, 4ch D/A OUT and OSD level Adjust Function can be controlled by IIC Bus.Frequency Band WidthRGB:200MHz (M61311SP)150MHz (M61316SP)(4Vp-p at -3dB)OSD:80MHzInputRGB:0.7Vp-p (typical)OSD:3.5V --- 5.0V (positive)OSD BLK: 3.5V --- 5.0V (positive)Retrace BLK: 2.5V --- 5.0V (positive) Clamp Pulse:2.5V --- 5.0V (positive) OutputRGB:5Vp-p(at Brightness less than 2V DC )OSD:4Vp-p(at Brightness less than 2V DC )Sync OUT:5Vp-pVideo Det OUT: High = 4.2V DC , Low = 0.7V DCBipolar Silicon Monolithic IC32 pin plastic SDIPCRT Display MonitorSupply Voltage Range 11.50V --- 12.50V (V3,V29) 4.75V --- 5.25V (V11)Rated Supply Voltage12.00V (V3,V29) 5.00V (V11)IIC Bus Controlled 3ch Video Pre-Amp with OSD Mixing Function and Retrace Blanking Function.The difference in the M61311SP/M61316SP is RGB Video Frequency Band Width.M61311SP is 200MHz, M61316SP is 150MHz in conditions RGB Output is 4Vp-p at -3dB.DESCRIPTIONFEATURESSTRUCTUREAPPLICATIONRECOMMENDED OPERATING CONDITIONSMAJOR SPECIFICATIONTHERMAL DERATING (Maximum Rating)ABSOLUTE MAXIMUM RATING (Ambient temperature:25deg)80040000-25255075100125150Ambient Temperature Ta (deg)P o w e r D i s s i p a t i o n P d ( m W )BLOCK DIAGRAMV i d e o R I NG I NB I NS o n G I NVP u l s e I N S e p a O U T B L K I NB I NG I N R I NS:Start condition A:Acknowledge P:Stop condition*)pre-data*)sub add. 06HSync Sepa SW A640:Sync Sepa ON 1:Sync Sepa OFF Video Det SW A650:Video Det ON 1:Video Det OFF Always set up as A66 and A67 in 0.For IIC Data, please transfer in the period of Vertical.07H (3) Sub address byte and data byte format:0000006H A16A15------*)AA0000100AA6D/A OUT48AA700AHAA5AA10AA2AA4AA3A92A91A90*)100A95A94A93000D/A OUT38A97A960009H 01*)0000A81A80A85A84A83A82D/A OUT28A87A860008H A70001*)*)D/A OUT18A77A76A75A74A73A72A71-00------*)TEST MODE 2A67A66--------0-----*)Video Det SW 1--A65--------0----*)Sync Sepa SW 1---A64---A60----0001*)Sharpness control 4----A63A62A61A50----0001*)RE-BLK Adjust 405H----A53A52A40-0000001*)OSD level 704H -A46A45A44A43A42A3000000001*)Sub contrast B 803H A37A36A35A34A33A32A2000000001*)Sub contrast G 802H A27A26A25A24A23A22A1000000001A14A13Sub contrast R 801H A17001*)0000Main contrast 800H A070Function Bit Data byte(top:byte format under:start condition)D3D2D1D0D7D6A02A00A01ASUB ADDRESSPD5D4A DATA(SUB ADDRESS=0XH)AA A06A05A04A0308bit8bitDATA BYTE8bit 18bit ASUB ADDRESS (0XH)+10HBUS CONTROL TABLENormal modeAuto increment modeS18bit(1) Slave address:SSLAVE ADDRESSSLAVE ADDRESSD7D6D5(2) Slave receiver format:D1A A12A110=88HR/W DATA(SUB ADDRESS=0(X+2)H)8bitA21A31A41A51D3D2Sub add 8bitD4DATA(SUB ADDRESS=0(X+1)H)AA8bitIIC BUS CONTROL SECTION SDA,SCL CHARACTERISTICSTIMING DIAGRAMSDASCLV V V VELECTRICAL CHARACTERISTICS (VCC = 12V, 5V ; Ta = 25ºC unless otherwise specified)*) No. 32&34 Pulse characteristics 1&2 (4Vp-p)top : M61311SP under : M61316SPNote1) Measuring conditions are as listed in supplementary Table. Measured with a current meter at test point IB.Note2) Measuring conditions are as listed in supplementary Table. Measured with a current meter at test point IA.Note3) Measuring conditions are as listed in supplementary Table. Measured with a current meter at test point IB.Note4) It makes the amplitude of SG1 1.4p-p. Measure the DC voltage of the white level of the waveform output. The measured value is called Vomax.Note5)Increase the input signal(SG1) amplitude gradually, starting from 0.7Vp-p. Measure the amplitude of the input signal when the output signal starts becoming distorted.Note6)Input SG1, and measure the amplitude output at OUT(26,28,30). The amplitude is called VOUT(26,28,30). Maximum gain GV is calculated by the equation below:GV = 20 LOG ( VOUT / 0.7 ) (dB)Note7)Relative maximum gain GV is calculated by the equation below:GV = VOUT(26) / VOUT(28) , VOUT(28) / VOUT(30) , VOUT(30) / VOUT(26)Note8)Input SG1, and measure the amplitude output at OUT(26,28,30). The amplitude is called VOUT(26,28,30).The measured value is called VC1.Note9)Relative characteristics VC1 is calculated by the equation below:VC1 = VOUT(26) / VOUT(28) , VOUT(28) / VOUT(30) , VOUT(30) / VOUT(26)Note10)Measuring condition and procedure are the same as described in Note8.Note11)Measuring condition and procedure are the same as described in Note9.Note12)Measuring condition and procedure are the same as described in Note8.Note13)Relative characteristics VC3 is calculated by the equation below:VC3 = VOUT(26) - VOUT(28) , VOUT(28) - VOUT(30) , VOUT(30) - VOUT(26)NOte14)Input SG1, and measure the amplitude output at OUT(26,28,30). The amplitude is called VOUT(26,28,30).The measured value is called VSC1. Note15)Relative characteristics VSC1 is calculated by the equation below:VSC1 = VOUT(26) / VOUT(28) , VOUT(28) / VOUT(30) , VOUT(30) / VOUT(26)Note16)Measuring condition and procedure are the same as described in Note14.Note17)Measuring condition and procedure are the same as described in Note15.Note18)Measuring condition and procedure are the same as described in Note14.Note19)Relative characteristics VSC3 is calculated by the equation below:VSC3 = VOUT(26) - VOUT(28) , VOUT(28) - VOUT(30) , VOUT(30) - VOUT(26)(V DC VomaxNote20)Measure the amplitude output at OUT(26,28,30). The amplitude is called VOUT(26,28,30).The measured value is ABL1. Note21)Relative characteristics ABL1 is calculated by the equation below:ABL1 = VOUT(26) / VOUT(28) , VOUT(28) / VOUT(30) , VOUT(30) / VOUT(26)Note22)Measuring condition and procedure are the same as described in Note20.Note23)Measuring condition and procedure are the same as described in Note21.Note24)Measuring condition and procedure are the same as described in Note20.Note25)Relative characteristics ABL3 is calculated by the equation below:ABL3 = VOUT(26) - VOUT(28) , VOUT(28) - VOUT(30) , VOUT(30) - VOUT(26)Note26)Measure the DC voltage at OUT(26,28,30). The amplitude is called VOUT(26,28,30).The measured value is called VB1. Note27)Relative characteristics VB1 is calculated by the equation below:VB1 = VOUT(26) - VOUT(28) , VOUT(28) - VOUT(30) , VOUT(30) - VOUT(26)Note28)Measuring condition and procedure are the same as described in Note26.Note29)Measuring condition and procedure are the same as described in Note27.Note30)Measuring condition and procedure are the same as described in Note26.Note31)Measuring condition and procedure are the same as described in Note27.Note32)Measure the time needed for the input pulse to rise from 10% to 90% (Tr1) and for the output pulse to risefrom 10% to 90% (Tr2) with an active probe.Pulse characteristics Tr is calculated by the equations below:Note33)Relative characteristics Tr is calculated by the equation below:Tr = Tr(26) - Tr(28) , Tr(28) - Tr(30) , Tr(30) - Tr(26)Note34)Measure the time needed for the input pulse to fall from 90% to 10% (Tf1) and for the output pulse to fallfrom 90% to 10% (Tf2) with an active probe.Pulse characteristics Tf is calculated by the equations below:Note35)Relative characteristics Tf is calculated by the equation below:Tf = Tf(26) - Tf(28) , Tf(28) - Tf(30) , Tf(30) - Tf(26)or Tr2or Tf2Tr = (Tr2)2 - (Tr1)2(nS)Tf = (Tf2)2 - (Tf1)2(nS)Note36)Decrease the SG5 input level gradually from 5.0Vp-p, monitoring the waveform output. Measure the top level of input pulse when the output pedestal voltage turn decrease with unstable. And increase the SG5input level gradually from 0Vp-p. Measure the top level of input pulse when the output pedestal voltageturn increase with stable (a point of 2.0V). The measured value is called VthCP.Note37)Decrease the SG5 pulse width gradually from 0.5uS, monitoring the output. Measure the SG5 pulse width when the output pedestal voltage turn decrease with unstable. And increase the SG5 pulse width gradually from 0uS. Measure the SG5 pulse width when the output pedestal voltage turn increase with stable (a point of 2.0V). The measured value is called WCP.Note38)Measure the time needed for the output pulse to rise from 10% to 90% (OTr) with an active probe.Note39)Measure the time needed for the output pulse to fall from 90% to 10% (OTf) with an active probe.Note40)Measure the amplitude output at OUT(26,28,30). The amplitude is called VOUT(26,28,30).The measured value is called Oadj1.Note41)Relative characteristics Oadj1 is calculated by the equation below:Oadj1 = VOUT(26) / VOUT(28) , VOUT(28) / VOUT(30) , VOUT(30) / VOUT(26)Note42)Measuring condition and procedure are the same as described in Note40.Note43)Measuring condition and procedure are the same as described in Note41.Note44)Measuring condition and procedure are the same as described in Note40.Note45)Relative characteristics Oadj3 is calculated by the equation below:Oadj3 = VOUT(26) - VOUT(28) , VOUT(28) - VOUT(30) , VOUT(30) - VOUT(26)Note46)Decrease the SG6 input level gradually from 5.0Vp-p, monitoring the output. Measure the top level of SG6 when the output is disappeared. And increase the SG6 input level gradually from 0Vp-p. Measure the toplevel of SG6 when the output is appeared. The measured value is called VthOSD.Note47)Calculating the black level voltage minus the output voltage of high section of SG6 it makes VOUT(26,28,30). The calculated value is called OBLK.Note48)Relative characteristics OBLK is calculated by the equation below:OBLK = VOUT(26) - VOUT(28) , VOUT(28) - VOUT(30) , VOUT(30) - VOUT(26)Note50)Confirm that output signal is being blanked by the SG6 at the time.Decrease the SG6 input level gradually from 5.0Vp-p, monitoring the output. Measure the top level of SG6 when the blanking period is disappeared. And increase the SG6 input level gradually from 0Vp-p. Measure the top level of SG6 when the blanking period is appeared. The measured value is called VthBLK.Note51)Measure the bottom voltage at amplitude of OUT(26,28,30). The measured value is called HBLK1.Note52)Measuring condition and procedure are the same as described in Note51.Note53)Measuring condition and procedure are the same as described in Note51.Note54)Decrease the SG7 input level gradually from 5.0Vp-p, monitoring the output. Measure the top level of SG7 when the output is disappeared. And increase the SG7 input level gradually from 0Vp-p. Measure the toplevel of SG7 when the output is appeared. The measured value is called VthHBLK.Note55)When SG4 is all black (no video), the sync's amplitude of SG4 gradually from 0Vp-p to 0.02Vp-p.No pulse output permitted.Note56)When SG4 is all white or all black, the sync's amplitude of SG4 gradually from 0.2Vp-p to 0.3Vp-p.Positive pulse has occurred to Sync Sepa OUT.Note57)Measure the high voltage at Sync Sepa OUT. The measured value is treated as VSH.Note58)Measure the low voltage at Sync Sepa OUT. The measured value is treated as VSL.Note59)Sync Sepa OUT becomes high with sink part of SG4.Measure the time needed for the front edge of SG4 Sync to fall from 50% and for SyncOUT to rise from50% with an active probe. The measured value is called TDS-F.Note60)Sync Sepa OUT becomes high with sink part of SG4.Measure the time needed for the rear edge of SG4 Sync to rise from 50% and for SyncOUT to fall from50% with an active probe. The measured value is called TDS-R.Note61)Increase the SG1 input level gradually from 0Vp-p to 0.05Vp-p. No pulse Video Det OUT permitted. Note62)Decrease the SG1 input level gradually from 0.2p-p to 0.3Vp-p. Positive pulse has occurred to Video Det OUT. Note63)Measure the high voltage at Video Det OUT. The measured value is treated as VVDH.Note64)Measure the low voltage at Video Det OUT. The measured value is treated as VVDL.Note65)Video Det OUT becomes high with signal part of SG1.Measure the time needed for the SG1 to fall from 50% and for Video Det OUT to fall from 50% with an activ probe. The measured value is called TDV-F.Note66)Video Det OUT becomes high with signal part of SG1.Measure the time needed for the SG1 to rise from 50% and for Video Det OUT to rise from 50% with an act probe. The measured value is called TDV-R.SG1Pedestal voltageNote68)Measure the DC voltage at D/A OUT. The measured value is called VDL.Note69)Measure the input current that flows into D/A OUT through 1Kohm by 2V DC.Note70)Measure the input current that flows into D/A OUT through 1Kohm by 0.5V DC. Note71)Measure the output current that flows out of D/A OUT through 1Kohm by 4.2V DC.Note72)The difference of differential non-linearity of D/A OUT must be less than ±1.0LSB.TEST CIRCUITa s u r e p o i n tc i t o r : 0.01u F (u n l e s s o t h e r w i s e s p e c i f i ed )TERMINAL DESCRIPTIONELECTRICAL CHARACTERISTICS (Reference data)O u t p u t a m p l i t u d e (V p -p )024600H FFHSub contrast control dataO u t p u t a m p l i t u d e (V p -p )024600H FFHMain contrast control dataO u t p u t D C v o l t a g e (V D C )2460.54Brightness control voltage (V DC )O u t p u t a m p l i t u d e (V p -p )24605ABL control voltage (V DC )O u t p u t a m p l i t u d e (V p -p )024600H7FHOSD adjust control dataO u t p u t D C v o l t a g e (V D C )024600HFFHD/A OUT control dataABOUT CLAMP PULSE INPUTClamp pulse needs to be always inputted.Clamp pulse width is recommended :15KHz at 1.0 uS over 30KHz at 0.5 uS over 64KHz at 0.3 uS overThe clamp pulse circuit in ordinary set is a long round about way,it is very easy affected by large surge.Therfore, the fig. shown right is recommended.NOTICE OF APPLICATIONRecommend this resister is 1to 3 Kohm.Power dissipation in 3Kohm is smaller than 1Kohm.Recommend pedestal voltage of IC output signal is 2V.As for the low level of the pulse input of OSD BLK, OSD, Clamp Pulse, Retrace BLK etc., avoid consist the GND level or under.PIN31 connect to the voltage that stabilized, and pay attention as surge etc. does not flow into.VCC(12V,5V) connects to the power supply that stabilized, and bypass-capacitor connects near the terminaWhen capacitor is connected to Pin29, it sometimes oscillates. Do not connect capacitor to Pin29.Connect to bypass-capacitance of the DC line near the terminal.Connect to the NC Pin to GND.The time(t) is from fall of 9bit of SCL to rise of Acknowledge.About the fowarding of IIC BUS, the time(t) changes with the resistance that connected outside. The next SCL does not overlap into this time(t).APPLICATION METHOD FOR M61311SP/M61316SPSCLSCL1.02.03.0 5.07.0100481216Resistance value (Kohm)D e l a y t i m e t (u S )Acknowledge delay time characteristics (Reference data)DCGND 5V DCGND 5V DCAPPLICATION EXAMPLE"Purchase of Mitsubishi electric corporation's IIC components conveys a license under the Philips IIC Patent Rights to use these components in an IIC system,provided that the system conforms the IIC Standard Specification as defined by PhiliI 2C BUS CONTROLLED VIDEO PRE-AMP FOR HIGH RESOLUTION COLOR DISPLAYM61311SP/M61316SPMITSUBISHI ICs (MONITOR)DETAILED DIAGRAM OF PACKAGE OUTLINE元器件交易网I 2C BUS CONTROLLED VIDEO PRE-AMP FOR HIGH RESOLUTION COLOR DISPLAYM61311SP/M61316SPMITSUBISHI ICs (MONITOR)Keep safety f irst in your circuit designs!l Mitsubishi Electric Corporation puts the maximum ef f ort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, f ire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-f lammable material or (iii) prevention against any malf unction or mishap.Notes regarding these materialsl These materials are intended as a ref erence to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.l Mitsubishi Electric Corporation assumes no responsibility f or any damage, or inf ringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.l All inf ormation contained in these materials, including product data, diagrams, charts, programs and algorithms represents inf ormation on products at the time of publication of these materials, and are subject to change by Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is theref orerecommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor f or the latest product inf ormation bef ore purchasing a product listed herein.The inf ormation described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility f or any damage, liability, or other loss rising f rom these inaccuracies or errors.Please also pay attention to inf ormation published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page ().l When using any or all of the inf ormation contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all inf ormation as a total system bef ore making a f inal decision on the applicability of the inf ormation and products. Mitsubishi Electric Corporation assumes no responsibility f or any damage, liability or other loss resulting f rom the inf ormation contained herein.l Mitsubishi Electric Corporation semiconductors are not designed or manufactured f or use in a device or system that is used under circumstances in which human lif e is potentially at stake. Please contact Mitsubishi ElectricCorporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein f or any specif ic purposes, such as apparatus or systems f or transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.l The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.l If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license f rom the Japanese government and cannot be imported into a country other than the approved destination.Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.l Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor f or f urther details on these materials or the products contained therein.元器件交易网。
1键触摸LED灯无级调光IC_ADA01AL_ 规格书 V2.0

规格说明书1通道电容式触摸感应ICLED灯无级调光IC ADA01AL V2.0官方网站: E-mail: info@ 直线电话:0755-8830-2837 8297-7857 自动传真:0755-2263-4057 全国客服中心免费电话:4006-992-661 资料在公司官方网站上会随时更新,敬请留意!目 录 1. 概述 ......................................................................................................................................... 3 2. 特性简介 .................................................................................................................................. 3 3. 功能描述 .................................................................................................................................. 3 4. 标准封装(DIP8/SOP8 封装) ..................................................................................................... 4 5. 管脚描述 .................................................................................................................................. 6 6 电气特性 ................................................................................................................................... 6 7. 应用电路 .................................................................................................................................. 6 8. 应用说明 .................................................................................................................................. 8 9. 修改记录 .................................................................................................................................. 8 第 2 页 共 8 页1. 概述ADA01AL是一款单通道电容式触摸IC, 专门针对LED灯的应用,内置强大的电容感应式触摸算法,广泛适用 于各种类型的LED灯具控制产品。
VC9201+VP60A1 使用说明书

使用说明书特性I2C接口超低功耗Array图1 9201功能框图1修订历史表 1 修订历史2 引脚配置L E DV C HV C PV D D3推荐应用电路LDO 44.2不同工作状态的具体功耗:心率模式功耗:25Hz:~40uA(含LED)血氧模式功耗:25Hz:~500uA(含LED)注:算法所需空间大小因版本而有所区别;血氧模式功耗与LED布局、模具等相关,测试功耗为我司demo手环功耗。
5 LDO性能要求VC9201 模拟电源典型供电电压为3.3V,要求LDO 输出电源纹波峰峰值应小于40mV;另外要求LDO的负载瞬态响应:电流从1mA 瞬变为100mA 时,LDO 的输出稳定时间应小于50μs,稳定压降应小于10mV。
67推荐回流焊曲线8*注:上图6所示的LED灯为三合一封装的,在绘制PCB时应注意绿灯(Green)在靠近PD的一侧!PD为SMD4(2.3*2.5*0.8)-4PIN封装。
图7 LED布局对应镜片丝印开窗尺寸图8 硅胶框隔光辅料尺寸图布局说明及注意事项:1、此布局针对血氧方案,因此对漏光处理较为严格:a、要求硅胶框与镜片有0.1mm左右的干涉,确保硅胶框有轻度的挤压;b、图6中PD周围需放置我司开模设计的硅胶框隔光辅料,隔光辅料尺寸如上图8所示,硅胶框应轻度挤压,以保证隔光的效果;2、图7丝印外部为不界定边框,要求内部开窗与上图一致;3、除VP60A与LED的布局固定外,其余阻容元器件在布局时需注意不能放置在隔光辅料区域内,以免影响硅胶安装效果(VP60A周围0.8mm以内不放置任何元器件);4、丝印镜片要求如下:a、推荐镜片窗口透光率:90%以上;b、推荐镜片窗口透射波长:400至1000nm;c、镜片厚度需与维客确认;5、以上图示外如需任何结构变动,需与维客沟通,经由维客评估之后方可保证性能;6、手环设计要求:a、心率、血氧凸台建议1.0mm ;b、如对手环运动心率准确性要求较高,那么手环整体重量要求不超过36g(不含表带)。
Silicon Labs Si534xH 相干光时钟产品介绍说明书

新闻稿Silicon Labs降低相干光市场定时技术的成本和复杂度-单芯片Si534xH时钟系列产品为100G/400G收发器提供高性能、频率灵活的定时解决方案-中国,北京-2016年4月26日-Silicon Labs(芯科科技有限公司,NASDAQ:SLAB)日前推出一系列简化100G/400G相干光线卡(coherent optical line card)和模块设计的抖动衰减时钟,通过提供高频率、灵活的时钟解决方案,显著降低系统成本和复杂度。
Silicon Labs新型Si534xH相干光时钟可以为数据转换器提供低抖动参考定时,可替代依赖于昂贵、大封装尺寸的压控SAW振荡器(VCSO)的分立定时解决方案。
与仅支持单一固定频率的VCSO不同,新型Si534xH时钟提供很宽的频率范围,支持频率高达2.7GHz,且无需改变物料清单(BOM)元器件。
Si5344H和Si5342H时钟提供最佳的频率灵活性和无与伦比的50fs RMS抖动性能。
这些时钟芯片简化了器件采购过程,可采用较短的、两周交货时间的单个时钟IC解决方案替代多个定制的、较长交货时间的VCSO。
凭借抖动衰减PLL、高频率输出驱动器、分数频率合成和数字控制振荡器(DCO)技术,Si534xH系列产品为相干光收发器应用提供所需的全部时钟功能,与竞争对手解决方案相比降低了40%的占用面积及40%的功耗。
获取Silicon Labs Si534xH相干光时钟的更多详细信息,包括数据手册、支持文档和开发工具等,请访问网站:/timing。
通信市场中最大增长驱动因素之一是业内城域网络和数据中心互联(DCI)领域从10G 到100G的转变。
相干光学技术可用于100G和400G应用,因为它使得服务提供商能够通过现有的光纤发送更多的数据,减少为带宽扩展而进行网络升级的成本和复杂性。
当前用于相干光的定时解决方案在成本和尺寸方面还未达到最优化,需要VCSO、时钟发生器和分立器件的多样化组合。
上海搜博实业有限公司 SM3560I 光照度传感器 I2C 接口产品使用手册说明书

SM3560I
I2C接口光照度传感器
产品使用手册
文件版本: V21.3.24
SM3560I速传感器为I2C接口接口传感器,是一种用于两线式串行总线接口的数字型光强度传感器,本传感器是以BH1750FVI为主芯片,外加了透镜,以快速实现光照度产品的开发与
设计。
利用它的高分辨率可以探测较大范围的光强度变化。
因单片机的种类多、用户对程序的开发能力各不相同,本产品不提供编程技术支持,请用户下载资料包自行研究BH1750B芯片手册及例程!
技术参数
外形尺寸
请在断电线的情况下,按图示方法进行接线,如果产品本身无引线,线芯颜色供参考。
免责声明
本文档提供有关产品的所有信息,未授予任何知识产权的许可,未明示或暗示,以及禁止发言等其它方式授予任何知识产权的许可?除本产品的销售条款和条件声明的责任 , 其他问题公司概不承担责任。
并且,我公司对本产品的销售和使用不作任何明示或暗示的担保,包括对产品的特定用途适用性,适销性或对任何专利权,版权或其它知识产权的侵权责任等均不作担保,本公司可能随时对产品规格及产品描述做出修改,恕不另行通知。
联系我们
公司:上海搜博实业有限公司
地址:上海市宝山区南东路215号8幢
中文站:
国际站:
SKYPE : soobuu
邮箱:****************
电话: 86-021-******** / 66862055 / 66862075 / 66861077。
EPC-9600I-L用户手册_V1.00

2. 系统基本操作........................................................................................................... 5
开机和登录 ............................................................................................................... 5 2.1.1 启动选择 ........................................................................................................... 5 2.1.2 串口连接设置 ................................................................................................... 5 2.1.3 串口登录 ........................................................................................................... 7 2.1.4 SSH 远程登录 .................................................................................................. 7 2.2 关机........................................................................................................................... 8 2.3 Qt 演示程序 .............................................................................................................. 9 2.4 输入设备 ................................................................................................................... 9 2.4.1 触摸屏和 USB 鼠标 ......................................................................................... 9 2.4.2 USB 键盘 .......................................................................................................... 9 2.5 查看系统信息 ........................................................................................................... 9 2.6 系统设置 ................................................................................................................. 10 2.6.1 网络设置 ......................................................................................................... 10 2.6.2 系统时钟 ......................................................................................................... 11 2.7 文件传输 ................................................................................................................. 11 2.7.1 SSH 文件传输 ................................................................................................ 11 2.7.2 NFS 文件传输 ................................................................................................ 12 2.8 U 盘使用 ................................................................................................................. 13 2.9 TF 卡使用 ............................................................................................................... 13 2.10 音频播放 ................................................................................................................. 13 2.11 U-Boot 交互 ............................................................................................................ 13 2.12 LCD 待机设置 ........................................................................................................ 14 2.13 LCD 背光调节 ........................................................................................................ 14 2.14 ADC ........................................................................................................................ 14 2.15 串口测试 ................................................................................................................. 15
华为视频会议解决方案

华为高清视讯系统技术方案建议书临时方案华为技术有限公司2016年10月9日使用说明(2016.10.9):1、模板使用时根据实际客户需求和方案设计,选择相应章节内容,与实际方案不相关的内容需删除;2、模板中使用说明、备注部分为内部参考,具体制作面向客户提交的方案时,需删除所有使用说明、备注部分。
目录1视讯技术发展及应用需求 (5)1.1技术发展 (5)1.1.1视频 (5)1.1.2音频 (5)1.1.3组网 (5)1.2应用需求 (6)1.2.1高临场感体验 (6)1.2.2低带宽高清 (6)1.2.3良好的网络适应性 (6)1.2.4良好的易用性 (6)1.2.5稳定性和可维护性 (7)1.2.6标准开放和融合互通 (7)1.2.7支持多种线路接入方式 (7)1.2.8客户化、可定制 (7)2华为高清视讯系统需求分析 (7)2.1华为背景简介 (7)2.2华为网络现状分析 (8)2.3华为客户需求分析 (8)3 华为高清视频系统设计方案建议 (8)3.1系统设计依据 (8)3.2系统设计原则 (11)3.3方案四SMC2.0+MCU96X0 ................................................................... 错误!未定义书签。
3.4系统组网方案四配置清单 ...................................................................... 错误!未定义书签。
4华为高清视频系统主要功能及特点 (12)4.1良好的高清晰音视频沟通体验 (12)4.1.1全高清108060端到端解决方案 (12)4.1.2高流畅性 (12)4.1.3强大全编全解处理能力,最大限度支持动态速率、协议适配 (13)4.1.4VME+H.264 HP 低带宽高清 (13)4.1.5H.264 SVC技术 (14)4.1.6高清1080P60FPS静态/动态双流 (14)4.1.7高保真,立体声,CD音质效果 (15)4.2丰富的会议召集模式 (15)4.2.1主叫呼集 (15)4.2.2匿名会议(电话会议模式) (16)4.2.3管理员调度 (16)4.2.4网络预约 (16)4.2.5视音频IVR导航与ad-hoc创建和加入会议 (16)4.2.6特服号入会 (16)4.2.7Outlook预约会议 (16)4.2.8云化资源池管理实现会议智能调度 (16)4.3良好的网络适应性 (18)4.3.1超强纠错(SEC 2.0-- Super Error Concealment) (18)4.3.2超强纠错(SEC 3.0-- Super Error Concealment) (18)4.3.3智能调速(IRC--Intelligent Rate Control) (19)4.3.4断线恢复(RoD--Reconnect on Disconnect) (19)4.3.5丢包重传(ARQ--Automatic Repeat reQuest) (20)4.4简单易用 (20)4.4.1用户界面简约时尚 (20)4.4.2PAD智能操控平台 (20)4.4.3丰富的会议控制功能 (20)4.4.4会议模板预置功能 (21)4.4.5字幕与横幅功能 (22)4.4.6一屏三显,节约投资 (22)4.4.7多视一流功能 (22)4.4.8无线辅流,轻松共享数据 (23)4.4.9支持WIFI呼叫及无线麦克 (23)4.4.10USB零配置 (24)4.4.11全景会场功能 (25)4.4.12多组多画面(on-table多画面) (25)4.4.13图形化操作界面 (25)4.4.14软终端随时随地接入会议 (26)4.4.153G-SDI接口实现1080P60fps远距离传输 (28)4.5安全稳定 (28)4.5.1产品成熟 (28)4.5.2系统稳定 (29)4.5.3多重加密 (30)4.5.4系统安全 (30)4.5.5资源池会议备份 (32)4.6管理维护方便 (33)4.6.1分级分权,大网维护简单 (33)4.6.2Nlog网络线路实时监控 (37)4.6.3支持WEB管理 (37)4.6.4系统设备拓扑图生成管理 (37)4.6.5系统设备配置批量升级及备份 (37)4.6.6系统告警和日志管理 (38)4.7标准互通 (39)4.7.1采用国际标准协议 (39)4.7.2支持TIP协议,与思科网真互通 (39)4.7.3华为视讯产品互联互通能力介绍 (39)4.7.4支持与微软UC系统互通 (41)4.7.5端到端IMS融合解决方案 (42)4.8丰富组网 (42)4.8.1支持多种接入方式 (42)4.8.2最大5级和超强多通道级联能力 (43)4.8.3支持大容量语音接入,满足在外人员接入视频会议需求 (43)4.8.4支持高清录制点播功能 (44)4.8.5支持软件化部署的管理平台 (48)4.8.6完善的公私网穿越解决方案 (49)4.9专业定制 .................................................................................................. 错误!未定义书签。
DMK 33GP1300e 相机技术手册说明书

技术细节1.要件速览 42.尺寸图 6 2.1DMK 33GP1300e 带脚架适配器的C型接口 (6)2.2DMK 33GP1300e 不带脚架适配器的C型接口 (7)2.3DMK 33GP1300e 带脚架适配器的CS型接口 (8)2.4DMK 33GP1300e 不带脚架适配器的CS型接口 (9)3.I/O 连接器 10 3.16-pin I/O 连接器 (10)3.1.1TRIGGER_IN (10)3.1.2STROBE_OUT (11)4.光谱特征 124.1光谱灵敏度 - P1300 (12)5.相机控制 13 5.1传感器读出控制 (13)5.1.1像素格式 (13)5.1.1.18-Bit Monochrome (13)12-Bit Packed Monochrome (13)5.1.1.25.1.1.316-Bit Monochrome (14)5.1.2分辨率 (14)5.1.3读出模式 (14)5.1.4帧速率 (15)5.1.5局部扫描偏移 (16)5.2图像传感器控制 (16)5.2.1曝光时间 (17)5.2.2增益 (17)5.3自动曝光及增益控制 (17)5.3.1自动曝光 (18)自动增益 (18)5.3.25.3.3自动参考值 (18)5.3.4强光缩减 (18)5.3.5自动曝光限制 (19)5.3.6自动增益限制 (19)5.4触发 (20)5.4.1触发模式 (20)5.4.2触发极性 (20)5.4.3软件触发 (21)5.4.4触发脉冲计数 (21)5.4.5触发源 (21)5.4.6触发重叠 (22)5.5触发定时参数 (22)5.5.1触发延迟 (22)5.5.2触发去抖时间 (22)5.5.3触发遮罩时间 (23)5.5.4触发噪声抑制时间 (23)5.6数字I/O (23)5.6.1通用输入 (23)5.6.2通用输出 (24)5.7频闪 (24)5.7.1频闪启用 (24)5.7.2频闪极性 (25)频闪操作 (25)5.7.35.8图像处理 (25)5.8.1伽玛 (25)5.8.2查找表 (25)5.9自动功能感兴趣的区域 (26)5.9.1自动功能ROI启用 (27)5.9.2自动功能ROI预设 (27)5.9.3自动功能ROI自定义矩形 (27)5.10用户设置 (28)5.10.1用户设置选择器 (28)5.10.2加载用户设置 (29)5.10.3保存用户设置 (29)5.10.4默认用户配置 (29)5.11精确时间协议 (29)5.11.1PTP 启用 (29)5.11.2PTP 状态 (30)5.12动作调度器 (30)5.12.1功能选择 (30)5.12.2预定动作时间 (30)5.12.3预定动作间隔 (31)5.12.4预定动作执行 (31)5.12.5预定动作取消 (31)5.13事件 (31)配置事件 (32)5.13.15.13.2事件通知 (32)5.13.3曝光结束事件 (32)5.13.4帧触发丢失事件 (33)5.13.5L ine1 下降沿事件 (33)5.13.6L ine1 上升沿事件 (33)5.13.7测试事件 (34)6.R e v i s i o n H i story 351要件速览2尺寸图2.1DMK 33GP1300e 带脚架适配器的C型接口2.4DMK 33GP1300e 不带脚架适配器的CS型接口3I/O 连接器3.16-pin I/O 连接器相机后视图1开极闸M OS F E T最大限制0.2A(ID)!2启动电流最低条件3.5 m A!3 G:地O:输出I:输入3.1.1TR IGG ER_I NTRIGGER_IN线可用于将曝光时间的开始与外部事件同步。
COFDM无线图传原理

矽海达科技有限公司
COFDM 无线图传开发套件硬件用户手册
附录一 硬件尺寸图 .................................................................................................. 27 技术支持和保修服务 ................................................................................................... 29
Integrated intelligent video engine, supporting various intelligent analysis applications such as motion detection, boundary security , and video diagnosis
1.2 硬件特性
COFDM 无线图传开发套件是基于发射端编码调制 COFDM 无线图传 SEM9363 高清编 码调制板和 D-PA2400A 功率放大主板加接收端 FC2400A 无线接收主板组成,以下是板子 的特性:
1.2.1 SEM9363 高清编码调制板
电气参数 工作温度:0 °C~ 70°C 环境温度:20% ~ 90%,非冷凝 机械尺寸:80mm x 52.8mm 输入电压:12V
矽海达科技有限公司
COFDM 无线图传开发套件硬件用户手册
H.264BP/MP/HP H.265 main profile MJPEG/JPEG baseline encoding A maximum of 5-megapixel resolution for H.264/H.265 encoding Real-time H.264/H.265 encoding of multiple streams JPEG snapshot at 5-megapixel@8fps Supporting the constant bit rate (CBR) /variable bit rate (VBR) bit rate control mode, ranging from 16kbit/s to 40 Mbit/s
ISL29101 小型、低功耗的环境光光敏电阻 IC 数据手册说明书

FN6510Rev 1.00November 5, 2012ISL29101Small, Low Power, Voltage-Output Ambient Light Photo Detect ICDATASHEETThe ISL29101 is a low power ambient Light-to-Voltage optical sensor combining a photodiode array, a currentamplifier and a micropower operational amplifier on a single monolithic IC. Similar to the human eye, the photodiode array has a peak response at 550nm and spans from 400nm to 600nm, rejecting UV light and IR light. The output voltage is proportional to the visible light intensity from 0.5 lux up to 10,000 lux. However, the input luminance range can go up to 30,000 lux with some compromise in linearity.A dark current compensation circuit aids the photodiode array to minimize temperature dependent leakage currents in the absence of light, improving the light sensity at low lux levels. Housed in an ultra-compact surface mount 2mmx2.1mm ODFN clear plastic package, this device is excellent for power saving control functions in cell phones, PDAs, and other handheld applications.Simplified Block DiagramFeatures•0.5 lux to 10,000 lux range • 1.8V to 3.3V supply range •Low supply current •Fast response time•Excellent linearity of output voltage vs light intensity •Close to human eye response •Good IR rejection•Internal temperature compensation•Operating temperature range -40°C to +85°C •Ultra-compact surface mount package •Pb-free (RoHS compliant)Applications•Display and keypad dimming for:-Mobile devices: smart phone, PDA, GPS -Computing devices: notebook PC, webpod-Consumer devices: LCD-TV, digital picture frame, digital camera•Industrial and medical light sensingPinoutISL29101(6 LD ODFN)TOP VIEWOrdering InformationPART NUMBER (Notes 2, 3)TEMP .RANGE (°C)PACKAGE (Pb-free)PKG.DWG. #ISL29101IROZ-T7 (Note 1)-40 to +85 6 Ld ODFN L6.2x2.1ISL29101IROZ-T7A (Note 1)-40 to +856 Ld ODFN L6.2x2.1ISL29101IROZ-EVALZ Evaluation BoardNOTES:1.Please refer to TB347 for details on reel specifications.2.These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and NiPdAu plate - e4 termination finish, which is RoHScompliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.3.For Moisture Sensitivity Level (MSL), please see deviceinformation page for ISL29101. For more information on MSL please see tech brief TB477.VDD GND REXTVOUT1246LIGHT DATA PROCESSCURRENT AMPLIFIEROUTPUT CURRENT LIGHT INTENSITYPHOTODIODEARRAY+-Pin DescriptionsPIN NAME DESCRIPTION1VDD Supply. 1.8V to 3.3V 2GND Ground 3, 5NC No Connect4REXTConnected to an external resistor to GND setting the light-to-voltage proportionality constant. 6VOUTVoltage Output*THERMAL PAD CAN BE CONNECTED TO GND OR ELECTRICALLY ISOLATEDAbsolute Maximum Ratings (T A = +25°C)Thermal InformationSupply Voltage between V DD and GND . . . . . . . . . . . . . . . . . . 3.6V R EXT . . . . . . . . . . . . . . . . . . . . . . . . .(-0.5V - GND) to (0.5V + V DD) V OUT . . . . . . . . . . . . . . . . . . . . . . . . .(-0.5V - GND) to (0.5V + V DD) V OUT Short Circuit Current . . . . . . . . . . . . . . . . . . . . . . . . . . <10mA ESD RatingHuman Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3000V Machine Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300V Thermal ResistanceθJA (°C/W) 6 Ld ODFN (Note 4). . . . . . . . . . . . . . . . . . . . . . . . . 88 Maximum Die Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . .+90°C Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . .-40°C to +100°C Operating Temperature . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C Pb-Free Reflow Profile. . . . . . . . . . . . . . . . . . . . . . . . .see link below /pbfree/Pb-FreeReflow.aspCAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.NOTE:4.θJA is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. SeeTech Brief TB379.IMPORTANT NOTE:All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: T J = T C = T AElectrical Specifications V DD = 3V, T A = +25°C, R EXT = 100kΩ, no load at V OUT, green LED light, unless otherwise specified.PARAMETER DESCRIPTION CONDITIONMIN(Note 6)TYPMAX(Note 6)UNITE Range of Input Light Intensity 0.5 to 10k lux VDD Power Supply Range 1.8 3.3V I DD Supply Current E = 1000 lux2335µAE = 100 lux 3.5µAE = 0 lux0.65µA V OUT0Light-to-Voltage Accuracy E = 100 lux165mV V OUT1Light-to-Voltage Accuracy E = 1000 lux 1.15 1.65 2.13V V DARK Voltage Output in the Absence of Light E = 0 lux, R L = 10MΩ125mV ∆V OUT Output Voltage Variation Over Three Light Sources:Fluorescent, Incandescent and HalogenE = 1000 lux20%PSRR Power Supply Rejection Ratio E = 100 lux, V DD = 1.8V to3.3V2.5mV/VV O-MAX Maximum Output Compliance Voltage at 95% ofNominal OutputV DD- 0.7V V t R ISRC and ISNK Rise Time (Note 5) E = 300 lux from 0 lux104µsE = 1000 lux from 0 lux27µs tF ISRC and ISNK Fall Time (Note 5) E = 300 lux to 0lux562µsE = 1000 lux to 0lux233µs t D ISRC and ISNK Delay Time for Rising Edge (Note 5) E = 300 lux from 0 lux504µsE = 1000 lux from 0 lux209µs t S ISRC and ISNK Delay Time for Falling Edge (Note 5) E = 300 lux to 0lux30µsE = 1000 lux to 0lux18µs I SC Short Circuit Current of Op Amp±11mA SR Slew Rate of Op Amp±10V/ms V OS Offset Voltage of Op Amp±1.2mV NOTE:5.Switching time measurement is based on Figures 1 and 2.pliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.FIGURE 1.TEST CIRCUIT FOR RISE/FALL TIMEMEASUREMENTFIGURE 2.TIMING DIAGRAMISL29101FUNCTION GENERATORV DDV OUTPOWER SUPPLYORSOURCE METERR EXTINPUT LIGHTOUTPUT10%90%t rt f %10%90%t Dt STypical Performance CurvesFIGURE 3.SPECTRAL RESPONSEFIGURE 4.SPECTRUM OF LIGHT SOURCESFIGURE 5.RADIATION PATTERN FIGURE 6.OUTPUT VOLTAGE vs LIGHT SENSITIVITY-0.20.00.20.40.60.81.01.23004006008001.0kWAVELENGTH (nm)N O R M A L I Z E D R E S P O N S ELIGHT SENSOR RESPONSEHUMAN EYE RESPONSE1.1k00.20.40.60.81.01.230040050060070080090010001100WAVELENGTH (nm)N O R M A L I Z E D L I G H T I N T E N S I T YSUNHALOGENINCANDESCENTWLEDFLUORESCENTRADIATION PATTERNLUMINOSITY ANGLE RELATIVE SENSITIVITY90°80°70°60°50°40°30°20°10°0°10°20°30°40°50°60°70°80°90°0.20.40.60.8 1.000.20.40.60.81.01.21.41.61.82.010002000300040005000600070008000900010000LIGHT INTENSITY (LUX)O U T P U T V O L T A G E (V )FLUORESCENTHALOGENINCANDESCENTV DD = 3V R EXT = 10kFIGURE 7.OUTPUT VOLTAGE vs LIGHT SENSITIVITY FIGURE 8.OUTPUT VOLTAGE vs LIGHT INTENSITYFIGURE 9.TRANSIENT TIME vs LUX CHANGE FROM 0 LUX FIGURE 10.OUTPUT VOLTAGE vs TEMPERATURE AT 0 LUXFIGURE 11.SUPPLY CURRENT vs TEMPERATURE AT 0 LUXFIGURE 12.NORMALIZED OUTPUT VOLTAGE vsTEMPERATURE00.20.40.60.81.01.21.41.61.82.001002003004005006007008009001000LIGHT INTENSITY (LUX)O U T P U T V O L T A G E (V )FLUORESCENTHALOGENINCANDESCENTV DD = 3VR EXT = 100k Ω00.20.40.60.81.01.21.41.61.82.0LIGHT INTENSITY (LUX)O U T P U T V O L T A G E (V )102030405060708090100FLUORESCENTINCANDESCENT HALOGENV DD = 3V R EXT = 1MΩ1101001kLUX CHANGE FROM 0 LUX (LUX)T R A N S I E N T T I M E (m s )-0.0130.0130.0260.0390.0520.0650.0780.0910.1040.117E Q U I V A L E N T L I G H T I N T E N S I T Y (L U X )-224681012141618-50-40-30-20-100102030405060708090100TEMPERATURE (°C)O U T P U T V O L T A G E (m V )VDD = 3V R EXT = 10M ΩLIGHT INTENSITY = 0 LUX V DD = 3VR EXT = 10M Ω0.40.60.81.01.21.4-50-40-30-20-100102030405060708090100TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )V DD = 3V R EXT = 10M ΩLIGHT INTENSITY = 0 LUXNO LOAD 0.970.980.991.001.011.021.03-50-40-30-20-100102030405060708090100TEMPERATURE (°C)N O R M A L I Z E D O U T P U T V O L T A G E V A R I A T I O NV DD = 3VFLUORESCENT LIGHT300 LUX1000 LUXFIGURE 13.SUPPLY CURRENT vs TEMPERATUREFIGURE 14.NORMALIZED OUTPUT VOLTAGE vs SUPPLYVOLTAGEFIGURE 15.SUPPLY CURRENT vs SUPPLY VOLTAGEFIGURE 16.TRANSIENT RESPONSE OF ISL29101 TOCHANGE IN LIGHT INTENSITY46810121416182022-50-40-30-20-100102030405060708090100TEMPERATURE (°C)S U P P L Y C U R R E N T (µA )1100 LUX300 LUX V DD = 3VFLUORESCENT LIGHT NO LOADR EXT = 100k Ω0.970.980.991.001.011.021.52.0 2.53.0 3.54.0SUPPLY VOLTAGE (V)N O R M A L I Z E D O U T P U T V O L T A G ER EXT = 100k ΩV DD = 3FLUORESCENT LIGHT INTENSITY = 1100 LUX 20.020.521.021.522.022.523.01.52.02.53.0 3.54.0SUPPLY VOLTAGE (V)S U P P L Y C U R R E N TNO LOAD V DD = 3FLUORESCENT LIGHT INTENSITY = 1100 LUX LIGHT INTENSITYV DD = 3V, R EXT = 100k :LIGHT INTENSITY RISES FROM 0 LUX TO 300 LUX AND FALLS FROM 300 LUX TO 0 LUX WITH WHITE LEDV OUT 0VIntersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as notedin the quality certifications found at /en/support/qualandreliability.htmlIntersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.For information regarding Intersil Corporation and its products, see For additional products, see /en/products.html© Copyright Intersil Americas LLC 2008-2012. All Rights Reserved.All trademarks and registered trademarks are the property of their respective owners.Application InformationLight-to-Voltage ConversionThe ISL29101 has responsiveness that is a linear function of the light intensity intercepted by the photodiode in lux.Because the photodiode has a responsivity that resembles the human eye, conversion rate is independent of the light source (fluorescent light, incandescent light or direct sunlight).Here, V OUT is the output voltage and E is the light intensity. R EXT is the value of the external resistor, which is used to set the light-to-voltage scaling constant. The compliance ofthe ISL29101’s output circuit may result in premature saturation when an excessively large R EXT is used. The output compliance voltage is 700mV below the supplyvoltage, as listed in V O-MAX of the “Electrical Specifications” table on page 2.Optical Sensor Location OutlineThe green area in Figure 17 shows the optical sensorlocation outline of ISL29101. Along the pinout direction, the center line (CL) of the sensor coincides with that of the packaging. The sensor width in this direction is 0.39mm. Perpendicular to the pin-out direction, the CL of the sensor has an 0.19mm offset from the CL of packaging away from pin-1. The sensor width in this direction is 0.46mm.V OUT 1.6μA 100lux )E R EXT∙∙/(=(EQ. 1)Package Outline DrawingL6.2x2.16 LEAD OPTICAL DUAL FLAT NO-LEAD PLASTIC PACKAGE (ODFN) Rev 3, 5/11located within the zone indicated. The pin #1 identifier may be Unless otherwise specified, tolerance : Decimal ± 0.05Tiebar shown (if present) is a non-functional feature.The configuration of the pin #1 identifier is optional, but must be between 0.15mm and 0.30mm from the terminal tip.Dimension applies to the metallized terminal and is measured Dimensions in ( ) for Reference Only.Dimensioning and tolerancing conform to ASME Y14.5m-1994.6.either a mold or mark feature.3.5.4.2.Dimensions are in millimeters.1.NOTES:BOTTOM VIEWDETAIL "X"SIDE VIEWTYPICAL RECOMMENDED LAND PATTERNTOP VIEWCSEATING PLANEBASE PLANE0.080.10SEE DETAIL "X"CC62.102.50(1.35)(6x0.30)0.65(6x0.55)(6x0.20)(4x0.65)PACKAGE OUTLINEMAX 0.75。
士兰微SC6131X说明书

AMP
SDCARD
I2C
CP Chip
产品规格分类
产品名称 SC6131A SC6131B 封 装 LQFP-64-10×10-0.5 LQFP-48-7×7-0.5 打印名称 SC6131A SC6131B 材料 无卤 无卤 包装 料盘 料盘
内部框图
SPI Flash SD card
杭州士兰微电子股份有限公司
http: //
版本号:0.2 共 14 页 第3页
SC6131X 说明书
(耳机连接:CAPLESS 采样率:48KHz
参 信噪比 动态范围 @-60dB 失真度 @-7dB 通道隔离度 通道不平衡度 DAC 工作电流 DAC 静态电流 输出功率@ 32Ω 输入频率@1kHz 输入频率@1kHz 数
电气参数(Tamb=25C,VDD33=3.3V,VDD18=1.2V,OSC=12MHz)
参 电源电压 静态电流 工作电流 外部时钟频率 高电平输入电压 低电平输入电压 高电平输出电压 低电平输出电压 输入漏电流 输出漏电流 数 符 号 VDD33 VDD ICCS ICC OSC VIH VIL VOH VOL ILI ILO 测 试 工作正常 工作正常 系统处于待机状态 正常工作,MCU Clk=12MHz ---IOH=2mA IOL=2mA VDD33=3.6V VDD33=3.6V 条 件 最小值 2.97 1.08 ---2.4 -3.04 0.25 --典型值 3.3 1.2 500 30 12 ------最大值 3.63 1.32 ----0.8 ----单位 V V A mA MHz V V V V A
Speaker
PWM
GPIO
UART
External DAC/ ADC
NVIDIA A100 GPU系统规格说明书

SYSTEM SPECIFICATIONSNVIDIA A100 for NVLinkNVIDIA A100 for PCIePeak FP649.7 TF 9.7 TF Peak FP64 Tensor Core 19.5 TF 19.5 TF Peak FP3219.5 TF 19.5 TF Tensor Float 32 (TF32)156 TF | 312 TF*156 TF | 312 TF*Peak BFLOAT16 Tensor Core 312 TF | 624 TF*312 TF | 624 TF*Peak FP16 Tensor Core 312 TF | 624 TF*312 TF | 624 TF*Peak INT8 Tensor Core 624 TOPS | 1,248 TOPS*624 TOPS | 1,248TOPS*Peak INT4 Tensor Core 1,248TOPS | 2,496TOPS*1,248TOPS | 2,496TOPS*GPU Memory 40GB 80GB 40GB GPU Memory Bandwidth 1,555 GB/s2,039 GB/s1,555 GB/s InterconnectNVIDIA NVLink 600 GB/s**PCIe Gen4 64 GB/s NVIDIA NVLink 600 GB/s**PCIe Gen4 64 GB/s Multi-Instance GPU Various instance sizes with up to 7 MIGs @ 10 GB Various instance sizes with up to 7 MIGs @ 5 GBForm Factor 4/8 SXM on NVIDIA HGX ™ A100PCIe Max TDP Power400 W400 W250 W* With sparsity** SXM GPUs via HGX A100 server boards; PCIe GPUs via NVLink Bridge for up to 2 GPUsNVIDIA A100TENSOR CORE GPUUNPRECEDENTED SCALE AT EVERY SCALEThe Most Powerful Compute Platform for Every WorkloadThe NVIDIA ® A100 Tensor Core GPU delivers unprecedented acceleration—at every scale—to power the world’s highest-performing elastic data centers for AI, data analytics, and high-performance computing (HPC) applications. As the engine of the NVIDIA data center platform, A100 provides up to 20X higher performance over the prior NVIDIA Volta ™ generation. A100 can efficiently scale up or be partitioned into seven isolated GPU instances, with Multi-Instance GPU (MIG) providing a unified platform that enables elastic data centers to dynamically adjust to shifting workload demands. NVIDIA A100 Tensor Core technology supports a broad range of math precisions, providing a single accelerator for every workload. The latest generation A100 80GB doubles GPU memory and debuts the world’s fastest memory bandwidth at 2 terabytes per second (TB/s), speeding time to solution for the largest models and most massive data sets. A100 is part of the complete NVIDIA data center solution that incorporates building blocks across hardware, networking, software, libraries, and optimized AI models and applications from NGC ™. Representing the most powerful end-to-end AI and HPC platform for data centers, it allows researchers to deliver real-world results and deploy solutions into production at scale.1X2X3XUp to 3X Higher AI Training on Largest Models DLRM TrainingUp to 249X Higher AI Inference Performance over CPUs BERT-LARGE InferenceGroundbreaking InnovationsNEXT-GENERATION NVLINKNVIDIA NVLink in A100 delivers 2X higher throughput compared to the previous generation. When combined with NVIDIA NVSwitch ™,up to 16 A100 GPUs can be interconnected at up to 600 gigabytes per second (GB/ sec), unleashing the highest application performance possible on a single server . NVLink is available in A100 SXM GPUs via HGX A100 server boards and in PCIe GPUs via an NVLink Bridge for up to 2 GPUs.efficiency at 95%. A100 delivers 1.7X highermemory bandwidth over the previous generation.to breakthrough acceleration for all their applications, and IT administrators can offer right-sized GPU acceleration for every job, optimizing utilization and expanding access to every user and application.STRUCTURAL SPARSITYAI networks have millions to billions of parameters. Not all of these parameters are needed for accurate predictions, and somecan be converted to zeros, making the models “sparse” without compromising accuracy. Tensor Cores in A100 can provide up to 2X higher performance for sparse models. While the sparsity feature more readily benefits AI inference, it can also improve the performance of model training.01X2XUp to 1.25X Higher AI Inference Performance over A100 40GB RNN-T Inference: Single StreamTime to Solution - Relative PerformanceCPU OnlyV100 32GBA100 40GBA100 80GBBig data analytics benchmark | 30 analytical retail queries, ETL, ML, NLP on 10TB dataset | CPU: Intel Xeon Gold 6252 2.10 GHz, Hadoop | V100 32GB, RAPIDS/Dask | A100 40GB and A100 80GB, RAPIDS/Dask/BlazingSQLUp to 1.8X Higher Performance for HPC Applications Quantum Espresso2017P1002016201820192020Throughput - Relative PerformanceGeometric mean of application speedups vs. P100: Benchmark application: Amber [PME-Cellulose_NVE], Chroma [szscl21_24_128], GROMACS [ADH Dodec], MILC [Apex Medium], NAMD [stmv_nve_cuda], PyTorch (BERT-Large Fine Tuner], Quantum Espresso [AUSURF112-jR]; Random Forest FP32 [make_blobs (160000 x 64: 10)], TensorFlow [ResNet-50], VASP 6 [Si Huge] | GPU node with dual-socket CPUs with 4x NVIDIA P100, V100, or A100 GPUs.Incredible Performance Across Workloads© 2021 NVIDIA Corporation. All rights reserved. NVIDIA, the NVIDIA logo, CUDA, DGX, HGX, HGX A100, NVLink, NVSwitch, OpenACC, TensorRT, To learn more about the NVIDIA A100 Tensor Core GPU, visit /a100The NVIDIA A100 Tensor Core GPU is the flagship product of the NVIDIA data center platform for deep learning, HPC, and data analytics. The platform accelerates over 1,800 applications, including every major deep learning framework. A100 is available everywhere, from desktops to servers to cloud services, delivering both dramatic performance gains and cost-saving opportunities.。
BR8220 芯片数据手册 v1.01

泰克Tektronix P6131无源探头使用手册

Instruction ManualP613110X Passive Probefor 2400 Series Oscilloscopes 070-5514-03WarningThe servicing instructions are for use by qualified personnel only. To avoid personal injury, do notperform any servicing unless you are qualified todo so. Refer to all safety summaries prior toperforming service.Copyright © Tektronix, Inc. All rights reserved.Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supercedes that in all previously published material. Specifications and price change privileges reserved.Tektronix, Inc., P.O. Box 500, Beaverton, OR 97077-1000TEKTRONIX and TEK are registered trademarks of Tektronix, Inc.WARRANTYTektronix warrants that the products that it manufactures and sells will be free from defects in materials and workmanship for a period of one (1) year from the date of purchase from an authorized Tektronix distributor. If any such product proves defective during this warranty period, Tektronix, at its option, either will repair the defective product without charge for parts and labor, or will provide a replacement in exchange for the defective product. Batteries are excluded from this warranty.In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the expiration of the warranty period and make suitable arrangements for the performance of service. Customer shall be responsible for packaging and shipping the defective product to the service center designated by Tektronix, shipping charges prepaid, and with a copy of customer proof of purchase. Tektronix shall pay for the return of the product to Customer if the shipment is to a location within the country in which the Tektronix service center is located. Customer shall be responsible for payingall shipping charges, duties, taxes, and any other charges for products returned to any other locations.This warranty shall not apply to any defect, failure or damage caused by improper use or improper or inadequate maintenance and care. Tektronix shall not be obligated to furnish service under this warranty a) to repair damage resulting from attempts by personnel other than Tektronix representatives to install, repair or service the product; b) to repair damage resulting from improper use or connection to incompatible equipment; c) to repair any damage or malfunction caused by the use of non-Tektronix supplies; or d) to service a product that has been modified or integrated with other products when the effect of such modification or integration increases the time or difficulty of servicing the product.THIS WARRANTY IS GIVEN BY TEKTRONIX WITH RESPECT TO THE LISTED PRODUCTS IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR IMPLIED. TEKTRONIX AND ITS VENDORS DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. TEKTRONIX’ RESPONSIBILITY TO REPAIR OR REPLACE DEFECTIVE PRODUCTS IS THE SOLE AND EXCLUSIVE REMEDY PROVIDED TO THE CUSTOMER FOR BREACH OF THIS WARRANTY. TEKTRONIX AND ITS VENDORS WILL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IRRESPECTIVE OF WHETHER TEKTRONIX OR THE VENDOR HASADV ANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.Contacting TektronixProduct support For questions about using Tektronix measurement products, calltoll free in North America:1-800-833–92006:00 a.m. – 5:00 p.m. Pacific timeOr contact us by e-mail:tm_app_supp@For product support outside of North America, contact your local Tektronix distributor or sales office.Service support Tektronix offers extended warranty and calibration programs as options on many products. Contact your local Tektronix distributor or sales office.For a listing of worldwide service centers, visit our web site.For other information In North America:1-800–833–9200An operator can direct your call.To write us Web site Tektronix, Inc.P.O. Box 500 Beaverton, OR 97077-1000 USAHand contact areaFigure 1: Probe finger guard and hand contact areaSpecifications@25% Duty Factor =(1/2 Peak V) RMS @50% Duty Factor =(1.414 (Peak V)) RMSSpecial case of square wave:@20% Duty Factor =[(V Peak )2 (Duty Factor)] 1/2Example: Maximum Input Voltage =[(650 V Pk)2 (.20)]1/2= 290V RMS 0V 0V 0V Figure 2: Maximum input voltage calculation example R P and X P (W )10M 1M 100K 10K 1M 1000.010.11101001000Frequency (MHz)Figure 3: Typical P6131 X p and R p versus frequency110100Frequency (MHz)Figure 4: Typical P6131 voltage derating versus frequency Table 2: Environmental characteristicsService Information6.Remove the coax cable from the test setup. Connect the P6131 probe outputto the same vertical input on the oscilloscope.7.Connect the probe tip through the probe-tip-to-BNC adapter to the standardamplitude output of the calibration generator. (You must remove the lightgray probe-body shell before inserting the probe tip into the probe-tip-to-BNC adapter.)8.Set the calibration generator output amplitude to 0.5 V and fine tune theamplitude to produce a precise 5-division display on the oscilloscope.9.The deflection error indicated by the calibration generator must be within0.75% of the error noted in step 5 above (probe attenuation accuracy of ±1%minus the generator uncertainty). Example: if the error noted in step 5 is+1%, the calibration generator display must now indicate between 0.25%and 1.75%.NOTE. You can also check the probe attenuation accuracy with an ohmmeterhaving a 10 M W range and ±0.05% or greater accuracy.An attenuation accuracy of ±1.0% is assured if the oscilloscope input resistanceis 1 M W±0.55% (±0.5% tolerance plus 0.05% reading uncertainty) and theprobe-tip-to-output series resistance is indicated to be 9 M W±0.35% (±1.0%attenuation accuracy minus ±0.6% input resistance uncertainty minus ±0.05%reading uncertainty).10.Disconnect the test setup.Adjustment ProcedureThis section contains procedures to adjust the P6131 probe low-frequency andhigh-frequency compensations. Always perform the low-frequency compensationadjustment before proceeding to the high-frequency adjustment.For a list of test equipment needed to perform the adjustments, see Table 5 onpage 7.Metal-shell versionC2010Plastic-shell versionFigure 6: Low-frequency compensation adjustment locationsService InformationOver compensated Under compensated Correct Figure 7: Low-frequency compensation, optimizing the waveform To adjust the probe high-frequency compensation do the following:1.Connect the positive-going fast-rise output of the calibration generator to the test oscilloscope with the precision coax cable and 10X attenuator.2.Set the oscilloscope controls as follows:V olts /Division 10 mV (includes 10X probe attenuation)Time/Division 0.02 m s Input Coupling DC Bandwidth Full 3.Set the calibration generator to produce a fast-rise output with a repetition rate of 10 m s (100 kHz). Adjust the output amplitude to produce a 5 division display on the oscilloscope.4.Adjust the oscilloscope triggering for a stable display and center the waveform on screen.5.Note the pulse shape and system aberrations for analysis in step 10.6.Remove the precision coax cable from the test setup.7.Remove the probe compensation box cover as described below.Metal shell version: Unscrew the compensation box retainer nut approximately two complete turns and lift the cover out and up. Press the cable connector in firmly and retighten the retainer.Plastic shell version : Pry off the darker portion of the plastic shell by inserting your thumbnails into the seam between the two cover pieces;then remove the lighter portion from the inner metal shield.High-Frequency Compensation AdjustmentService Information8.Connect the probe output to the oscilloscope vertical input.9.Connect the probe tip through the probe-tip-to-BNC adapter and a 50 Wtermination to the positive-going fast-rise output of the calibration generator.(The light gray probe-body shell must be removed before inserting the probe tip into the probe-tip-to-BNC adapter.)10.Verify that the high-frequency aberrations do not exceed +6% (5.30divisions), –6% (4.70 divisions), or 9% (0.45% division) peak to peak, inaddition to the system aberrations noted in step 5 above.11.If the probe aberrations are within tolerance, proceed to step 14 below. If theprobe aberrations are not within tolerance, continue with step 12 below. 12.Adjust R2021 for the best overall waveform flat response. See Figure 8 forthe location of all adjustments.13.Adjust R2020, R2010, and C1010 for the best corner response withoutringing. See Figure 9 for the waveform area effected by each adjustment. NOTE. High-frequency compensation adjustments affect probe bandwidth. Following the compensation adjustments, verify the probe bandwidth specifica-tion using the procedure on page 8. A small overshoot on the leading edge ofthe pulse may be tolerated in order to meet the bandwidth specification. The overshoot should not exceed the typical aberrations described in step 10 above.14.Reinstall the compensation box cover by performing the procedure describedin step 7 above in reverse order.15.Disconnect the test setup.C1010C2010Plastic-shell versionFigure 8: High-frequency compensation adjustment locations≈20 nsR2021≈5 nsR2021≈3 nsR2021C1010Figure 9: High-frequency compensation, optimizing the waveformService InformationMaintenanceUse the following procedures to clean and maintain the P6131 probe.To remove accumulated dirt from the probe exterior, use a soft cloth dampened with a nonresidue cleaner, preferably isopropyl alcohol. In particular, avoid solvents such as benzene, toluene, xylene, or acetone.Modular construction has been used in the design of the probe to simplify repair.The probe head, tip assembly, compensation box, and cable are available as separate units through your local Tektronix field office or representative.Individual components within the compensation box are not replaceable. See page 19 for a list of replaceable parts.The entire probe-head can be replaced by simply pulling the probe-headassembly away from the cable and pushing a new unit in place. To remove the compensation box, unscrew the retainer and pull the cable until it separates from the box.The probe tip is easily replaced by following the replacement procedure included with the replacement tips.CleaningProbe Module ReplacementService Information2347891011121314151617Figure 10: P6131 probe with standard accessoriesReplaceable parts: P6131 probe and standard accessories Fig. &index number Tektronixpart numberSerial no.effectiveSerial no.discont’d Qty Name & description Mfr. code Mfr. part numberP6131 PROBE10 –1206–0314–001COMP BOX ASSY:1.3 METER(STANDARD ONLY)80009206–0314–00206–0321–001COMP BOX ASSY:2 METER(OPTION 02 ONLY)80009206–0321–00–2131–3219–001CONN,RF PLUG:BNC,MALE,STR,THD,10X2493128P266–3–3200–3018–0084301COVER,CABLE NIP:COMP BOX0J260ORDER BY DESC –4200–3017–0084301COVER,COMP BOX:BOTTOM,ABS SLATE GRAY TK2565200–3017–00–5200–3016–0089091COVER,COMP BOX:TOP,ABS DOVE GRAY(STANDARD ONLY)TK2565200–3016–00200–3016–0089091COVER,COMP BOX:TOP,ABS DOVE GRAY(OPTION 02 ONLY)TK2565200–3016–00Replaceable Parts。
DL8W01单通道液位检测触摸ic规格书V1.0

DL8W01单通道液位检测触摸芯片规格说明书DL8W01单通道液位检测触摸芯片版本V1.0目录目录 (2)1.产品概述 (3)2.主要特性 (3)3.封装引脚示意图 (4)4.功能描述 (5)5.应用电路图 (6)6.PCB布线要求 (7)7.电气特性极限参数 (7)7.1电气特性极限参数 (7)7.2直流特性 (7)8.封装信息(SOP8) (8)1.产品概述本产品的特点和优势:◆本产品为液位检测专用IC,可做1路液位检测通道。
◆无论检测探头与水直接接触,或者检测探头紧贴于非导电的外壳,都可以准确指示水位。
◆通过算法可以实现有水上电或者无水上电的情况下,准确指示水位。
◆本产品经过多年客户的检验,稳定性和抗干扰能力等各方面表现优秀,目前已广泛使用于:加湿器、咖啡杯、饮水机、鱼缸设备等电子产品。
2.主要特性◆工作电压范围:2.4V~5.5V◆待机电流约9uA@VDD=5V&CMOS=10nF◆单通道检测输入,单通道输出◆水位检测应用◆4级灵敏度配置◆内置稳压源、上电复位和低压复位等硬件模块◆检测输出经过了内部算法及消抖处理,效果稳定可靠◆HBM ESD优于4KV◆封装:SOP83.封装引脚示意图图1引脚示意图表1引脚功能描述4.功能描述1、初始化时间上电复位后,芯片通过140ms的时间初始化来计算环境电容,之后再正常工作。
2、水位检测当液面覆盖检测盘,检测到TK脚电容值大于CREF基准电容值时,OUT输出有效(高电平)当液面低于检测盘,检测到TK脚电容值小于CREF基准电容值时,OUT输出无效(低电平)3、灵敏度设置1)CREF调试在合适值后,可通过以下方式改变检测的灵敏度。
改变VC引脚的电容值(1~47nF)改变灵敏度等级(通过S1、S2引脚配置4级)2)灵敏度由CREF引脚的电容值与TK脚寄生电容值的差值决定,CREF电容大小应略大于TK 脚上的寄生电容。
差值越小,灵敏度越高,一般来说,CREF脚电容比TK脚寄生电容大约0.2pF。
矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 48 47 46 45 44 43 42 41 40 39 38 37 36
2
35
3
Top view
34
4
33
5
32
6
31
7
30
8
GND pad
29
9
28
10
27
11
26
12
25
13 14 15 16 17 18 19 20 21 22 23 24
CVDD12 PADVDD Y5 Y4 Y3 MDVDD MAVSS MAVDD Y2 Y1 Y0 VSS
应用
视频监控 行车记录仪
PADVDD CVDD12 XMCLK VSS VSS TMODE RESETB PADVDD PCLK Y7 Y6 VSS
器件标记 (QFN6x6-48L 封装)
AW6131
XXXX
AW6131 XXXX - 生2 MRXDN1 MRXDP1 MAVSS MRXCN MRXCP MAVDD MRXDN0 MRXDP0 MAVDD
3.2 工作过程.................................................................................................................................12 3.3 工作模式切换 .........................................................................................................................13 3.4 时钟域说明 .............................................................................................................................15
4.2 MIPI RX PHY 模块 .................................................................................................................16 4.2.1 功能特性 .................................................................................................................16
AW6131 产品手册 2014 年 06 月 V1.0
目录
视频监控 ....................................................................................................................................... 1
图像特殊效果调整 图像边缘锐化 色度空间平滑与调整 图像的裁剪与缩小 支持数码变焦与图像的无损放大,输出图像最大值为 5M 接口 一组 DVP 输出,最高支持 100M 时钟频率 一组 MIPI 2 对数据线的接收引脚(RX),最高到 800M bps 一组 I2C slave 接口,用来接收 host 控制 一组 I2C master 接口,用来控制摄像头 I2C 旁路功能,可以通过 host 直接访问摄像头 内置 PLL,输入时钟频率 6~27M 支持 1.8V/2.8V/3.3V IO 工作温度范围-40°C~ 85°C 工作状态:Sleep/Standby/Active 封装:0.4mm pitch 标准 6x6 QFN48
1 概述 ......................................................................................................................................... 4
1.1 引脚功能定义 ............................................................................................................................ 4 1.2 AW6131 内部功能框图 ................................................................................................................ 6 1.3 典型应用图 ................................................................................................................................ 6 1.4 订购信息.................................................................................................................................... 7
3 功能描述 .............................................................................................................................. 11
3.1 复位........................................................................................................................................11 3.1.1 硬件复位 .................................................................................................................11 3.1.2 软件复位 .................................................................................................................11 3.1.3 AW6131 复位..........................................................................................................11
2 指标 ......................................................................................................................................... 7
2.1 工作条件.................................................................................................................................... 7 2.2 性能指标.................................................................................................................................... 9
AW6131 产品手册 2014 年 06 月 V1.0
数字图像处理 ISP SOC 芯片 AW6131
特性
支持的摄像头大小与帧率 - 2M 与 1080P 摄像@25fps - 720P 摄像头 42fps
高性能图像处理功能 黑电平矫正 坏点矫正 去光圈效应 空域去噪 自动白平衡 自动曝光增益控制 自动对焦 去马赛克(把 RAW 转变为 RGB) 伽玛曲线调整 饱和度色度调整、对比度调整
5 数字模块 .............................................................................................................................. 17
5.1 MIPI RX 模块 .........................................................................................................................17 5.2 DVP 模块 ...............................................................................................................................17 5.3 I2C 接口...............................................................................................................................17
4 模拟模块 .............................................................................................................................. 16