第六章车身的简化计算
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 车身的简化计算
§6-1 概 述
到目前为止,对待汽车尤其是车身计算载荷的方法,与对待其它交通工具的方法是不一样的。
至今未制订出计算载荷的基本准则。
飞机、船舶、铁道车辆等——以载荷的各种计算方法和标准规范为基础。
不平路面→汽车激起不同的振动→车身、车架承受随机载荷→汽车结构产生疲劳损坏。
——难以准确确定,随着科学技术的发展——如随机振动理论、结构分析技术、测试技术等的迅猛发展,为深入开展此项研究提供了基础。
汽车行驶中所受的载荷一—两大类:
1.疲劳载荷
——造成疲劳破坏的随机载荷。
只能用统计的方法描述。
获得方法: ① 道路试验法
对汽车在典型路面上进行短距离实测,然后用数理统计的方法对所测得 的资料进行整理和推断,最后编制成载荷谱的方法来取得载荷资料。
② 数学分析法
——根据积累的路面不平度的测量统计资料(路面功率谱密度)和反映 结构参数的系统频率响应函数→求得相应的输出功率谱和均方值→进而求出构件的载荷方差和均方值。
——可参考有关资料。
疲劳载荷——适用于计算零部件的疲劳强度,估算疲劳寿命。
均有设计标准规范
车轮和路轨的撞击力。
—铁道车辆河、海水的浪高;—船舶行驶中受力;按不同飞机的起飞曲线—飞机的起飞载荷⎪⎭
⎪
⎬⎫
有关,且相当复杂
汽车结构参数等使用条件路面状况
载荷大小及其特性⎪⎩
⎪
⎨
⎧
2.偶然的大载荷
——偶然因路面冲击引起
这种大载荷将使构件的工作应力超过材料的屈服极限或强度极限而破坏。
试验表明:若结构尺寸选择正确,能承受最大的偶然载荷的作用,则它的疲劳强度也足够。
学习本章的目的在于对计算所需外力进行系统分析并给予科学、合理的确定。
§6-2 车身的计算载荷
一、动载荷和静载荷的关系
静载荷——静止时,汽车悬挂着的自身载荷G r 和车身有效载荷(悬挂质量和额定装载质量)。
动载荷——汽车在不平路面上行驶时所承受的载荷。
汽车行驶时所受的载荷: ⎩⎨⎧最大动载(道路不平)
—次数极少经常反复出现的动载
—最多的
经验表明:如结构的尺寸选择正确,该结构能承受最大的偶然载荷的作用,因此,疲劳强度亦足够。
载荷计算的问题可以归结为如何确定动载荷向静载荷转变的系数。
由车轴上的载荷分配→静载荷的大小,用动载荷系数→以车身壳体的静力分析取代疲劳计算。
汽车行驶时,作用在车身上的惯性力F d 与自重和有效重量,以及加速度 成正比:
式中:F st ——静力,求自重量在车轴上的分配,N ; g ——重力加速度,m/s 2; a ——汽车加速度,m/s 2; m ——动载系数,m=a/g 。
即:动载力可以简化为一个静力与动载系数的乘积。
在一般情况下,汽车行驶时作用在车身上有三个力和三个力矩: 三个方向的力: 垂直方向: F z =m z ·G s 式中:m z ——垂直方向动载系数;
G s ——悬挂质量,N 。
横向: F y =m y ·G s 行驶方向(纵向):F x =m x ·G
式中:m x 、m Y ——汽车纵向和横向动载系数。
m
F a g
F F st st
d ⋅=⋅=
三个方向的力矩
水平面内弯曲力矩: M z ——绕z 轴,x —y 平面内 扭转力矩: M x ——绕x 轴 垂直平面内弯曲力矩:M y ——绕y 轴
因所有壳体的EJ x 很大(材料的弹性模量和绕X 轴的极惯性矩),在一般计算时,M Z 可以忽略不计。
二、对称垂直载荷
——与汽车纵轴线对称的垂直载荷,是汽车行驶于不平路面上当前后两车轮同时碰到障碍物时产生。
F zs =m zs ·
G s (N )
式中:m zs ——对称加载(垂直载荷)
时的动载系数。
F zs 将引起弯曲力矩M y ,使车身壳体在垂直方向发生弯曲变形。
大量试验表明,最大垂直对称加速度值:轿车和客车在1.5~2.5g 范围,而载重汽车其数值范围将更大一些。
一般,对称加载动载系数: 轿 车: m zs =2.0~2.5; 客 车: m zs =2.0~2.5; 载重汽车: m zs =3.0; 特种汽车: m zs =3.5~4.0。
m zs 也可按下式计算:——日本推荐,前后轮同时驶上具有相等凸起高度的地面障碍时的动载系数(半经验公式):
式中:G a ——汽车总重力,N ;
C 1、C 2——前、后悬架与轮胎的合成刚度,N/mm ;
δ⋅++
=a
zs G C C m )
(121
2
222211111s t s t s t s t C C C
C C C C C C C +=+=
,
C t1、C t2——前、后轮胎刚度,N/mm ; C s1、C s2——前、后悬架刚度,N/mm ; δ——悬架变形系数:
h ——路障高度,mm 。
轿车、客车:h=80mm ;
货车:h=100mm 。
λ——经验系数,取1000(km/h)2; V a ——车速,km/h 。
上式说明了动载系数与路面不平、车速、汽车结构参数的关系。
如:V a ↑——m zs ↑ 当 V a >100km/h 时,
2a
V
λ
<0.1, m zs →定值
h ↑或C ↑→m zs ↑
上述所推荐的m zs 值,因越来越精确的车身计算方法得到应用,以及制造工艺的发展,悬挂及轮胎特性的改善→车身加速度得以降低,加工缺陷得以改善,→m zs 有减小的趋势。
三、非对称垂直载荷
——与汽车纵轴线不对称的垂直载荷。
产生原因:汽车行驶时车轮不同时碰到障碍物时产生。
结果:同一根轴上的左右车轮上作用着不同的支反力,致使车身除承受弯曲力矩外,还承受扭转力矩的作用。
1.非对称垂直加载时的力
——弯曲工况,垂直载荷产生
F zn =m zns ·
G s N
式中:m zns ——非对称垂直加载的动
载系数;
G s ——悬挂质量,N 。
2
/1a V h λδ+=
2.由车轮悬挂产生的扭转力矩
——扭转载荷,因路面凸起而 产生的不对称于汽车纵轴的垂直载 荷使车身绕X 轴扭转。
M s =m zns (R fr - R f1)·
2
f B (N ·m )
式中:R fr - R f1——左、右前轮上作
用力的差,N ;
B f ——前轮距,m 。
扭转力矩M s (或T x )取决于⎪⎪⎩⎪
⎪⎨⎧-f
B f1R fr R zns m
一般:轿车:m zns =1.3 载重汽车:m zns =1.5
客车:m zns =1.3 特种汽车:m zns =1.8
3.非对称垂直载荷的特点
1°非对称垂直载荷取决于动载系数m zn 和悬挂质量G s 非对称垂直载荷产生的扭转力矩,取决于: ·动载系数m zn
·作用在车轮上的力的差值:R fr - R f1 ·前轮距:B f
2°R fr - R f1取决于某一车轮所碰撞的障碍物的高度h
极限工况下,R fr - R f1=R f (前轴反力),若某一车轮悬空,即: R fr =R f R f1=0 ——以左轮悬空为例 3°一个车轮脱离路面
4°车身壳体的扭转变形
一般,车身壳体的扭转变形与悬架、轮胎等弹性元件相比微小得多
⎪⎪⎩⎪⎪
⎨
⎧→车身的抗扭刚度纵、横置等—悬挂的布置型式轮距总变形—变形悬挂弹簧和轮胎的弹性不平度的高度f
z B f h
(<10%),常忽略不计→使分析计算时对h 的考虑变得简单,可以在初步设计的最初阶段——进行壳体扭转刚度计算的全部车身截面尚未完全确定时,就考虑不平高度h 。
4.非对称垂直载荷的计算
① 设:当车轮碰撞到单个凸台时,根据卡·尔茨的研究结果,悬挂与 车身的位移:
式中:f t1、f t2——前后轮胎的变形,取悬架变形的10%~20%,mm ; f s1、f s2——前后弹簧或悬架的变形,mm ; B f 、B r ——前后轮矩,mm ;
Z 1、Z 2——前后弹簧的左右弹簧间的距离,mm 。
式中第一项f t1、第二项B f )(1
1
Z f s ——表示前车轴抬高量的表达式,取决于
前轮与前悬架装置的参数;
第三项B f (f t2/B r ),第四项B f (f s2/Z 2)——表示产生于后轮的相应的反作用力矩所引起的后轮与后悬架变形的结果,即后悬挂参数的影响。
② 当碰到道路的两个不平度时——设左前轮、右后轮碰到障碍,则汽车前面或后面部分随车轴承载状况变化而发生的位移:
式中:f t ——轮胎变形,mm ; f s ——悬架或弹簧变形,mm ; B ——轮距,mm ;
(mm) )()()(
2
221111Z f
B B f B Z f B f h s f r t f s f t +++=(mm)
)(2Z B
f f h s t +=
Z ——左右弹簧的距离,mm 。
③ 若给定汽车的计算载荷与悬挂和轮胎的刚度,则: 对单个不平度:
对两个不平度,使一个车轮开始脱离地面的凸起高度值:
式中:R f ——前轴上的载荷,N ;
B ——轮距(注脚f —前轮距,r —后轮距),mm ;
C t ——轮胎的刚度系数,N/mm ; C s ——悬挂的刚度系数,N/mm 。
计算位移h 1和h 2应与汽车所能克服的实际不平度进行比较。
据大量的统计研究,各类汽车所能克服的实际道路不平度为:
如果计算出的悬架参数满足h 1、2 <H ,则出现一个车轮离开路面的极限情况。
此时,根据力矩平衡方程式,可求出作用于车轮上的力和转矩为:
右前轮作用力:R f1=0 左前轮作用力:R fr =m zns ·R f (N )
(mm)
11111⎥⎥⎦
⎤
⎢⎢⎣⎡⋅+⋅+⋅+⋅⋅⋅=r sr r tr f sf f tf f f zns
Z C B C Z C B C B R m h mm
112⎥⎦
⎤
⎢⎣⎡⋅+⋅⋅⋅=Z C B C B R m h s t f zns 表示凹陷高度表示凸起高度
越野车货车客车轿车"""" 400mm h : 00mm 3H : 250mm H : 200mm H :max -+⎪⎪⎭
⎪⎪
⎬
⎫
±=±=±=±=
右后轮作用力:R r1=m zns ⎪⎪⎭⎫
⎝
⎛⋅+r f f r B B R R 22 (N )
左后轮作用力:R rr =m zns ⎪⎪⎭⎫
⎝
⎛⋅-r f f r B B R R 22 (N )
扭转力矩: M s = m zns ·R f ·2
f
B (N ·m )
可见,作用于承载系统上的最大转矩发生于荷重较小的车轴上的一个车轮离开路面时,所以,上述公式是基于R f <R r 的情况。
如果悬架设计有足够行程,使车轮不致离开地面,即h 1、2>H ,则作用在车轮上的力和汽车上的转矩为:
右前轮上的作用力:R f1= m zns ⎪⎪⎭⎫ ⎝⎛2
f
R ⎥⎦⎤⎢⎣⎡-211,、h H (N ) 左前轮上的作用力:R fr = m zns ⎪⎪⎭⎫ ⎝
⎛2
f
R ⎥⎦⎤⎢⎣
⎡+211,、h H (N )
右后轮上的作用力:R r1= m zns ⎥⎥⎦
⎤
⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫
⎝⎛⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛r f
f r B B h H
R R 2,122 (N ) 左后轮上的作用力:R rr = m zns ⎥⎥⎦
⎤⎢⎢⎣
⎡⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛r
f f r B B h H
R R 2,122 (N ) 汽车上的转矩:M s = m zns ·R f ·2
f
B ·2,1h H
(N ·m )
实践证明,大多数汽车不会发生车轮脱离路面的现象,可以用上述方法进行验证,并计算作用在汽车上的力。
在进行车身的结构计算时,也可以根据驶过路面凸起时车轮的抬起高度→求得车身支承处的位移,作为车身计算的已知条件。
四、纵向载荷
汽车在制动、加速以及碰撞到道路不平障碍时产生。
在考虑汽车的安全性时,需确定一旦发生碰撞时保险杠所受力的大小。
一般:轿车最大制动减速度:a=10m/s 2; 客车和载重汽车: a=7m/s 2;
突然松开离合器踏板或制动踏板,所产生的附加速度,可取制动时的减速度值。
——实际上要小些。
一般情况下,由于行驶速度改变而引起的纵向力:
F x =±m x ·
G s (N )
式中:m x ——纵向力动载荷系数,m x =0.7~1.0;
G s ——悬挂质量,N 。
当车轮碰上前述所列数据的障碍时,通过悬架固定点传到汽车壳体上的 纵向力将会很大
F x =m x ·R f ·tg θ
式中:R f ——车轮碰撞到宽的障碍
物时前轴上的静载 荷,或当车轮碰上窄 的障碍物时一个前轮 上的静载荷(计算与 非对称载荷相同);
θ——力作用点夹角,取决于r d (胎径)、h (障高);
θ=arcsin (1-d
R h
) R d ——车轮的动力半径,mm ; h ——不平度的实际高度,mm 。
五、侧向载荷
汽车沿曲线轨迹行驶或侧面撞到障碍物时产生。
1.曲线行驶产生的侧向力
曲线行驶产生的侧向载荷,在F y 为极限数值时由外轮的地面侧向反力 所平衡。
即:
F y ≤F ymax 时, F y =R y ——地面对车轮的侧向反力; 当惯性力C 继续↑→F y >R y φmax ——地面侧向附着力。
最大可能的离心力取决于轮距B 和汽车的重心高度h g 。
由: tg γ=G m C h B
zs y g ⋅=
2 式中:B ——轮距,mm ;
h g ——重心离地高度,mm ; C y ——惯性力的侧向分力,N 。
可得: C y =R y =m zs ·G ·g
h B
2 (N )
R fy =m zs ·G ·g
h B 2·L b
(N )
R ry =m zs ·G ·g
h B 2·L a
(N )
式中:L ——汽车轴距,mm ;
a 、
b ——重心到前、后轴的距离,mm 。
惯性力在汽车纵向产生的分力C x 与道路不平对车轮碰撞时所产生的纵向力相比较小,在计算纵向载荷时有时可将C x 忽略不计。
2.路面不平产生的侧向力
——与道路不平障碍发生侧面撞击时产生。
F y=m y·
G s(N)
式中:m y——侧向力动载荷系数,m y=0.7~1.0。
六、计算方案
计算载荷F zs、F zns、F x和F y一般并不孤立存在,实际上往往同时产生。
可能出现的组合工况——8种:
各种载荷的组合情况及动载荷系数
对单个载荷,动载系数m zs m zns、m y和m x的数值应取该类汽车的最大值。
对复合载荷,动载系数不会达到最大值——由汽车运动性质决定。
对于车身结构来说,在8种载荷的组合中,起决定作用的是引起弯曲和扭转的非对称垂直载荷。
在实际计算时,应考虑组合情况,把载荷分解为弯曲和扭转。
当应力接近于计算应力时,结构中不会出现残余应力或发生损坏,安全系数一般取:n=1.3~1.5;
对处于来自悬架、发动机、变速器这样一些部件的大的集中力作用之下的壳体部位的构件,取:
n=1.5~2.0
§6-3 车身的简化计算
一、车架的简化计算
对车架的要求:具有行驶稳定性——受载下变形小,强度大,能充分
发挥性能,且重量轻,工艺好。
车架是否满足要求,可以通过计算确定。
车架是汽车的基础承载件,主要承受行驶中的各种外力,其中以垂直动载荷以及行驶在凹凸不平路面时产生的扭转载荷最为重要。
1.车架的弯曲计算——静强度法
1)假设条件
在一般弯曲计算中,多以垂直动载为标定载荷。
车架的弯曲计算主要对纵梁而言。
为简化计算,作如下假设:
①纵梁为支承在前后车轴上的简支梁;
②车辆的自重、乘员及行李重量仅由两根纵梁承受;
③左、右纵梁所受载荷对称;
④所有的力均通过截面的弯心——忽略不计局部扭转的影响;
⑤计算时,将钢板弹簧、传动轴质量的一半作为悬挂质量。
2)计算方法
①确定纵梁上的作用载荷
1°各总成的重量及重心位置
原则:小零件——重力直接
作用于支座;
大零件——将重力分
配给各个支承。
按重心到前后支承距离计算
——x、y、z座标,由此即可得纵
梁上的各作用载荷——静弯曲
乘客——按座位数考虑,由乘
客、座椅重量→每个座位的重心,
按人、座椅等作为集中载荷;
车架、车身——按本身自重,以其长度作为均布载荷; 城市客车——站立乘客按均布载荷考虑。
2°求支反力
∵ 车轴反力由前后钢板弹簧传给车架。
设前后轴上的反力为R f 和R r ,则: R ff +R fr = R f , R rf +R rr = R r 有:F 1+ F 2+ F i +···+ F n =R f + R r
而:F 1·l 1+ F 2·l 2+···+ F i ·l i +···+ F n ·l n = R f ·l f + R r ·l r 式中:F 1,F 2,··· F n ——纵梁上的各作用载荷,N ;
l 1,l 2,···l n ——各载荷作用点到车架前端的距离,mm 。
由此可以求出R f 和R r :
如果采用的是对称式钢板弹簧,则:
R ff =R fr =21
R f R rf =R rr =2
1R r 或: ΣM 01=0 R r =∑n
1F i ·X i /L
ΣM 02=0 R f =∑n
1
F i -R r
求出了F 、R 、l 后就可以用解析法或作图法画出弯矩图和剪力图。
② 纵梁各截面的弯矩——用材力中的弯矩差法 对某一点的弯矩,应是前面所有力对该点力矩之和。
例:图中的F 5作用点弯矩M 5:
M 5=F 1(L 5-L 1)+ F 2(L 5-L 2)+ F 3(L 5-L 3)+ F 4(L 5-L 4)- R ff (L 5-L ff ) - R fr (L 5-L fr )
)
(1
11∑∑--=n
i r n i i r f f F l F l l l R )
(1
1
1i n i n i f r f r l F F l l l R ∑∑--=
应从前面一点算到最后一点,最后一点的弯矩应为0,否则不平衡。
由于计算误差,最后一力作用点的弯矩可能不为0,但要求≯±50N 。
(前、后一点都应为0)
③ 各截面的剪力Q
i 点前的所有力之和即为i 点的剪力Q i-1 即:Q i-1=F 1+ F 2+···+F i-1+ F i
以上求出的是静载,实际行驶中汽车由于道路不平产生碰撞、振动,所受的动载比静载大得多。
因此,应在静载的基础上乘上一动载系数。
④ 弯曲应力
对于常用的槽形截面纵梁,可按下式计算弯曲应力:
式中:W x ——抗弯截面系数,W x =
6
)6(th
h b ⋅+ mm 3。
计算的弯曲应力不应超过纵梁材料的疲劳极限σ-1。
对16Mn 钢,σ-1=220~260N/mm 2。
2.扭转计算
除保证车架的弯曲强度和扭转强度外,还必须保证足够的扭转刚度。
车架扭转:·影响安装在其上的车身和各总成工作; ·降低高速行驶下的行驶稳定性。
车架的扭转刚度以多大合适?——十分复杂
一般:要求车架扭转刚度应与轮胎和悬架刚度相匹配。
轮胎、悬架刚度小→车架扭转刚度可大一些; 轮胎、悬架刚度大→车架扭转刚度可小一些。
设计车架时,应根据使用条件和行车要求来确定车架的扭转刚度。
如:1°在坑洼不平的道路上行驶的汽车,为保证行驶稳定性,应尽可能保持车架和车身的水平,减少车身的扭转变形,延长使用寿命—↑车架扭转刚度,路面不平度首先由轮胎和悬架承担;
2°为得到较好的车架强度和稳定性→也可适当↓车架扭转刚度,主要由悬架系统承受负荷(采用刚度较大的弹簧)——挠性车架(如Benz-3500车架)。
[]2
N/m m i xi
i
zn i W M m σσ≤⋅=
对于梯形车架的扭转刚度:
式中:M s ——扭矩,N ·mm ; θ——扭转角,rad ;
L 1——左右钢板弹簧的平均间隔(前后平均),mm ; L ——轴距,mm ;
I 1p ——横梁的二次极惯性矩,mm ; l 1——横梁的有限长度,mm ; I p ——纵梁的二次极惯性矩,mm ;
l ——纵梁的有限长度(各横梁间的长度),mm ; G ——剪切弹性系数,MPa 。
由上式可知,车架各断面的二次极矩越大,车架的扭转刚度越好。
箱形断面与槽形断面相比,箱形断面的二次极矩大,抗扭刚度高。
以角度(deg )作为θ的单位,以N ·m 表示扭矩,则公式变为:
θ
θ
s S
M
n M ⋅=
'180000
一般希望:轿车
750>'θ
S
M N ·m/deg ;
载货车、客车
500>'θ
S
M N ·m/deg 。
因扭转应力的计算比较复杂,误差也大,一般多由试验得到。
二、轿车车身的简化计算
轿车车身大多为薄钢板经冲压、卷边、加强及加筋后组焊而成,空间几何结构异常复杂,不可能用传统的解析数学方法计算。
不仅如此,轿车车身所承受的载荷也十分复杂,不仅受到车身自重的作用,同时路面激励响应的随机载荷使车身的强度计算格外困难。
到目前为止,轿车车身强度计算唯一的数学方法是“基本结构板面法”(也称边力法),这种方法把车身简化成一个六面的“长方形盒子”,主要用于设计的初步阶段,目的是尽可能得到简化的模型,以便对车身结构进行定性的分析。
随着计算机水平的提高,现代轿车车身及零部件基本上都使用了有限元
()⎥⎦
⎤⎢⎣⎡⋅⋅+⋅⋅=
∑∑i pi n
i pi n s
l I L l I G L L M 12111122
1)(2θ
的方法计算。
以下简单介绍轿车车身强度计算的“基本结构板面法”
1.基本结构板面法
基本结构板面法是在有限元法出现之前,为了得到初步设计阶段所需的尽可能简化的模型而发展起来的车身力学分析方法,只研究车身各基本结构版面各边界之间的剪力。
采用基本结构板面,把汽车壳体分解成基本结构板面系统,确定内力常分为两步:
①计算板面内的边界力;
②以边界力的函数形式,确定内
力。
2.薄壁结构的半薄壳系统
为减少工作量,简化为半薄壳
结构。
在半薄壳结构中,蒙皮板对
骨架断面的作用只有剪应力的形式。
实际中,骨架各构件受到拉伸车身壳体作为一系列基本结构板面
和扭转的作用,临近的蒙皮区受到正应力的作用,蒙皮板经常设计一些用于提高刚度的凹槽,凹槽制成使板条不承受正应力作用。
此时,有必要将这些力换算成明确规定的板条中的应力。
若不考虑抗弯刚度,剪应力的分布可认为是均匀的,数值为:
τ=QS/(Jδ)
=QFp(h/2)/[Fp(h2/2)]
=Q/(hδ)
式中: Q——剪力;
S——静力矩,只考虑只有蒙皮板条承受正应力作用;
Fp——承受正应力蒙皮的截面;
h——形成薄壁断面的构件板条的重心距离;
J——薄壁断面的截面惯性矩;
δ——壁厚。
3.轿车基本结构板面模型
从车身力学观点来看,根据设计处理
方式,轿车车身壳体具有三种基本类型:
①平面式壳体——固定发动机、
底盘各部件的底座、框梁等。
②开式壳体——应用于敞篷式等
类型的车身。
③闭式壳体——应用于双门、四
门类型的车身。
三、轿车车身结构有限元法
如前所述,基本结构板面法是在有限元法没有发展起来时,在初步设计阶段尽可能简化模型形成的数学计算方法。
但是,轿车车身结构是一个非常复杂的空间结构,且汽车受到的载荷随时变化,车身结构部件之间的作用难以用统一的公式计算。
有限元法的引入为更精确计算轿车车身结构的刚度、强度及模态等提供了可能。
在轿车设计过程中,几乎所有零部件都可以利用有限元法计算其刚度、强度等。
目前,世界各技术先进的汽车公司都无一例外地将由有限元计算作为产品设计的常规。
以下就轿车车身结构有限元分析的简化、强度、刚度及模态分析作简单介绍。
1.轿车车身的简化原则
轿车车身结构复杂,模型化工作要求较高。
建立一个合理的车身有限元计算模型,不仅可以减少工作量,还可以正确地反映车身的受力等特征。
车身的简化应遵循以下原则:
①模型规模要适当——不盲目追求网络细密,抓住关键区域细化,满足计算目的和精度的基础上,控制节点规模。
上表为模型规模与计算时间的关系,不是简单线形关系。
②选择适当要求的组件构造模型——根据构件的力学特征和分析的目的来决定采用什么样的单元类型。
③计算模型中不能有危形结构和局部机动变形。
危形结构——受很小的载荷会产生非真实很大内力的结构。
如一根拉得很平直的绳子。
机动结构——受很小的作用力,即可产生非常大的不真实变形的结构。
如平行四连杆结构。
④避免出现病态方程——要求在简化模型的时候,模型中避免将过硬的组件和过弱的组建相连接。
若出现此情况,可用主从节点的关系。
⑤支承模拟——也成为边界条件,是模型简化中最重要的,也是最困难的一项技术,若处理不当,计算结果出入很大甚至导致计算失败。
车身常见的支承和边界问题:一是悬架支承;二是车身与车架之间的支承条件;三是对称边界的支承。
⑥载荷处理——车身所受载荷为弯曲、扭转、侧向和纵向载荷几种。
车身的载荷计算条件涉及产品竞
争,一般都是公司保密内容。
现代多数轿车车身结构的
基本拓扑形式可以归类为重量
轻、承载大的壳体结构,且大部
分构件是由薄钢板冲压件焊接
而成。
壳单元在平面刚度、弯曲
刚度及曲率效应比梁单元和板利用壳单元划分网格的车身有限元模型
单元具有更高的计算精度。
所以采用壳单元建立的车身有限元模型符合车身
结构的力学特性,计算精度较高。
2.轿车车身强度分析与计算
使用有限元法可以有效地分析车身的强度,并可以以应力云图的方式图形化显示特定载荷下车身各处的应变和应力分布情况。
轿车车身的使用工况虽然很复杂,但直接关系到车身结构静态强度的主要是弯曲和满载扭转(即弯扭)两种工况:
弯曲工况——在满载情况下,研究车身的抗弯强度;
弯扭工况——车身受到最剧烈的扭转工况,汽车以低速度通过崎岖不平的路面时的受力情况。
通过有限元法,设定边界条件及载荷情况,通过求解整体刚度方程Ka=p 即可求出各点的应力及变形。
3.轿车车身刚度分析与计算
轿车车身静刚度分析的关键在合理确定载荷及其目标值。
车身载荷状态很复杂,但主要有三种:
①扭转(模拟车轮抬高):扭矩由车桥负荷、悬架刚度和路面不平度计算确定。
②弯曲(模拟乘客载荷):载荷由乘客人数决定。
③尾部弯曲(模拟行李载荷):载荷值可由行李箱设计负荷确定。
计算时可将上面三种基本负荷进行组合,分析车身刚度状态。
在左、右前轮罩顶部施加大小相等、方向相反的力;乘客和行李作为集中载荷施加到相应位置;后轮罩顶部节点自由度完全约束。
由此可可得到车身各点的变形量,进而评价车身的刚度。
车身的弯曲刚度可由车身前后的变形量来衡量;车身的扭转刚度可由前
后窗和侧窗的对角线变化量、车身锁位及车身扭转角等指标衡量。
4.轿车车身模态分析与计算
车身模态尤其是低阶弹性模态不仅反映了车身的整体刚度性能,而且是控制汽车常规振动的关键指标。
通常轿车车身的第一阶固有频率在20~40Hz之间。
在该领域,外部激振源主要有两种:
·车轮不平衡激振,频率1~30H Z
·发动机的怠速激振,频率20~40H Z
⑴模型简化方法:
·车门、发动机罩、座椅、保险杠、车身附件等对车身的整体的抗弯及扭转刚度贡献可忽略。
·工艺孔、倒角、翻边等也可忽略。
⑵主要考虑因素:
·空间基本完整闭合的梁类构件,如前后纵梁、立柱、风窗横梁等。
·另一类是板类覆盖件,如顶盖、地板、轮罩等。
二、客车车身的简化计算
客车车身是一个高次超静定结构,很难精确计算其强度。
特别对结构强度总体设计的合理性分析更为困难。
现代电子计算机的应用和有限元法的引入,为车身计算提供了强有力的工具。
本节介绍一种简单实用的办法,可供初步设计计算参考。
由电测资料知,客车车身结构最严重的工况是车身相对于车辆纵轴线的扭转,其结构的薄弱部位是门立柱和窗立柱。
在此,主要介绍扭转工况下车身结构的强度计算。