江苏高考数学模拟试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年江苏高考数学模拟试卷(六)
第1卷(必做题,共160分)
一、填空题:本大题共14小题,每小题5分,共70分.
1. 若复数z 满足i i z +=-1)1((i 是虚数单位),则其共轭复数z = .
2.“m <1”是“函数f (x )=x 2+2x +m 有零点”的 条件(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”之一).
3.在△ABC 中,AB =2,AC =3,→AB ·→
BC =1,则BC = .
4.一种有奖活动,规则如下:参加者同时掷两个正方体骰子一次, 如果向上的两个面上的数字相同,则可获得奖励,其余情况不奖励.那么,一个参加者获奖的概率为 .
5.为了在下面的程序运行之后得到输出25=y ,则键盘输入x 的值应该为 .
(第6题图)
6.如图,直线与圆12
2=+y x 分别在第一和第二象限内交于21,P P 两点,若点1P 的横坐标
为3
5,∠21OP P =3
π,则点2P 的横坐标为 . 7.已知不等式组⎩⎪⎨⎪
⎧
x ≤1,x +y +2≥0,kx -y ≥0.表示的平面区域为Ω,其中k ≥0,则当Ω的面积取得最小
值时的k 的值为 . 8.若关于x 的方程2
-|x |
-x 2+a =0有两个不相等的实数解,则实数a 的取值范围是 .
9.用长为18m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,该长方体的最大体积是___ _____.
10.直线)20(<<±=m m x 和kx y =把圆422=+y x 分成四个部分,则22(1)k m +的最
小值为 .
11.已知双曲线122
22=-b
y a x ()0,1>>b a 的焦距为c 2,离心率为e ,若点(-1,0)和(1,0)到
Read x
If x <0 Then
y =(x +1)(x +1)
Else
y =(x-1)(x -1) End If Print y End x y
O P 1 3π P 2
直线
1=-b y a x 的距离之和为S ≥c 5
4
,则e 的取值范围是 . 12.已知定义在R 上的函数⎩
⎨⎧∉-∈=]1,0[3]1,0[1
)(x x x x f ,则1)]([=x f f 成立的整数x 的取值
的集合为 .
13.定义在[2,4]上的函数x x x x f ln 322
1)(2
++-
=的值域为 . 14.在如右图所示的数表中,第i 行第j 列的数记为a i ,j ,且满足a 1,j =2j -
1,a i ,1=i ,
a i +1,j +1=a i ,j +a i +1,j (i ,j ∈N *);又记第3行的数3,5,8,13,22,39,…. 则第3行第n 个数为 .
二、解答题:本大题共6小题,共90分.
15.(本小题满分14分)如图,在四棱锥S -ABCD 中,底面ABCD 是正方形,四个侧面都是等边三角形,AC 与BD 交于点O ,E 为侧棱SC 上的一点.
(1)求证:平面BDE ⊥平面SAC ; (2)若SA //平面BDE ,求:SE EC 的值。
16.(本小题满分14分)已知向量m =⎪⎪⎭
⎫
⎝⎛+x x 2cos 232sin 21,21与n =(1,y )共线,且有函
数)(x f y =.
(1)求函数)(x f y =的周期及单调增区间;
(2)若锐角△ABC ,三内角分别为A ,B ,C ,3)3
(=-
πA f ,边BC =
7,
7
28
cos =
B ,求A
C 的长.
17.(本小题满分14分)某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线一段.已知跳水板AB 长为2m ,跳水板距水面CD 的高BC 为3m .为安全和空中姿态优美,训练时跳水曲线应在离起跳点A 处水平距h m (h ≥1)时达到距水面最大高度4m .规定:以CD 为横轴,BC 为纵轴建立直角坐标系. (1)当h =1时,求跳水曲线所在的抛物线方程;
(2)若跳水运动员在区域EF 内入水时才能达到比较好的训练效果,求此时h 的取值范
围.
A
· C
D
B
F E ·
2
3
5 6
2+h
18.(本小题满分16分)已知椭圆E:x2
a2+y2
b2=1(a>b>0)的离心率为
3
2,其长轴长与短
轴长的和等于6.
(1)求椭圆E的方程;
(2)如图,设椭圆E的上、下顶点分别为A1、A2,P是椭圆上异于A1、A2的任意一点,直线PA1、PA2分别交x轴于点N、M,若直线OT与过点M、N的圆G相切,
切点为T.证明:线段OT的长为定值.
19.(本小题满分16分)已知函数f (x )=(a +1a )ln x +1
x -x (a >1). (1)讨论f (x )在区间(0,1)上的单调性;
(2)当a ≥3时,曲线y =f (x )上总存在相异两点P (x 1,f (x 1)),Q (x 2,f (x 2)),使得曲线y =
f (x )在点P ,Q 处的切线互相平行,求证:x 1+x 2>6
5.