不等式与区间表示法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、{x|-3<x ≤ 4} 2、 {x|x ≥ 2} 3、 {x|x < 0}
讨论:
{x|x≤-1或x≥2}用区间如何表示?
解:用区间表示为
(- ∞ ,-1]∪[2,+∞)
例题:解不等式组
{6 + x > 4x – 3
7 +3x ≤ 9+5x (1)
(2)
解:原不等式组的(1)(2)的解集分别为
{x|x≥-1},{x|x<3} 所以原不等式组的解集是: {x|x≥-1}∩{x|x<3}=[-1,3)
-1
0
3
x
练习:解不等式组
2( x 1) 5 x 5 x 3 3x 1
(1) (2)
1、不等式(组)的解集 2、不等式(组)的解集的表示方法
(1)集合描述法 (2)区间:闭区间 开区间 半开半闭区间 实数集R
a
b
x

闭区间
a b x
开区间
a b x
半开半闭区间:实数集的子集{x|a≤x<b}
或 {x| a < x ≤ b}叫做以a,b为端点的半开半
闭区间,记作:[a,b),(a,b] 数轴表示
a b
x
a
b
x
在实数集R中,有没有 最大的数和最小的数?
实数集R 用区间表示为( -∞,+∞ )
-∞ 读作: 负无穷大
x-3<0
(5)x-2≥0
x-3<0
(6)x-2>0 x-3≤0
闭区间:实数集的子集 { x | a ≤ x ≤ b }叫
做以 a , b 为端点的闭区间,记作[a,b]
数轴表示
a
b
x
开区间:实数集的子集 { x | a < x < b } 叫做以 a , b 为端点的开区间,记作(a,b)
数轴表示
-1
0
3
x
(2){x|-2≤x<2}
解:{x|-2≤x<2}表示为[-2,2)
数轴表示
-2 -1
0
1
2
x
(3){x|x>-1}
解: {x|x>-1}表示为(-1,+∞),
数轴表示
-2 -1
0
1
x
(4){x|x≤3}
解: {x|x≤3}表示为(- ∞ ,3],
数轴表示
0 1 2 3
x
用区间表示下列数集,并在数 轴上表示出来:
不等式(组) 的解集与区间
(1)x-3≥0 x-3>0 (2)x-2≤0 x-2<0
{x| x≥3 }
{x| x>3 } {x| x≤2 } {x| x<2 }
(3)x-2≥0
x-3≤0 (4)x-2>0
{x| 2≤x≤3 }
{x| 2<x<3 } {x| 2≤x<3 } {x| 2<x≤3 }
+∞ 读作: 正无穷大

表:
区间表示 数轴表示 a a b b x x x x
解集表示
{x|x≥a}
[a,+ ∞) (a,+ ∞)
{x|x > a} {x|x≤b}
{x|x<b}
( -∞,b]
(-∞,b)
例题:用区间表示下列数集,并在数轴上表示
(1){x|-1<x<3}
解:{x|-1<x<3}表示为(-1,3)数轴表示
相关文档
最新文档