离散数学_屈婉玲_耿素云_张立昂_主编_高等教育出版社_课后最全答案_文档(最新)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章命题逻辑基本概念课后练习题答案
1.将下列命题符号化,并指出真值:
(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;
(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;
(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;
(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;
(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.
2.将下列命题符号化,并指出真值:
(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;
(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;
(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;
(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;
(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;
3.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;
(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.
4.因为p与q不能同时为真.
5.设p:今天是星期一,q:明天是星期二,r:明天是星期三:
(1)p→q,真值为1(不会出现前件为真,后件为假的情况);
(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);
(3)p q,真值为1;
(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.
返回
第二章命题逻辑等值演算
本章自测答案
5.(1):∨∨,成真赋值为00、10、11;
(2):0,矛盾式,无成真赋值;
(3):∨∨∨∨∨∨∨,重言式,000、001、010、011、100、101、110、111全部为成真赋值;
7.(1):∨∨∨∨⇔∧∧;
(2):∨∨∨⇔∧∧∧;
8.(1):1⇔∨∨∨,重言式;
(2):∨⇔∨∨∨∨∨∨;
(3):∧∧∧∧∧∧∧⇔0,矛盾式.
11.(1):∨∨⇔∧∧∧∧;
(2):∨∨∨∨∨∨∨⇔1;
(3):0⇔∧∧∧.
12.A⇔∧∧∧∧⇔∨∨.
第三章命题逻辑的推理理论本章自测答案
6.在解本题时,应首先将简单陈述语句符号化,然后写出推理的形式结构*,其次就是判断*是否为重言式,若*是重言式,推理就正确,否则推理就不正确,这里不考虑简单语句之间的内在联系
(1)、(3)、(6)推理正确,其余的均不正确,下面以(1)、(2)为例,证明(1)推理正确,(2)推理不正确
(1)设p:今天是星期一,q:明天是星期三,推理的形式结构为
(p→q)∧p→q(记作*1)
在本推理中,从p与q的内在联系可以知道,p与q的内在联系可以知道,p与q不可能同时为真,但在证明时,不考虑这一点,而只考虑*1是否为重言式.
可以用多种方法(如真值法、等值演算法、主析取式)证明*1为重言式,特别是,不难看出,当取A为p,B为q时,*1为假言推理定律,即(p→q)∧p→q ⇒ q
(2)设p:今天是星期一,q:明天是星期三,推理的形式结构为
(p→q)∧p→q(记作*2)
可以用多种方法证明*2不是重言式,比如,等值演算法、主析取范式(主和取范式法也可以)等
(p→q)∧q→p
⇔(┐p∨q) ∧q →p
⇔q →p
⇔┐p∨┐q
⇔⇔∨∨
从而可知,*2不是重言式,故推理不正确,注意,虽然这里的p与q同时为真或同时为假,但不考虑内在联系时,*2不是重言式,就认为推理不正确.
9.设p:a是奇数,q:a能被2整除,r:a:是偶数
推理的形式结构为
(p→q┐)∧(r→q)→(r→┐p) (记为*)
可以用多种方法证明*为重言式,下面用等值演算法证明:
(p→┐q)∧(r→q)→(r→┐p)
⇔(┐p∨┐q) ∨(q∨┐r)→(┐q∨┐r) (使用了交换律)
⇔(p∨q)∨(┐p∧r)∨┐q∨┐r
⇔(┐p∨q)∨(┐q∧┐r)
⇔┐p∨(q∨┐q)∧┐r
⇔1
10.设p:a,b两数之积为负数,q:a,b两数种恰有一个负数,r:a,b都是负数.
推理的形式结构为
(p→q)∧┐p→(┐q∧┐r)
⇔(┐p∨q) ∧┐p→(┐q∧┐r)
⇔┐p→(┐q∧┐r) (使用了吸收律)
⇔p∨(┐q∧┐r)
⇔∨∨∨
由于主析取范式中只含有5个W极小项,故推理不正确.
11.略
14.证明的命题序列可不惟一,下面对每一小题各给出一个证明
① p→(q→r)前提引入
② P前提引入
③ q→r①②假言推理
④ q前提引入
⑤ r③④假言推理
⑥ r∨s前提引入
(2)证明:
① ┐(p∧r)前提引入
② ┐q∨┐r①置换
③ r前提引入
④ ┐q ②③析取三段论
⑤ p→q前提引入
⑥ ┐p④⑤拒取式(3)证明:
① p→q前提引入
② ┐q∨q①置换
③ (┐p∨q)∧(┐p∨p) ②置换
④ ┐p∨(q∧p③置换
⑤ p→(p∨q) ④置换
15.(1)证明:
① S结论否定引入
② S→P前提引入
③ P①②假言推理
④ P→(q→r)前提引入