(完整版)平面应变断裂韧度K1C的测定实验预案

合集下载

平面应变断裂韧性KIC的测定

平面应变断裂韧性KIC的测定

平面应变断裂韧性的测定陈国滔材科095 40930366一、实验目的1.理解平面应变断裂韧性的应用及限制条件;测试的基本方法,基本操作及操作要点;2.了解平面应变断裂韧度KIC3.通过三点弯曲试验测量40Cr的平面应变断裂韧度。

二、试验原理1.材料断裂原理含有缺陷的构件可能在远低于材料屈服强度的工作应力下断裂, 只要这些缺陷达到某种临界尺寸。

即使有些构件, 起初的缺陷尺寸没有达到某种临界尺寸, 但由于工作于某种疲劳载荷下, 或某种腐蚀介质里, 或某种限度的低温状态下, 起初的缺陷尺寸将会增大,即裂纹发生亚临界的稳定扩展, 直至达到某种临界尺寸而突然发生不稳定的脆断。

断裂条件是:式中, 为正应力,2a为试样或者构建中的裂纹长度。

2.材料的平面应变断裂韧性根据线弹性断裂力学,断裂的判据是裂纹前沿应力强度因子K达到其临界值——材料的平面应变断裂韧度,即:K=Y≥是材料抵抗裂纹扩展能力的式中Y是裂纹的形状因子。

平面应变断裂韧度KIC特征参量,它与裂纹的尺寸及承受的应力无关。

平面应变断裂韧性,可以用于:①评价材料是否适用,作为验收和产品质量控制的标准。

②材料的断裂韧度受到冶金因素(成分、热处理)的制造工艺(如焊接、成形)影响。

可对构件的断裂安全性进行评价。

三、实验仪器及材料1.实验仪器①WDW-200D微机控制电子式万能材料试验机(拉伸力准确度优于示值的0.5%)②游标卡尺(精度0.02mm)③双悬臂夹式引伸计(原长10.00mm)④工具显微镜15JE(精度0.001mm)2.实验材料本试验采用经过860℃淬火、220℃回火处理的40Cr钢,屈服强度σs=1400MPa。

3.实验试样SE(B)三点弯曲试样:4. 试样中裂纹的制备要求测定裂纹失稳扩展时的裂纹应力强度因子的临界值,要求裂纹尖端具有足够高的应力集中效应,否则,易于造成试验因为应力——位移曲线不符合要求而得不到预定结果。

为此,试样中裂纹的制备由两道工序完成。

{6E534AE4-D579-4A66-B94D-576697729359}.实验四 平面应变断裂韧性K1c的测定

{6E534AE4-D579-4A66-B94D-576697729359}.实验四  平面应变断裂韧性K1c的测定

实验四 平面应变断裂韧性K 1c 的测定一、实验目的1、正确掌握平面应变断裂韧性K 1c 的测试方法。

2、了解测定K 1c 的设备,仪器装置及其使用。

二、实验内容1、测定被试材料的p-v 的曲线,计算条件断韧性KQ 值。

2、验算实验所得KQ 值,确定有效K 1c 值。

三、基本概念和测试原理根据线弹性断力学的分析,裂纹发生失稳扩展而导致裂纹体脆断的判据是cK K 11= (4-1)式中K 1为应力场强度因子,它表征裂纹尖端附近应力场的强度,在线弹性条件下,可以证明K l 的一般表达式为aY K σ=1 (4-2)其中,Y 是与裂纹形状、试样类型和加负荷方式等有关的量,也称几何因子。

σ是外加应力。

a 是裂纹体内的裂纹长度,故K l 的大小仅决定于构件(包括裂纹)的几何形状和尺寸,外加应力的大小、分布等。

式(4-1)右边的K 1c 就是在平面应变条件下,I 型(即张开型)裂纹发生失稳扩展时的应力场强度因子的临界值,即材料的平面应变断裂韧性,它是材料固有的抵抗脆性断裂的一种力学性能指标,是材料的常数。

由(4-1)式可知,当外加应力增高时,裂纹前端的应力场强度因子K l 也增大,当K l 增大到等于某一临界值,即材料的平面应变断裂韧性K 1c 时,也即达到裂纹失稳扩展的临界条件,就能导致裂纹体脆断,此时外加应力σ达到临界应力σc ,若将σ=σc 和式(4-2)代入式(4-1)可得:c c K a Y 1=σ (4-3)因此,只要知道带裂纹试样的应力强度因子K 1的表达式,即已知Y ,试样的尺寸又能保证裂纹前端处于平面应变状态下,则只需测得带裂纹试样发生失稳断裂时的负荷P c ,(或应力 σc ),就可利用已知的K 1表达式求出相应的临界K 1值,即为试祥材料的平面应变断裂韧性K 1c 。

根据GB 4161-84标准(详见附件),测定K 1c 的标准试样有四种,试样的几何形状和尺寸及K 1表达式如下:(1)三点弯曲试样(图4-1):S/W =4,W/B=2图4-1三点弯曲试样其K1表达式为:⎪⎭⎫⎝⎛=w a f BWPS K 2/11 (4-4) 式中:2/1222/112127.293.315.2199.13⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛w a w a w a w a w a w a w a w a fP ——负荷 B ——试样厚度 W ——试样宽度 S ——跨距 a ——裂纹长度(2)紧凑拉伸试样(图4-2):W/B=2 K 1表达式为:⎪⎭⎫ ⎝⎛=w a f BWP K 12/11 (4-5)式中:2/144332216.572.1432.1364.4886.02⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛w a w a w a w a w a w a w a fW图4-2 紧凑拉伸试样(3)C 形拉伸试样(图4-3):W/B=2,对r 1/r 2未加限制C 形拉伸式试样只适用于空心圆柱体。

断裂韧性KIC的测定

断裂韧性KIC的测定

实验报告六千分尺一把;试样示意图:图一:弯曲和紧凑拉伸试样04 28329.852 28329.852数据处理及有效性判定: 一、 20#钢退火态 1:402号试样厚度B (mm )=12.00mm ;宽度W (mm )=25.00mm ;跨距S=100.00mm ;a=2.751mm ;P Q =14500 N 当S/W =4时,=0.866计算K Q=837.13根据Q K 有效性的判据:(1)P max P Q=1.346>1.10;(2)2.5 (KQ σy)^2=12.80>12.00402号试样的断裂韧性实验是无效的,需加厚试样尺寸再进行实验。

2:404号试样厚度B (mm )=12.00mm ;宽度W (mm )=25.00mm ;跨距S=100.00mm a=3.536mm ;P Q =10500N 当S/W =4时,=0.988计算K Q=691.6根据Q K 有效性的判据:(1)P max P Q=1.3000>1.100(2)2.5 (K Q σy)^2=8.73<12.00404样的断裂韧性实验是无效的,需加厚试样尺寸再进行实验。

二、40Cr800℃+100℃回火试样 1:01号试样厚度B (mm )=12.50mm ;宽度W (mm )=25.00mm ;跨距S=100.00mm a=4.026mm ;P Q =21678.081 当S/W =4时,=1.052计算K Q=1459.51根据Q K 有效性的判据:(1)P max P Q=1.000<1.110(2)2.5 (K Q σy)^2=3.476<12.5001号试样断裂韧性实验有效。

2:04号试样厚度B (mm )=12.50mm ;宽度W (mm )=25.00mm ;跨距S=100.00mm a=5.243mm ;P Q 28329.852N 。

当S/W =4时,=1.907计算K Q=3571.83根据Q K 有效性的判据:(1)P max P Q=1<1.10(2)2.5 (KQ σy)^2=8.504<12.50 04试样断裂韧性实验有效。

钢轨平面应变断裂韧性 KIC试验方法

钢轨平面应变断裂韧性 KIC试验方法

附录E(规范性附录)钢轨平面应变断裂韧性K IC试验方法E.1试验方法除本标准中的规定外,该项试验的其余内容均应按GB/T 4161执行。

E.2试样E.2.1试样取自钢轨横断面,其位置见图E.1。

E.2.2试样的厚度B=2 5mm,宽度W=40 mm。

单位为毫米试样所有其他尺寸见GB/T 4161-2007。

图E.1 断裂韧性试样的取样部位E.3试验数量对每个样轨至少取5个试样进行试验。

E.4试验条件E.4.1在温度为15 ℃~25 ℃,应力比大于0,小于+0.1,载荷频率范围为15 Hz~120 Hz的条件下预制疲劳裂纹。

预制裂纹最终长度与试样宽度比为0.45~0.55,裂纹在扩展到最终1.25 mm时的最大应力强度因子(K max)应在18 MPa·m1/2~22 MPa·m1/2范围内。

E.4.2用控制位移方式对单边缺口三点弯曲试样加载,三点弯曲试样的加载跨距(S)为试样宽度(W)的4倍。

E.4.3试验温度为-20 ℃±2 ℃,可用点焊到试样上的非珠形热电偶测量试样温度,位置见图E.2。

为避免裂纹前部弯曲,建议采用GB/T 4161中规定的人字缺口。

单位为毫米图E.2 热电偶在断裂韧性样上的放置位置E.5试验数据分析E.5.1 K Q值按GB/T 4161中的规定进行计算。

除D.5.2~D.5.6的要求外,应按GB/T 4161确定K IC 是否有效。

E.5.2 在与95%的割线相交以前未发生pop-in时,P MAX/P Q应小于1.10。

对其他类型的曲线不规定P MAX/P Q的标准。

E.5.3 载荷—裂纹张开曲线Ⅰa、Ⅰb、Ⅱa、Ⅲ型(见图E.3)的线性度按下述方法检验:在恒定载荷0.8 P Q作用下测切线OA与载荷—裂纹张开曲线之间的距离(V1),在恒定载荷P Q 作用下,测切线OA与载荷—裂纹张开曲线之间的距离V,当V1≤0.25V时试验结果有效。

E.5.4 载荷—裂纹张开曲线Ⅱb、Ⅱc(见图E.3)的线性度按下述方法检验:a)在恒定载荷0.8 P Q和P Q的作用下,分别测切线OA与荷载—裂纹张开曲线之间的距离,并V和V*。

测定40Cr钢的平面应变断裂韧度KIC

测定40Cr钢的平面应变断裂韧度KIC

测定40Cr 钢的平面应变断裂韧度K IC一、试验目的:加深了解平面应变断裂韧度的应用及其前提条件,体验试验过程。

二、 试验原理:断裂是材料构件受力作用下发生的最危险的变形形式,尤其是没有发生明显的宏观塑性变形的情况下就发生的脆性断裂。

理论分析和大量实践结果表明:在陶瓷、玻璃等脆性材料中,断裂条件是σ=材料常数 (1)式中,σ为正应力,2a 为试样或者构件中的裂纹长度。

这样的结果,对于高强度的金属材料的脆性断裂也于实际符合得很好。

根据线弹性断裂力学,断裂的判据是裂纹前沿应力强度因子K 达到其临界值——材料的平面应变断裂韧度IC K ,IC K Y K σ=≥ (2) 式中Y 是裂纹的形状因子。

平面应变断裂韧度IC K 是材料抵抗裂纹扩展能力的特征参量,他与裂纹的尺寸及承受的应力无关。

三、 试样准备:本试验采用三点弯曲标准试样,宽度与厚度之比W/B 的名义值是2,试样时两个支撑点之间的夸距的名义值S=4W 。

四、试样设备:足够加载能力的试验机,引伸计,工具显微镜 五、 试验过程:1、 测定试样的厚度B=10.10mm ,宽度W=20.10mm2、 对试样粘贴引伸计的卡装刀口。

将试样安放在试验机上,要求裂纹扩展面与加载压头尽量处于同一个平面上,避免二者。

3、 对试样加载,测量载荷P-位移V 关系曲线,直到试样被完全断裂为止4、 在裂纹扩张断裂的试样断口上,如图3示意性给出的那样,借助工具显微镜,在试样的 2.5,5.0,7.5mm 的位置上测量裂纹长度,记做a2,a3,a4; a2=10.178mm, a3=10.184mm,a4=10.186mm (显然a2,a3,a4满足测量准确度0.5%的要求) 同时两个自由表面上的裂纹长度a1=10.130mm, a5=10,223mm 。

试验有效性的判断:裂纹长度a=(a2+a3+a4)/3=10.183mm 。

(说明:a1与a5处于自由表面,不是平面应变状态,a 要求是处于平面应变状态下的裂纹,a2,a3,a4是平面应变状态下的裂纹)a2,a3,a4中任意两个测量值之差最大为a4-a2=0.008mm <a*10%=1.0183mm ;a1,a5,a 中任意两个值之差最大为a5-a1=0.093<a*10%=1.0183mm ; 观察裂纹面与BW 面基本平行,偏差在±10°以内。

(完整版)断裂韧性KIC测试试验

(完整版)断裂韧性KIC测试试验

实验五断裂韧性K IC测试试验一、试样的材料、热处理工艺及该种钢材的σy和KⅠC的参考值本实验采用标准三点弯曲试样(代号SE(B)),材料为40Cr,其热处理工艺如下:①热处理工艺:860℃保温1h,油淬;220℃回火,保温0.5~1h;②缺口加疲劳裂纹总长:9~11mm(疲劳裂纹2~3.5mm)③不导角,保留尖角。

样品实测HRC50,从机械手册中关于40Cr 的热处理实验数据曲线上查得:σy=σ0.2=1650MPa,σb=1850MPa,δ5=9%,ψ=34%,KⅠC=42MN·m-3/2。

二、试样的形状及尺寸国家标准GB/T 4161-1984《金属材料平面应变断裂韧度KⅠC试验方法》中规定了两种测试断裂韧性的标准试样:标准三点弯曲试样(代号SE(B))和紧凑拉伸试样(代号C(T))。

这两种试样的裂纹扩展方式都是Ⅰ型的。

本实验采用标准三点弯曲试样(代号SE(B))。

试样的形状及各尺寸之间的关系如图所示:为了达到平面应变条件,试样厚度B必须满足下式:B≧2.5(KⅠC/σy)2a≧2.5(KⅠC/σy)2(W-a)≧2.5(KⅠC/σy)2式中:σy—屈服强度σ0.2或σs。

因此,在确定试样尺寸时,要预先估计所测材料的KⅠC和σy值,再根据上式确定试样的最小厚度B。

若材料的KⅠC值无法估计,则可根据σy/E的值来确定B的大小,然后再确定试样的其他尺寸。

试样可从机件实物上切去,或锻、铸试样毛坯。

在轧制钢材取样时,应注明裂纹面取向和裂纹扩展方向。

试样毛坯粗加工后,进行热处理和磨削,随后开缺口和预制裂纹。

试样上的缺口一般在钼丝电切割机床上进行切割。

为了使引发的裂纹平直,缺口应尽可能地尖锐。

开好缺口的试样,在高频疲劳试验机上预制裂纹。

疲劳裂纹长度应不小于2.5%W,且不小于1.5mm。

a/W值应控制在0.45~0.55范围内。

本试样采用标准三点弯曲试样(代号SE(B)),其尺寸:宽W=19.92mm,厚B=10.20mm 总长100.03mm。

平面应变断裂韧度KⅠC的测定

平面应变断裂韧度KⅠC的测定

平面应变断裂韧度KⅠC的测定1 实验目的利用预制好疲劳裂纹的试样测定金属材料的平面应变断裂韧度K IC2 实验设备1、万能材料试验机;2、动态电阻应变仪、X-Y函数记录仪、载荷传感器及夹式引伸计;3、游标卡尺。

3 实验原理及装置对于三点弯曲试样,应力强度因子K I 的表达式为:I13/2(/)FSK Y a WBW式中:S、B、W及a分别为试样的跨度、厚度、宽度,以及试样的裂纹尺寸(如图8-3所示);F为作用于试样中点的集中力;1(/)Y a W为形状修正系数,其值可查表得到(表8-1)。

随着外载荷F的增加,K I 随之增加。

然而K I的增加不是无限的,这种增加受到材料性能的限制,即当K I增加到某一临界值时,裂纹就会失稳扩展引起材料脆断。

这个临界值代表金属材料抵抗裂纹失稳扩展的能力,也就是材料的断裂韧度K IC。

所以在测试时,只要在试样的加载过程中,测出裂纹失稳扩展时的临界载荷F Q和试样裂纹尺寸a,就可以求出试样材料的临界应力强度因子K Q。

如果试样尺寸满足平面应变和小范围屈服条件,则此时的临界应力强度因子即为该材料的平面应变断裂韧度K IC 。

具体的做法是:对预制有疲劳裂纹的试样加载,在加载过程中用仪器记录下载荷增加和裂纹扩展情况的F -V 曲线(V -裂纹嘴张开位移);根据曲线上裂纹失稳扩展时(临界状态)的载荷F Q 及试样断裂后测出的预制裂纹长度a ,代入应力强度因子K I 的表达式,可得13/2(/)Q Q F S K Y a W BW然后再根据规定的判据判断K Q 是不是平面应变状态下的K IC ,如果不符合判据的要求,则需加大试样尺寸重做实验。

实验装置如图8-1所示:应变仪记录仪图8-1 实验装置(三点弯曲试样) 4 实验步骤1、实验前先清洗裂纹嘴两侧,用胶将刀口粘到试样上;2、试验前用卡尺在裂纹前缘韧带部分测量试件厚度B 三次,测量精度精确到0.1%B 或0.025mm ,取其较大者,计算平均值。

平面应变断裂韧度K1c的测定(实验报告)

平面应变断裂韧度K1c的测定(实验报告)

1、实验目的:2、学习了解金属平面应变断裂韧度K1C试样制备, 断口测量及数据处理的关键要点。

3、掌握金属平面应变断裂韧度K1C的测定方法。

一、实验原理本实验按照国家标准GB4161-84规定进行。

(一)断裂韧度是材料抵抗裂纹扩展能力的一种量度, 在线弹性断裂力学中,材料发生脆性断裂的判据为: K1≤K1C, 式中K1为应力场强度因子, 它表征裂纹尖端附近的应力场的强度, 其大小决定于构件的几何条件、外加载荷的大小、分布等。

K1C是在平面应变条件下, 材料中Ⅰ型裂纹产生失稳扩展的应力强度因子的临界值, 即材料平面应变断裂韧度。

裂纹稳定扩展时, K1和外力P、裂纹长度a、试件尺寸有关;当P和a达到Pc和ac时, 裂纹开始失稳扩展。

此时材料处于临界状态, 即K1=K1C。

K1C与外力、试件类型及尺寸无关(但与工作温度和变形速率有关)。

(二)应力场强度因子K1表达式三点弯曲试样:K1=(PS/BW3/2)f(a/W)式中: S为试件跨度, B为试件厚度, W为试件高度, a为试件裂纹长度。

试件B.W和S的比例为: B: W: S=1: 2: 8, 见图2-1所示:图2-1三点弯曲试件图(三)修正系数f(a/W)为a/W的函数, 可以查表2-1, a/W在0.45-0.55之间。

(四)试样尺寸要求及试样制备平面应变条件对厚度的要求:中间三个读数平均值a=1/3(a2+a3+a4);3.根据测得到a和W值, 计算a/W值(精确到千分之一), f(a/W)数值查表或计算。

f(a/W)={3(a/W)1/2[1.99-(a/W)(1-a/W)×(2.15-3.93a/W+2.7a2/W2)]}/2(1+2a/W)(1-a/W)3/2将PQ、B.W和f(a/W)代入下式:K Q=(P Q S/BW3/2)f(a/W)即可算出KQ值, 单位MPam1/2。

相关换算单位公式:MPam1/2=MNm-3/2, MPa=MNm-2, 1kgf=9.807N, 1kgfmm-3/2=0.310MPam1/2。

平面应变断裂韧度KIC的测定

平面应变断裂韧度KIC的测定

平面应变断裂韧度K IC 的测定“工程力学”指出,材料对本身的裂纹或类裂纹缺陷的存在十分敏感,裂纹失稳扩展是脆性断裂的主要原因。

控制断裂的三个主要因素是裂纹的形状和尺寸、工作应力和材料抵抗裂纹扩展的能力(材料的断裂韧度)。

前二者是作用,为断裂的发生提供条件;在“线弹性断裂力学”中,用裂纹尖端的应力强度因子K 来描述,且()a w a f K πσ ,=上式的适用条件为裂纹尺寸a ≥2.52⎪⎪⎭⎫ ⎝⎛ys IC K σ,即在线弹性或小范围屈服条件下才成立。

后者是抗力,阻止断裂的发生;在一定条件下(满足平面应变条件)是一材料常数,称为材料的平面应变断裂韧度,记作K IC ,可由实验测定。

一、实验目的测定材料的平面应变断裂韧度K IC二、实验设备和仪器1.力传感器、双悬臂夹式引伸计。

2.三点弯曲试验装置。

3.材料试验机。

4.高频疲劳试验机。

5.精密量具(游标卡尺和读数显微镜等)。

三、实验原理含有I 型(张开型)裂纹试样,其应力强度因子一般可表达为:式中:() ,w a f 是试样的几何形状因子,在试样形状、尺寸和加载方式为一定的条件下是一常数。

随着外载荷F 的增加,K I 随之增加。

然而K I 的增加不是无限的,这种增加受到材料性能的限制,即当K I 增加到某一临界值时,裂纹就会失稳扩展引起材料脆断。

这个临界值代表材料抗脆断的能力,也就是材料的断裂韧度。

所以在测试时,只要在试样的加载过程中,测出裂纹失稳扩展时的临界载荷F q 和试样裂纹尺寸a ,就可以求出试样材料的临界应力强度因子K q 。

如果试样尺寸满足平面应变和小范围屈服条件,则此时的临界应力强度因子即为该材料(),(81)I K f a w =-的平面应变断裂韧度K IC 。

四、实验方法采用带穿透裂纹的试样测定金属材料平面应变断裂韧度是目前断裂力学测试技术中发展较完善的一种方法。

1.K I 标定公式对于三点弯曲试样,应力强度因子K I 的表达式为: I 3/2(/)FS K f a w BW = (8-2) 式中:S 、B 、W 及a 分别为试样的跨度、厚度、宽度,以及试样的裂纹尺寸;F 为作用于试样中点的集中力。

(完整版)断裂韧性KIC测试试验

(完整版)断裂韧性KIC测试试验

实验五断裂韧性K IC测试试验一、试样的材料、热处理工艺及该种钢材的σy 和KⅠC的参考值本实验采用标准三点弯曲试样(代号SE(B)),材料为40Cr,其热处理工艺如下:①热处理工艺:860℃保温1h,油淬;220℃回火,保温0.5~1h ;②缺口加疲劳裂纹总长:9~11mm (疲劳裂纹2~3.5mm)③不导角,保留尖角。

样品实测HRC50,从机械手册中关于40Cr 的热处理实验数据曲线上查得:σy=σ 0.2=1650MPa,σb=1850MPa,δ 5=9%,ψ =34%,KⅠC=42MN · m -3/2。

二、试样的形状及尺寸国家标准GB/T 4161-1984《金属材料平面应变断裂韧度KⅠC 试验方法》中规定了两种测试断裂韧性的标准试样:标准三点弯曲试样(代号SE(B))和紧凑拉伸试样(代号C(T))。

这两种试样的裂纹扩展方式都是Ⅰ型的。

本实验采用标准三点弯曲试样(代号SE(B))。

试样的形状及各尺寸之间的关系如图所示:为了达到平面应变条件,试样厚度 B 必须满足下式:B≧2.5(KⅠC/ σy)2a≧2.5(KⅠC/ σy)2(W-a)≧ 2.5(KⅠC/σ y)2式中:σ y—屈服强度σ 0.2 或σ s 。

因此,在确定试样尺寸时,要预先估计所测材料的KⅠC 和σ y 值,再根据上式确定试样的最小厚度B。

若材料的KⅠC 值无法估计,则可根据σ y/E 的值来确定B 的大小,然后再确定试样的其他尺寸。

试样可从机件实物上切去,或锻、铸试样毛坯。

在轧制钢材取样时,应注明裂纹面取向和裂纹扩展方向。

试样毛坯粗加工后,进行热处理和磨削,随后开缺口和预制裂纹。

试样上的缺口一般在钼丝电切割机床上进行切割。

为了使引发的裂纹平直,缺口应尽可能地尖锐。

开好缺口的试样,在高频疲劳试验机上预制裂纹。

疲劳裂纹长度应不小于2.5%W,且不小于1.5mm 。

a/W 值应控制在0.45~0.55 范围内。

本试样采用标准三点弯曲试样(代号SE(B)),其尺寸:宽W=19.92mm ,厚B=10.20mm 总长100.03mm 。

测定40Cr钢的平面应变断裂韧度KIC

测定40Cr钢的平面应变断裂韧度KIC

测定40Cr 钢的平面应变断裂韧度K IC一、试验目的:加深了解平面应变断裂韧度的应用及其前提条件,体验试验过程。

二、 试验原理:断裂是材料构件受力作用下发生的最危险的变形形式,尤其是没有发生明显的宏观塑性变形的情况下就发生的脆性断裂。

理论分析和大量实践结果表明:在陶瓷、玻璃等脆性材料中,断裂条件是σ=材料常数 (1)式中,σ为正应力,2a 为试样或者构件中的裂纹长度。

这样的结果,对于高强度的金属材料的脆性断裂也于实际符合得很好。

根据线弹性断裂力学,断裂的判据是裂纹前沿应力强度因子K 达到其临界值——材料的平面应变断裂韧度IC K ,IC K Y K σ=≥ (2) 式中Y 是裂纹的形状因子。

平面应变断裂韧度IC K 是材料抵抗裂纹扩展能力的特征参量,他与裂纹的尺寸及承受的应力无关。

三、 试样准备:本试验采用三点弯曲标准试样,宽度与厚度之比W/B 的名义值是2,试样时两个支撑点之间的夸距的名义值S=4W 。

四、试样设备:足够加载能力的试验机,引伸计,工具显微镜 五、 试验过程:1、 测定试样的厚度B=10.10mm ,宽度W=20.10mm2、 对试样粘贴引伸计的卡装刀口。

将试样安放在试验机上,要求裂纹扩展面与加载压头尽量处于同一个平面上,避免二者。

3、 对试样加载,测量载荷P-位移V 关系曲线,直到试样被完全断裂为止4、 在裂纹扩张断裂的试样断口上,如图3示意性给出的那样,借助工具显微镜,在试样的 2.5,5.0,7.5mm 的位置上测量裂纹长度,记做a2,a3,a4; a2=10.178mm, a3=10.184mm,a4=10.186mm (显然a2,a3,a4满足测量准确度0.5%的要求) 同时两个自由表面上的裂纹长度a1=10.130mm, a5=10,223mm 。

试验有效性的判断:裂纹长度a=(a2+a3+a4)/3=10.183mm 。

(说明:a1与a5处于自由表面,不是平面应变状态,a 要求是处于平面应变状态下的裂纹,a2,a3,a4是平面应变状态下的裂纹)a2,a3,a4中任意两个测量值之差最大为a4-a2=0.008mm <a*10%=1.0183mm ;a1,a5,a 中任意两个值之差最大为a5-a1=0.093<a*10%=1.0183mm ; 观察裂纹面与BW 面基本平行,偏差在±10°以内。

(完整版)断裂韧性KIC测试试验

(完整版)断裂韧性KIC测试试验

(完整版)断裂韧性KIC测试试验实验五断裂韧性K IC测试试验⼀、试样的材料、热处理⼯艺及该种钢材的σy和KⅠC的参考值本实验采⽤标准三点弯曲试样(代号SE(B)),材料为40Cr,其热处理⼯艺如下:①热处理⼯艺:860℃保温1h,油淬;220℃回⽕,保温0.5~1h;②缺⼝加疲劳裂纹总长:9~11mm(疲劳裂纹2~3.5mm)③不导⾓,保留尖⾓。

样品实测HRC50,从机械⼿册中关于40Cr 的热处理实验数据曲线上查得:σy=σ0.2=1650MPa,σb=1850MPa,δ5=9%,ψ=34%,KⅠC=42MN·m-3/2。

⼆、试样的形状及尺⼨国家标准GB/T 4161-1984《⾦属材料平⾯应变断裂韧度KⅠC试验⽅法》中规定了两种测试断裂韧性的标准试样:标准三点弯曲试样(代号SE(B))和紧凑拉伸试样(代号C(T))。

这两种试样的裂纹扩展⽅式都是Ⅰ型的。

本实验采⽤标准三点弯曲试样(代号SE(B))。

试样的形状及各尺⼨之间的关系如图所⽰:为了达到平⾯应变条件,试样厚度B必须满⾜下式:B≧2.5(KⅠC/σy)2a≧2.5(KⅠC/σy)2(W-a)≧2.5(KⅠC/σy)2式中:σy—屈服强度σ0.2或σs。

因此,在确定试样尺⼨时,要预先估计所测材料的KⅠC和σy值,再根据上式确定试样的最⼩厚度B。

若材料的KⅠC值⽆法估计,则可根据σy/E的值来确定B的⼤⼩,然后再确定试样的其他尺⼨。

试样可从机件实物上切去,或锻、铸试样⽑坯。

在轧制钢材取样时,应注明裂纹⾯取向和裂纹扩展⽅向。

试样⽑坯粗加⼯后,进⾏热处理和磨削,随后开缺⼝和预制裂纹。

试样上的缺⼝⼀般在钼丝电切割机床上进⾏切割。

为了使引发的裂纹平直,缺⼝应尽可能地尖锐。

开好缺⼝的试样,在⾼频疲劳试验机上预制裂纹。

疲劳裂纹长度应不⼩于2.5%W,且不⼩于1.5mm。

a/W值应控制在0.45~0.55范围内。

本试样采⽤标准三点弯曲试样(代号SE(B)),其尺⼨:宽W=19.92mm,厚B=10.20mm 总长100.03mm。

平面应变断裂韧度kⅠc的测定

平面应变断裂韧度kⅠc的测定

C
C
• 因此,只要知道带裂纹试样的应力场强度因子KⅠ的表达式,试样的尺寸又能保证裂纹
前端处于平面应变状态下,则只需测得带裂纹试样发生失稳断裂时的负荷Pc,(或应力
σc),就可利用已知的KⅠ表达式求出相应的临界值KⅠ,即为试祥材料的平面应变断裂

韧度KⅠC。
本实验采用标准三点弯曲试样,其KⅠ表达式为: KI
• 通过实验可出被测材料的P-V曲线(负荷-位移曲线),从P-V曲线上确定的值(裂纹
失稳扩展的临界负荷),计算出的KQ值。
KQ
PQ S
3
BW 2
f (a) w
PQ的确定(斜率降低5%的割线法)
四、实验试样及其材料
• 材料:30CrMnSi;870℃淬火+200℃回火;Rp0.2=1450Mpa • 试样类型:三点弯曲试样、S=4W、W=2B、a=(0.45~0.55)W
PS a
3
f
(
) w
BW 2
• 其中:式中:P——负荷 ;B—试样厚度 ;W——试样宽度 ; S——跨度 ; a——裂纹长度


其中:
f(
a w
)

3(
a w
1
) 2 [(1.99

a )(1 w
2(1
a w
2
) (2.15 3.93
a
)(1
a
3
)2
a w

2.7
a2 w2
)]
ww
值,即材料的平面应变断裂韧度,它是材料固有的抵抗脆性断裂的一
种力学性能,是材料的常数。由上式可知,当外加应力增高时,裂纹
前 料 就 σ的能=端σ平导的c,面致应;应裂力则强变纹:断体度裂脆因子韧断度 ,KⅠ此K也yⅠ时C增时外大,加,a也应当即力kK达σⅠ到增达裂大到纹到临失等界稳于应扩某力展一σ的临c,临界若界值将条,件即,材

(完整版)平面应变断裂韧度K1C的测定实验预案

(完整版)平面应变断裂韧度K1C的测定实验预案

平面应变断裂韧度K1C 的测定实验预案姓名:江维学号:M050110110 指导老师:钱士强学院:材料工程学院、试样制备1. 材料:先用40刚2.(1) 厚度:为确定试件尺寸,要根据试件各预先测定材料的0.2和K lC的估计值,根据上式确定试件的最小厚度,在尺寸之间的关系确定试件的其它尺寸。

K lC的估计值可以借用相近材料的K IC值,也可根据材料的0.2/ E的值确定试件的尺寸,如下表所示:表K C 2一一一当确知2.5(-)比表中推荐尺寸小得多时,可米用较小试件. 在试验0.2K测得有效K IC结果后,可在随后试验中将尺寸减少到a、B 2.5( -)20.2B > 2.5(K ic/ 动2>2.5(71.9/294)2=0.l496m所以取B=0.15m.(2) 高度:a> 50r y~ 2.5(K ic/『①(W-a) > 2.5(K ic/ s)2C2)由O+②得W 2*2.5(K ic/ s)2 ,所以取W=0.3m(3) 长度:跨距:S=4W+0.2W=1.26m.长度L>S,所以取L=1.4m。

为了模拟实际构件中存在的尖锐裂纹,使得到的K1-数据可以对比和实际应用,试件必须在疲劳试验机上预制疲劳裂纹。

预制疲劳裂纹开始时,最大疲劳载荷应使应力强度因子的最大值不超过K1C的80%, 疲劳载荷的最低值应使最低值与最小值之比在-1与0.1之间。

在疲劳裂纹扩张的最后阶段,至少在2.5%a的扩展中,应当减少最大载荷或位移,使疲劳应力强度因子的最低值K fmax w 0.6K 1c, K fmax/E<0,0032m 1/2。

同时调整最小载荷或位移,使载荷比乃在-1~0.1之间。

其方法是:先用线切割机在试样上切割0.14m长的机械切口,然后在疲劳试验系上使试样承受循环变应力,引发尖锐的疲劳裂纹,约为0.01m。

,观察裂纹是否长到刻线处。

预制疲劳裂纹时,应仔细监测试样两侧裂纹的萌生情况,避免两侧裂纹三、试样尺寸测量1、试件厚度应在疲劳裂纹前缘韧带部分测量三次B i, B2, B3,取其平均值作为B=(B i+B2+B3)/3。

实验三 平面应变断裂韧性KIC的测定

实验三 平面应变断裂韧性KIC的测定

八 .参考文献
【1】杨王玥,强文江.材料力学行为[M].北京:化学工业出版社,2009. 【2】GB4161-84 金属材料平面应变断裂韧性 K IC 实验方法.
三 .实验材料与试样
本实验采用经过 860℃淬火, 220℃低温回火处理的 40Cr钢, 其屈服强度σ s =1400Mpa. 试样为 GB4161-84 规定的标准三点弯曲试样,名义尺寸:宽度 W=20mm,厚度 B=10mm,跨 距 S=80mm。 试样需要预先制备出尖端很尖锐的裂纹,为此,经过热处理后的试样首先完成外形尺寸的精 加工然后采用线切割制备出第一条裂纹。由于线切割的钼丝直径一般在 0.2mm 左右,裂纹的 尖端不够尖锐,应力集中效果不够好,故此还要施加循环应力作用,在一段裂纹的前端在制 备出非常尖锐的疲劳裂纹。国标中对于疲劳裂纹的制备条件及形状尺寸规定了严格的要求。
4)计算 Ro
1 KI 1 54.3Mpa m Ro= = 1.69*10-4 m=0.169mm = 2 2 π s 2 2 π 1400MPa
2
2
5)验证小塑性区条件
54.3Mpa m K 3 2.5 I = 2.5 m= 3.76 mm ,小于 B 和 a 1400Mpa =3.76*10 s
四 .实验设备和仪器
1.WDW-200D 微机控制电子式万能材料试验机:试验力准确度优于示值的 0.5% 2.双悬臂夹式引伸计 3.工具显微镜:精度 0.001mm 4.游标卡尺:精度 0.02mm
五 .实验步骤
1.测量试样尺寸。从疲劳裂纹顶端至试样的无缺口边,沿着预期的裂纹扩展线,在三个等间 隔的位置上测量厚度 B,准确到 0.025mm 或 0.1%B,取较大者,取三次平均值;在缺口附近 三个位置测量宽度 W,准确到 0.0025mm 或 0.1%W,取较大者,计算平均值; 2.装卡引伸计。在试样裂纹两侧用 502 胶对称的粘贴一对卡口片来装卡固定引伸计,引伸计 的标距为大约 5mm 3.加载测试。将试样安装于试验机上并调整其位置,尽量使裂纹扩张面与加载压头处于同一 个平面上。在计算机的界面上设置加载速度 0.3mm/min,然后对试样加载,计算机屏幕显示 载荷 P—裂纹嘴张开位移 V 关系曲线。最后可以看见随着裂纹的扩展,试样被压断成两截, 测试结束。 4.观察断口形貌。从试验机上取下试样,观察断口,可以看到黑色的线切割裂纹区,深灰色 的疲劳裂纹扩展区和浅灰色的瞬间断裂区。 5.测量裂纹长度。使用工具显微镜在试样断口的厚度方向 1/4,1/2 和 3/4 的位置上测量裂纹长 度,记做 a2, a3, a4 取它们的平均值为裂纹长度 a。同时,测量两个自由表面上的裂纹长 度,记做 a 1 和 a5。各测量准确到 0.5%。 6.确定条件载荷 Pq。在记录的 P-V 曲线上要确定裂纹长度的表观扩展量为 2% 时的载荷 Pq,而 2%的裂纹扩展量对应的裂纹嘴张开位移的相对增量为 5%,所以确定 Pq 的方法为:沿着 P-V 曲线的线性段作过原点的直线 OA,并通过 O 点画割线 OP5 使割线斜率为 OA 斜率的 0.95 倍。 若在 P5 点之前,每一点的载荷都低于 P5,则取 Pq=P5;如果在 P5 之前还有一个超过 P5 的最大 载荷,则取此最大载荷为 Pq。 7.计算条件值 Kq 以及裂纹前沿塑性区尺寸 Ro。

有机玻璃断裂韧性测量实验

有机玻璃断裂韧性测量实验

一、 实验名称:有机玻璃SENB 断裂韧性测量实验 二、 实验目的1. 学习了解有机玻璃平面应变断裂韧度K 1C 试样制备,断口测量及数据处理的关键要点。

2. 掌握有机玻璃平面应变断裂韧度K 1C 的测定方法。

三、 实验器材:岛津万能实验机、三点弯曲试件、游标卡尺 四、 实验原理:本实验按照国家标准GB4161-2007规定进行。

1. 材料断裂韧性的定义:在线弹性断裂力学中,材料发生断裂脆断的一个重要准则是IC I K K =式中,I K 为应力强度因子,它是反映裂纹尖端附近应力场强弱的参量,其值决定与构件的几何形状、裂纹尺寸和外加载荷的大小;而IC K 是材料在平面应变状态和小范围屈服条件下,I 型裂纹发生失稳扩展时的临界应力强度因子,也称为材料的平面应变断裂韧度。

IC K 表征材料在线弹性范围内有裂纹是抵抗断裂的能力,是材料固有的一种力学性质。

因此,在一定条件下,它与加载方式、试样类型和尺寸无关,可以通过实验测定。

在测试IC K 时,试样的I K 表达式已知,a P Y a Y K I ππσ'==。

式中,Y 、Y '是试样的形状因子,在试样形状和尺寸一定时是常数;P 是加在试样上的外载荷;a 是裂纹的长度。

所以,在测试时,只要在试样加载过程中,测出裂纹失稳扩展时的临界载荷C P (或临界应力C σ)和试样的裂纹尺寸a ,就可以求出试样材料的临界应力强度因子。

由于要求试样在平面应变和小范围屈服条件下失稳扩展,裂纹失稳扩展前原长仍为a ,所以平面应变断裂韧度IC K 的测定,实际上只是临界载荷C P 的测定。

2. 应力场强度因子K 1表达式对于三点弯曲试样,应力强度因子的表达式为:-------------------------------------------------------------------------------------------------------13/2PS a K f BW W ⎛⎫=⎪⎝⎭式中,S 为试件跨度,B 为试件厚度,W 为试件高度,a 为试件裂纹长度,如图1所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面应变断裂韧度K1C的测定实验预案
姓名:江维
学号:M050110110
指导老师:钱士强
学院:材料工程学院
一、试样制备
1.材料:先用40刚
表一
2.试样尺寸确定
图1
(1)厚度:
σ和K IC的估计值,根据为确定试件尺寸,要根据试件各预先测定材料的
2.0
上式确定试件的最小厚度,在尺寸之间的关系确定试件的其它尺寸。

K IC的
σ/E的值确定估计值可以借用相近材料的K IC值,也可根据材料的
2.0
试件的尺寸,如下表所示:
表二试样的推荐尺寸
当确知22
.0)(
5.2σC
K I 比表中推荐尺寸小得多时,可采用较小试件.在试验
测得有效K IC 结果后,可在随后试验中将尺寸减少到a 、22
.0)(5.2σC
K B I ≥
B ≥2.5(K 1
C /σs )2 ≥2.5(71.9/294)2=0.1496m
所以取B=0.15m. (2)高度:
a ≥50r y ≈2.5(K 1C /σs )2
○1 (W-a)≥2.5(K 1C /σs )2 ○2 由○1+○2得W ≥2*2.5(K 1C /σs )2 ,所以取W=0.3m 。

(3)长度:
跨距:S=4W+0.2W=1.26m. 长度L>S,所以取L=1.4m 。

表三
二、预制疲劳裂纹
为了模拟实际构件中存在的尖锐裂纹,使得到的K 1C 数据可以对比和实际应用,试件必须在疲劳试验机上预制疲劳裂纹。

预制疲劳裂纹开始时,最大疲劳载荷应使应力强度因子的最大值不超过K 1C 的80%,疲劳载荷的最低值应使最低值与最小值之比在-1与0.1之间。

在疲劳裂纹扩张的最后阶段,至少在2.5%a 的扩展中,应当减少最大载荷或位移,使疲劳应力强度因子的最低值K fmax ≤0.6K 1C, K fmax /E<0,0032m 1/2 。

同时调整最小载荷或位移,使载荷比乃在-1~0.1之间。

表四
其方法是:先用线切割机在试样上切割0.14m长的机械切口,然后在疲劳试验系上使试样承受循环变应力,引发尖锐的疲劳裂纹,约为0.01m。

,观察裂纹是否长到刻线处。

预制疲劳裂纹时,应仔细监测试样两侧裂纹的萌生情况,避免两侧裂纹
三、试样尺寸测量
1、试件厚度应在疲劳裂纹前缘韧带部分测量三次B1, B2, B3,取其平均值作为B=
(B1+B2+B3)/3。

测量精度要求0.02mm或0.1%B,取其中较大者记录。

2、试件高度应在切口附近测量三次W1,W2,W3,取其平均值作为W=( W1+W2+W3)/3,
测量精度要求0.02mm或0.1%W,取其中较大者记录。

四、实验程序
1、在试件上粘贴刀口以便能安装夹式引伸计,刀口外线间距不得超过22mm,安装夹
式引伸计时要使刀口和引伸计的凹槽配合好;
2、将试样按图2—3装置安放好
应变仪记录仪
图2 三点弯曲试样试验装置示意图
3、标定夹式引伸计;
4、开动拉伸机,缓慢匀速加载,直至试样明显开裂,停机。

曲线上记录下载荷和刀口
张开位移之间的曲线;
5、取下夹式引伸计,开动引伸机,将试样压断,停机取下试样;
6、记录试验温度和断口外貌。

图4试口示意图
五、 实验结果处理 (一)
(1)确定条件临界载荷Pq P-V 曲线如图3所示一般分为三种类型,即稳定扩展型Ⅰ,局部扩展型Ⅱ和失稳扩展型Ⅲ。

在P-V 曲线上要确定裂纹长度的表观扩展量为2%的载荷即Pq ,而
2%的裂纹扩展量对应的裂纹嘴张开位移的相对增量为5%。

确定Pq 的方法如下:过原点作直
线OA ,使OA 的斜率为P-V 曲线初始直线斜率的95%,直线与P-V 曲线的交点对应的载荷为P 5。

● 对于失稳扩展型,其Pq =Pmax ;样断
● 对于局部扩展型,若P 5点前有载荷峰值大于P 5,则这个峰值为P q ; ● 对于稳定扩展型Pq =P 5。

要求 Pmax /Pq ≤ 1.1,否则试验无效。

(2)测量裂纹长度
裂纹长度a 用工具显微镜或其它精密测量仪器测量。

图4为试件断口示意图,考虑到裂纹前缘的不平直,规定在1/4B ;1/2B ;3/4B 位置上测量裂纹长度a 2,a 3,a 4取其平均值3/)(432a a a a ++=作为裂纹长度。

要求a 2,a 3,a 4任意两个测量值之差都不得大于a 的10%,而且a 1、、,a 5之差也不得大于a 的10%。

(3)计算条件断裂韧度Kq 及有效性检验
将条件临界载荷Pq 和裂纹长度a 代入K I 表达式计算条件断裂韧度Kq ,并对Kq 进行有效性检验。

有效性条件如下: (a )2
2052)/K (.B .q σ≥
22052)/K (.a .q σ≥ 22052)/K (.a W .q σ≥-
图3 典型P-V 曲线
(b ) 1.1/max ≤q P P (c )q K K f %60m ax ≤
(d )a 2-a 3、a 3-a 4、a 4-a 2<10%a ;a 1-a 5<10%a 。

由各项均满足要求,则Kq =K IC ,否则试验结果无效。

(二)
1、 从记录的P-V 曲线上按规定来确定P Q 值;
1)求P -V 曲线直线段的斜率b :
根据P -V 曲线图形找出直线段的P 、V 数据-→任选一空白单元格-→点击fx (插入函数)-→选统计函数SLOPE (确定)-→X 选直线段的V 数据区;Y 选直线段的P 数据区,(确定)-→单元格显示该斜率b 。

2)作直线,其斜率b 0.95=P -V 曲线直线段斜率b 的95%:
选一空白单元列作为Y 0.95数据列-→计算直线各点的Y 坐标值即:Y 0.95=各点V 值×b 0.95并填入Y 0.95数据列-→选中图表-→选原数据菜单-→添加新系列-→X 值仍选V 数据区;Y 选Y 0.95数据区(确定) 3)直线与P -V 曲线的交点即为P 5点。

4)Pq 值应当满足Pmax /Pq ≤1.1,否者实验无效。

2、裂纹长度用读数显微镜测出五个读数a 1、a 2、a
3、a 4和a 5,如下图,取中间三个读数平均值a=1/3(a 2+a 3+a 4);
图5
3、根据测得到a 和W 值,计算a/W 值(精确到千分之一),f(a/W)数值查表或计算。

f(a/W)={3(a/W)1/2[1.99-(a/W)(1-a/W)×(2.15-3.93a/W+2.7a2/W2)]}/2(1+2a/W)(1-a/W)3/2 1、将P Q、B、W和f(a/W)代入下式:
K Q=(P Q S/BW3/2)f(a/W)
即可算出K Q值,单位MPam1/2。

相关换算单位公式:MPam1/2=MNm-3/2,MPa=MNm-2,1kgf=9.807N,1kgfmm-3/2=0.310MPam1/2。

相关文档
最新文档