完全平方公式课件ppt

合集下载

苏科版七下数学完全平方公式课件

苏科版七下数学完全平方公式课件
ห้องสมุดไป่ตู้
(a b)2
a (b)2
a2 2 a (b) (b)2
a2 2ab b2
(a-b)2= a2-2ab +b2
新知归纳
完全平方公式:
(a+b)2= a2 +2ab+b2 (a-b)2= a2 - 2ab+b2
两个数的和的平方等于这两个数的平方和与它们积的2倍的和.
两个数的差的平方等于这两个数的平方和与它们积的2倍的差.
(6)(x 2 y)2 x2 4xy 4 y2 √
典型例题
例3:简便计算 (1)3022
(2)49.72
解:
3022
(300 2)2
3002 2300 2 22
90000 1200 4 91204
课堂小结
面积恒等法
数形结合思想
多项式相乘法则
完全平方公式
应用与拓展
1.整理 2.公式选择 3.代入准确 4.化简 一题多解方法
合作学习 计算 (a b)2
(a-b)2 = (a-b)(a-b) = a2-ab-ba+b2 = a2-2ab +b2
合作学习 计算 (a b)2
(a b)2
a (b)2
a2 2 a (b) (b)2 a2 2ab b2
合作学习 计算 (a b)2
(a-b)2 = (a-b)(a-b) = a2-ab-ba+b2 = a2-2ab +b2
3、已知a+b=2,ab=1, 求a2+b2、(a-b)2的值.
转化思想
拓展提高
通过本节课的学习你会求(a+b+c)2的值吗? 说说你的方法。

完全平方公式课件ppt ppt课件

完全平方公式课件ppt ppt课件

(1)(x+2y)2 解: (x+2y)2=
x2 +2•x •2y +(2y)2
(a +b)2= a2 + 2 ab + b2 =x2 +4xy +4y2
完全平方公式课件ppt
例1 运用完全平方公式计算:
(2)(x-2y)2 解: (x-2y)2=
x2 -2•x •2y +(2y)2
(a - b)2= a2 - 2 ab + b2 =x2 -4xy +4y2
完全平方公式(重点)
例 1:计算:
(1)(-2m-3n) ; 2
(2)
a 2
12
.
思路导引:运用公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-
2ab+b2.
解:(1)原式=[-(2m+3n)]2=(2m+3n)2=(2m)2 +2·2m·3n
+(3n)2=4m2+12mn+9n2.
完全平方公式课件ppt
算一算
(1)(x+2y)2 = (2)(4-y)2 = (3)(2m-n)2=
完全平方公式课件ppt
例2、运用完全平方公式计算:
(1) ( 4m2 - n2 )2
分析:
(a-b)2= a2 - 2ab+b2
4m2
a
n2
b
解:( 4m2 - n2)2
=( 4m)22-2( )·(4m2)+( )n22
(a-b)2
=(a-b) (a-b)
= a2 - ab - ab +b2 = a2 - 2ab+b2
完全平方公式课件ppt
§完全平方公式
完全平方公式课件ppt

人教版 八年级数学上 14.2.2完全平方公式 课件(共28张PPT)

人教版   八年级数学上 14.2.2完全平方公式  课件(共28张PPT)

填空:
(1)(a 2)(a 2) __a_2___4__; (2)(m n)(m n) _m__2___n_2_;
(3)(2x
1)(1
2x)
_1___4_x_2__; (4)( 1 2
p
2q)(2q
1 2
p)
4_q_2__14__p_2 _
.
合作探究
思考1:计算下列多项式的积,你能发现什么规律?
× ×
(a +b)2 =a2+2ab +b2 (a -b)2 =a2 -2ab +b2
(3) (-x +y)2 =x2+2xy +y2×
(-x +y)2 =x2 -2xy +y2
(4) (2x+y)2 =4x2 +2xy +y2× (2x +y)2 =4x2+4xy +y2
小试牛刀 那 (-x-6)2呢? 2.利用完全平方公式计算:
醍醐灌顶: (a+b)2 与(-a-b)2 相等, (a-b)2 与(b-a)2相等。
小试牛刀
4.已知x-y=6,xy=-8.求: (1)x2+y2的值; (2)(x+y)2的值.
解:(1)∵x-y=6,xy=-8, (2)∵x2+y2=20,xy=-8,
(x-y)2=x2+y2-2xy, ∴(x+y)2=x2+y2+2xy
(1)( p 1)2 ( p 1)( p 1) __p_2___2_p___1_; (2)(m 2)2 (_m__2_)_(_m__2_)_ m__2__4__m___4___; (3)( p 1)2 ( p 1)( p 1) __p_2__2__p__1__; (4)(m 2)2 (_m__2_)_(_m__2_)_ _m_2___4_m___4___ .

完全平方公式ppt

完全平方公式ppt

a
b + b2
课堂练习 1. 运用完全平方公式计算 :
(1)(a+6)2 (2)(4+x)2 =a2+12a+36 =16+8x+x2 =x2-14x+49 =64-16y+y2
(3)(x-7)2
(4) (8-y)2
(5)(3a+b)2 =9a2+6ab+b2 (6)(4x+3y)2 =16x2+24xy+9y2 (7)(-2x+5y)2=4x2-20xy+25y2 (8)(-a-b)2 =a2+2ab+b2
2倍
,加上 第二数 的平方.
计算: (x+2y)2 = x2+2 • x • 2y +(2y)2 = x2+4xy+4y2
(a+b)2 = a2 +2 a
b + b2
(2x-3y)2 = (2x)2 -2 • 2x • 3y +(3y)2 =4x2-12xy+9y2
(a - b)2 = a2 - 2

错 练 习
指出下列各式中的错误,并加以改正: (1) (2a−1)2=2a2−2a+1; (2) (2a+1)2=4a2 +1; (3) (a−1)2=a2−2a−1. 解: (1) 第一数被平方时, 未添括号;
第一数与第二数乘积的2倍 少乘了一个2 ; 应改为: (2a−1)2= (2a)2−2•2a•1+1; (2) 少了第一数与第二数乘积的2倍 (丢了一项); 应改为: (2a+1)2= (2a)2+2•2a•1 +1; (3) 第一数平方未添括号, 第一数与第二数乘积的2倍 错了符号; 第二数的平方 这一项错了符号; 应改为: (a−1)2=(a)2−2•(a )•1+12;

完全平方公式ppt课件

完全平方公式ppt课件
解:∵a2+b2=13,ab=6, ∴ (a+b)2=a2+2ab+b2 =a2+b2+2ab =13+2×6=25 (a-b)2=a2-2ab+b2 =a2+b2-2ab =13-2×6=1.
拓展提高
1.计算:
(1) (a+b-5)2
(2) (a+b+c)2
解:原式= [(a+b)-5]2
解:原式= [(a+b)+c]2
= (a+b)2-10(a+b)+52
= (a+b)2+2(a+b)c+c2
= a2+2ab+b2-10a-10b+25 = a2+2ab+b2+2ac+2bc+c2
三项式可以先加括号变形为(a+b)2 或(a-b)2 ,再找到公式中
公式:
2.方法:先将式子加括号变形为(a+b)2 或(a-b)2 ,再找到公式
典例精析
例1 利用完全平方公式计算:
(1)(2x-3)2
ab
(2) (4x+5y)2
ab
(3) (mn-a)2
ab
例2 计算:
ab
ab
可以将式子先加括号变形为(a+b)2 或(a-b)2 ,再找到公式中
的 a 和 b ,直接套公式
基础练习
注意区分平方差公式和完全平方公式
1. 口算下面各式的计算是否正确?如果不正确,应当怎样改正?
1.6完全平方公式
第一课时
温故知新
计算:
观察上列算式及其运算结果,你有什么发现? 再举两例验证你的发现
探索新知
猜一猜:

完全平方公式-完整版PPT课件

完全平方公式-完整版PPT课件

知识要点 添括号法则
添括号时,如果括号前面是正号,括到括号里的各项 都不变号;如果括号前面是负号,括到括号里的各项都 改变符号(简记为“负变正不变”)
典例精析
例5 运用乘法公式计算: 1 2y-3-2y3 ; 2 abc2 解: (原1)式=[x+(2y–3)][x-(2y-3)]
= 2-2y-32 = 2-4y2-12y9 = 2-4y212y-9 2原式 = [abc]2 = ab22abcc2
八年级数学上(RJ) 教学课件
第十四章 整式的乘法与因式分解
142 乘法公式
1422 完全平方公式
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1理解并掌握完全平方公式的推导过程、结构特点、 几何解释(重点) 2灵活应用完全平方公式进行计算(难点)
导入新课
情境引入
一块边长为a米的正方形实验田,因需要将其边长增加 b 米形成四块实验田,以种植不同的新品种如图 用不 同的形式表示实验田的总面积, 并进行比较
课堂小结
法则
完全平方 注 意 公式
常用 结论
a±b2= a2 ±2abb2
1项数、符号、字母及其指数
2不能直接应用公式进行计算的 式子,可能需要先添括号变形 成符合公式的要求才行 3弄清完全平方公式和平方差公 式不同(从公式结构特点及结 果两方面)
a2b2=ab2-2ab=a-b22ab;
4ab=ab2-a-b2
解:15-a2=25-10a+a2; 2-3m-4n2=9m2+24mn+16n2; 3-3a+b2=9a2-6ab+b2
二 添括号法则 去括号 abc = abc; a- bc = a - b – c 把上面两个等式的左右两边反过来,也就添括号: a b c=a b c; a–b–c=a– b c

完全平方公式 课件(共15张PPT) 2024-2025学年人教版初中数学八年级上册

完全平方公式   课件(共15张PPT)   2024-2025学年人教版初中数学八年级上册
=362 − 60 + 25 2
=42 − 4 + 1
2:如果 + + 是一个完全平方式,则x的值为多少?
解:因为 + +
=() + ∙ ∙ + (±)
所以 x 的值为±
完全平方公式:
(a+b)2=a2+2ab+b2
“口诀”:首平方,尾平方,积的两倍在中央。
想一想:
你能根据图 1 和图 2 中的面积解释完全平方公式吗?
b
b
a
a
a
b
图1
ห้องสมุดไป่ตู้
a
图2
b
( − ) =?
你是怎样做的?
( − )2 = ( − )( − )
=2 − 2 +
2
( − )2 = + (−)
2
=2 + 2(−) + (−)2
(a−b)2=a2−2ab+b2
两个数的和(或差)的平方,等于它们的平方和,






加上(或减去)它们的积的2倍.
完全平方公式的特征:
你有什么收获?
(4) (2x + y)2 = 4x2 + 2xy + y2. ×
4x2 + 4xy + y2
(2)
(x-y)2
=
x2-y2;
x2 + 2xy + y2
1:利用完全平方公式计算:
(1)(6 + 5)2
(2)(2 − 1)2
解:原式=(6)2 − 2 ∙ 6 ∙ 5 + (5)2 解:原式=(2)2 − 2 ∙ 2 ∙ 1 + 12

完全平方公式ppt课件

完全平方公式ppt课件
=2x2-8x+8+3x-2x2-1
=-5x+7.
2
5.(2023 凉山)先化简,再求值:(2x+y) -(2x+y)(2x-y)-2y(x+y),其中

x=( )
2 023
,y=2

2 022
.
2
解:(2x+y) -(2x+y)(2x-y)-2y(x+y)
2
2
2
2
2
=4x +4xy+y -4x +y -2xy-2y
解:因为a-b=-4,ab=3,
所以a2+b2=(a-b)2+2ab=16+2×3=22.
所以(a+b)2=a2+b2+2ab=22+6=28,
所以a2+b2的值为22,(a+b)2的值为28.
.
完全平方公式的实际应用
[例3] 如图所示,在边长为m+4的正方形纸片上剪出一个边长为m的小
正方形后,将剩余部分剪拼成一个长方形(不重叠无缝隙),若这个长方
灵活应用完全平方公式的变形,可求相关代数式的值,主要的变形有
(1)(a+b)2-2ab=a2+b2;

2
2
2
(2)ab= [(a+b) -(a +b )];

(3)(a+b)2-(a-b)2=4ab.
新知应用
1.若(x+2y)2=(x-2y)2+A,则A表示的式子为 8xy
2.已知a-b=-4,ab=3.求a2+b2与(a+b)2的值.
=x2-(y+1)2

完全平方公式PPT课件

完全平方公式PPT课件

(a+b)2= a2 +2ab+b2 (a-b)2= a2 - 2ab+b2
1、积为二次三项式;
2、积中两项为两数的平方和;
3、另一项是两数积的2倍,且与乘式中间的符号相同.
首平方,尾平方,积的2倍放中央 .
4、公式中的字母a,b可以表示数,单项式和多项式.
例4 运用完全平方公式计算:
(1)(3m+n)2;
(2)
x
-
1 2
2
.
(1)(3m+n)2
解 (3m+n)2
= (3m)2+2 ·3m ·n + n2
= 9m2+6mn+n2.
(2)
2
x - 1
2

x
-
1
2
2
=
x2
-2·x·1Fra bibliotek+
12
2 2
= x2 - x+ 1 4
想一想:
下面各式的计算是否正确?如果不正确,应当怎样改 正?
思考 (a+b)2与(-a-b)2相等吗? (a-b)2与(b-a)2相等吗? (a-b)2与a2-b2相等吗? 为什么?
说一说
1. (a-b)2与(b-a)2有什么关系? 答:相等. 这是因为 (b-a)2 = [-(a-b)]2=(a-b)2. 2. (a+b)2与(-a-b)2有什么关系? 答:相等. 这是因为 (-a-b)2 = [-(a+b)]2=(a+b)2.
b a
b a 图2
完全平方公式 的几何意义 和的完全平方公式:
b ab

(a+b)²

完全平方公式PPT课件

完全平方公式PPT课件
探究
a a
b
b
b
a
a
b
如图,有四张卡片: 1.你能用这四张卡片拼成一个大正方形吗?请你动手拼一拼。 2.你能用不同的方法求大正方形的面积吗? 3.你从中发现了什么规律? 4.你能用整式的乘法法则说明理由吗? 5.这个结论对我们的运算起到什么样的作用呢?
得出结论:
(a b)2 a2 2ab b2
用一用2
例1、利用完全平方公式计算:
1. (2x 3)2
2. (m 1 )2 2
3. ( y 2)2 4. (4x 5 y)2
用一用3
例2、利用完全平方公式计算:
1. 1022 2. 992
用后反思
1.利用完全平方公式简便了我们的计算。 2.利用完全平方公式时,我们应该注意的一些事项有: (1)中间项是两数(式)的2倍。 (2)各项的符号。 (3)该添加括号的应该添加括号。
做一做
利用完全平方公式计算: 1. (1 x 2 y)2
2
2. (m n)2 n2
3. (a 1 )2 a
4. 9.52
小结
1.这节课你学到了什么知识? 2.运用这一知识时应注意哪些事项? 3.通过这节课的学习你有何感想与体方公式进行计算吗?
视察上面各式,讨论下面的问题: 1.公式的左边有什么特点? 2.公式的右边有什么特点? 3.公式的符号有什么特点? 4.你能用自己的语言叙述这个公式吗?
各式特点
1.积为二次三项式。 2.积中两项为两数的平方和。 3.另一项是两数的两倍,且与乘式中间的符号相同。 4.公式中的字母a,b可以表示数、单项式和多项式。
其实据有关资料表明,古代中国人在多年以前就利用类似的 图形认识了这个规律。
猜想

《完全平方公式》优质课件

《完全平方公式》优质课件
通过提问和练习,检查学生对已有知 识的掌握情况。
课程目标
• 明确本节课的学习目标和主要内容,让学生了解 完全平方公式的重要性和应用价值。
02
新知探究
完全平方公式的推导
总结词:循序渐进
详细描述:通过对完全平方公式的逐步推导,引导学生理解公式背后的逻辑和意 义。
完全平方公式的形式与意义
总结词:对比分析
公式的证明方法
基于平方的定义进行证明
利用平方的定义,即一个数的平方等于这个数的两次幂,通 过逐步推导证明完全平方公式的正确性。
基于多项式展开进行证明
通过将完全平方式的左边按照完全平方公式的形式展开,证 明公式的正确性。
公式的扩展应用
与其他数学知识的结合
完全平方公式可以与其他数学知识结合 ,如因式分解、解方程和不等式等,以 扩展其应用范围。
实际应用
数据处理
完全平方公式可以用于数据处理,如 计算方差、标准差等统计指标。
实际生活应用
完全平方公式在日常生活中有广泛的 应用,如计算房屋面积、计算价格等 。
04
公式深化
公式的变化形式
完全平方公式的三种形式
两数和的平方、两数差的平方以及两数平方和与它们的积的两倍的和的平方。
公式的应用范围
适用于解决与完全平方公式相关的问题,如代数表达式、方程和不等式等。
进阶习题
总结词
提升解题技巧
详细描述
设计一些稍有难度的习题,如涉及完全平方公式的变 形、与其他数学知识的综合应用等,旨在训练学生掌 握进阶的解题技巧和方法,提高解题能力。
综合习题
总结词
综合运用能力
详细描述
设计一些包含多个知识点、有一定难度的习 题,如需要学生综合运用完全平方公式解决 实际问题、进行复杂计算等,重点考察学生

1.完全平方公式课件

1.完全平方公式课件

4
4 3 3 16
9
总结
知1-讲
在应用公式 (a±b)2=a2±2ab+b2 时关键是弄清题目 中哪一个相当于公式中的a,哪一个相当于公式中的b, 同时还要确定用两数和的完全平方公式还是两数差的 完全平方公式;解(1)(2)时还用到了互为相反数的两 数的平方相等.
1 计算:
(1) (1 x 2 y)2;(2) (2xy 1 y)2 ;(3) (n+1)2-n2 .
A.2ab B.-2ab C.4ab D.-4ab
5 (2015·邵阳)已知a+b=3,ab=2,则a2+b2的值
为( )
A.3
B.4
C.5
D.6
6
已知a+
1 =4,则a2+ a
1 a2
的值是(
)
A.4
B.16
C.14 D.15
1. 完全平方公式的特征:左边是二项式的平方,右 边是二次三项式,其中两项分别是公式左边两项 的平方,中间一项是左边二项式中两项乘积的2
(3)运算顺序不同:(a±b)2是先算a,b两数的和或差, 后算和或差的平方;a2±b2是先算a2与b2,后算a2, b2的和或差.
例1 利用完全平方公式计算: (1) (2x-3)2;(2) (4x+5y)2 ;(3) (mn-a)2 . 解: (1) (2x-3)2 = (2x)2-2·2x·3+32
知2-讲
总结
知2-讲
本题运用了整体思想求解.对于平方式中若底数是三 项式,通过添括号将其中任意两项视为一个整体,就 符合完全平方公式特点;对于两个三项式或四项式相 乘的式子,可将相同的项及互为相反数的项分别添括 号视为一个整体,转化成平方差公式的情势,通过平 方差公式展开再利用完全平方公式展开,最后合并可 得结果.

完全平方公式公开课ppt课件

完全平方公式公开课ppt课件
应用示例
如将表达式$(x+5)^2$展开,得到 $x^2 + 10x + 25$,比原式更为简 洁,方便后续的代数运算。
解决实际问题
总结词
应用示例
完全平方公式不仅在数学领域有广泛 应用,还能够帮助解决实际生活中的 问题。
如利用完全平方公式解决物理中的自 由落体问题,通过建立数学模型,求 出物体落地时的速度和位移。
批判性思维
03
在学习和应用完全平方公式的过程中,学生可以通过分析和评
价不同的方法和思路,培养批判性思维。
06
总结与展望
本节课的总结
完全平方公式的定义和形式
本节课介绍了完全平方公式的定义和形式,包括平方差公式和完 全平方公式,并通过实例进行了演示和讲解。
完全平方公式的应用
重点讲解了完全平方公式在代数、几何等领域的应用,包括因式分 解、求根公式、一元二次方程的解法等。
条件二
需要满足二次项系数为1的条件。在完全平方公式 中,二次项系数必须为1,否则无法应用完全平方 公式进行简化。
04
完全平方公式的应用实例
代数表达式化简
总结词
完全平方公式在代数表达式化简 中具有重要作用,能够简化复杂 的代数式,提高计算效率和准确
性。
详细描述
通过完全平方公式,可以将复杂的 二次项和一次项组合转化为简单的 平方形式,从而简化代数表达式的 结构,方便计算和推导。
完全平方数的个位数特征
个位数是0、1、4、5、6、9的数不一定是完全平方数, 但个位数是2、3、7、8的数一定是完全平方数。
完全平方公式的形式
完全平方公式:$(a+b)^2 = a^2 + 2ab + b^2$ 和 $(a-b)^2 = a^2 - 2ab + b^2$

完全平方公式(共16张PPT)

完全平方公式(共16张PPT)

点评小组 5组
知识综合应用 探究:
(书面展示)
9组
1组
8组 6组
5组
要求: ⑴ 先点评对错;再点评思路方法,应该注意的问 题,力争进行必要的变形拓展。 ⑵ 其他同学认真倾听、积极思考、记好笔记、大 胆质疑。

错 练 习
指出下列各式中的错误, 并加以改正: 2 2 (1) (2a−1) =2a −2a+1; (2) (2a+1)2=4a2 +1; 2 2 (3) (a−1) =a −2a−1.
(a b) a 2ab b
2 2
2
学习目标:
公式进行简单的计算,提高计算能力; 全平方公式的应用技巧; 提高学习数学的兴趣和热爱生活的情感。
1.能准确推导出完全平方公式,并能运用
2.通过自主学习,小组合作,探究总结完
3.激情参与,阳光展示,充分感知数学美,
预习反馈
小组 第一组 第二组 第三组 第四组 第五组 第六组 第七组 第八组 第九组
本节课你的收获是什么?
注意完全平方公式和平方差公式不同:
形式不同.
, 结果不同:
(a b)2=a2 2ab+b2;
(a+b)(a−b)=a2−b2.
整理巩固
要求:整理巩固探究问题
落实基础知识 完成知识结构图
当堂检测
要求:学生自主完成 答案:见教师用书
课堂评价
学科班长: 1.回扣目标 总结收获 2.评出优秀小组和个人
用不同的形式表示实验田 a 的总面积, 并进行比较.
直 2 总面积 = ( a + b ) ; 接 法一 求 间 接 总面积= a2+ ab+ ab+ b2. 法二 求

完全平方公式ppt课件

完全平方公式ppt课件

(1) (2x+3y)2 (2) (2x-3y)2 (3) (-2x+3y)2 (4) (-2x-3y)2
小结:当所给的二项式 中两项符号相同时,一 般选用“和”的完全 平方公式;
当所给的二项式 中两项的符号相反时, 一般选用“差”的完 全平方差公式.
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
本节课你学到了什么?
本节课你的收获是什么?
注意完全平方公式和平方差公式不同:
形式不同. 完全平方公式的结果 是三项, 结果不同: 即 (a b)2=a2 2ab+b2;
运用公式计算: 1.(a-b)(a+b)(a2+b2) 2.(2-1)(2+1)(22+1) (24+1)…… (232+1)+1
本标准适用于已投入商业运行的火力 发电厂 纯凝式 汽轮发 电机组 和供热 汽轮发 电机组 的技术 经济指 标的统 计和评 价。燃 机机组 、余热 锅炉以 及联合 循环机 组可参 照本标 准执行 ,并增 补指标 。
1.(2x+y-z)(2x-y+z) 2.(a+2b-1)2
右边是 两数的平方差.
应用平方差公式的注意事:
☾ 弄清在什么情况下才能使用平方差公式:
做一做 本标准适用于已投入商业运行的火力发电厂纯凝式汽轮发电机组和供热汽轮发电机组的技术经济指标的统计和评价。燃机机组、余热锅炉以及联合循环机组可参照本标准执行,并增补指标。

沪教版(上海)初中数学七年级第一学期2完全平方公式课件

沪教版(上海)初中数学七年级第一学期2完全平方公式课件

2
2
2
(第x 1题1)2 (第x 2题5)2 (第a 3题1)2
看比谁?一比快
(第3 4题a)2 (x第52题y)2 (1第x 6题3x)2
3
练习2:判断下面的计算对不对?若不对,请 指明错误原因,并改正.
(1)(x y)2 x2 y2 错 x2 2xy y2
(2)(x y)2 x2 2xy y2 错 x2 2xy y2
4x2 12xy 9 y 2
(a b)2 a 2 2ab b 2
(2) (6x 5)2 (6x)2 2(6x) 5 52
36x2 60x 25
(a b)2 a 2 2ab b 2
例题解析
例1:计算
(3)(2a b)2
(4)(3a 2b)2
完全平方公式 结构的再认识
(2x 3y)2 = 4x2 + 12xy + 9 y2 (6x 5)2 = 36x2- 60x + 25 (2a b)2 = 4a2 - 4ab + b2 (3a 2b)2 = 9a2 + 12ab + 4b2
1.等式的左边都是两个数的_和__或_差___的平方, 右边是一个_____三项式.
乘法公式
知识点回顾
(a b)(m n) am an bm bn
多项式与多项式相乘
(a b)(a b) a2 b2 平方差公式
(a b)(a b) (a b)(a b)
学习新课
探究公式 (a b)(a b) a2 a b b a b2
a2 2ab b2 (a b)(a b) a2 ab ba b2
(a 2b)(a 2b)
(a 2b)2
(2x 5y)(2x 5y) (2x 5y)2 (2x)2 2 (2x) (5y) (5y)2

完全平方公式ppt课件

完全平方公式ppt课件

推导过程
引入
通过具体例题引入完全平方公式 的概念,让学生明确学习目标。
推导步骤
逐步详细展示完全平方公式的推 导过程,包括展开、整理、简化 等步骤,确保逻辑严密。
推导结论
公式形式
总结得出完全平方公式的标准形式, 强调公式中的重要部分,如中间项系 数、首尾项平方等。
应用举例
通过具体例题,演示如何运用完全平 方公式进行计算,帮助学生理解公式 的实际应用。
它可以帮助我们简化二次多项式,将其表示为一个 更简单的形式,便于计算和解决各种数学问题。
完全平方公式还可以用于证明一些重要的数学定理 ,如勾股定理和三角形的余弦定理等。
02
完全平方公式的推导过程
推导前的准备
知识储备
学生应具备基本的代数知识和运算能力,了解平方、乘法等基本 概念。
工具准备
准备黑板、白板或PPT等教学演示工具,以便清晰地展示推导过 程。
详细描述
该公式是二次项和一次项的完全平方 公式,其中$a$和$b$是常数,表示一 个二次多项式和一个一次多项式相加 或相减的结果。
二次项和常数的完全平方公式
总结词
表示形式为$a^2+2ac+c^2$,适用于二次项和常数的完全平方公式。
详细描述
该公式是二次项和常数的完全平方公式,其中$a$、$c$是常数,表示一个二次多项式和一个常数相加 或相减的结果。
完全平方公式ppt课件

CONTENCT

• 完全平方公式简介 • 完全平方公式的推导过程 • 完全平方公式的应用 • 完全平方公式的变种 • 完全平方公式的练习题
01
完全平方公式简介
完全平方公式的定义
01
完全平方公式是一种数学公式, 用于将一个二次多项式表示为一 个一次多项式和一个常数的乘积 的平方。

完全平方公式复习ppt

完全平方公式复习ppt
2、运用完全平方公式计算:
(3a-2b)(___+2b)=9a2-4b2 (x-6)2=x2+_____ +36 x2-4x+____=(x-____)2
3、填空题:
4、选择题 (1)下列各式中,是完全平方公式的是( ) (A)x2-x+1 (B)4x2+1 (C)x2+2x+1 (D)x2+2x-1 (2)如y2+ay+9是完全平方公式,则a的值等于( ) (A) 3 (B)-6 (C) 6 (D)6或-6 (3)下列计算正确的是( ) A.(x-2y)(2y-x) =4y2-x2 B.(-x-1)(x+1)=x2-1 C.(m-n)(-m-n) =-m2+n2 D.(x2+2y)(x-2y)=x3-4y2
小结回顾
例5:完全平方公式的拓展 (1) (2) 变式练习: (1) (2)
完全平方公式的 复习和拓展
首平方, 尾平方, 2倍乘积在中央
完全平方公式: (a+b)2 = a2+2ab+b2 (a-b)2 = a2-2ab+b2
b
a
a
(a+b)²


ab
ab
+
+
完全平方公式 的几何意义


和的完全平方公式:
单击此处添加文本
单击此处添加文本
a
a
b
b
(a-b)²
(1) (2) 计算(1)
公式变形的应用:
01
5
02
97
03
(a+b)2 = a2+b2+2ab (a-b)2 = a2+b2-2ab
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分析:
(1) ( 4m2 - n2 )2 (a-b)2= a2 - 2ab+b2
4m2
a
n2
b
解:( 4m2 - n2)2
=( 4m)22-2( )·(4m)2+( )2n2 n2
=16m4-8m2n2+n4
解题过程分:
记清公式、代准数式、准确计算。
-
15
算一算
1.(3x2-7y)2=
2.(2a2+3b3)2=
完全平方公式的文字叙述:
两个数的和(或差)的平方,等于它们的平方和, 加上(或减去)它们的积的2倍。
-
5
完全平方公式 的图形理解
完全平方和公式:
b ab

(a+b)²
a a² ab
a
b
(ab)2 a 2+2ab+b 2
-
6
完全平方公式 的图形理解
完全平方差公式:
b
ab

a
a² ab
(a-b)²
-
16
二.下面计算是否正确? 如有错误请改正.
(1)(x+y)2=x2+y2
解:错误.(x+y)2=x2+2xy+y2 (2) (-m+n)2=m2-2mn+n2 (解3) :(x正-1)确(y.-1)=xy-x-y+1
解:正确.
-
17
二.下面计算是否正确? 如有错误请改正. (4)(3-2x)2=9-12x+2x2 解:错误.(3-2x)2=9-12x+4x2 (5)(a+b)2=a2+ab+b2
可简单记:前平方,后平方, 积2倍,在中央
-
22
完全平方公式(重点)
例 1:计算:
(1)(-2m-3n) ; 2 (2)
a 2
12
.
思路导引:运用公式(a+b)2=a2+2ab+b2 和
(a-b)2=a2-2ab+b2.
解:(1)原式=[-(2m+3n)]2
=(2m+3n)2
=(2m)2 +2·2m·3n+(3n)2

(4) (x+y)2 =x2 +xy +y2
(x -y)2 =x2 -2xy +y2

(x +y)2 =x2+2xy +y2
-
11
例1 运用完全平方公式计算:
(1)(x+2y)2 解: (x+2y)2=
x2 +2•x •2y +(2y)2
(a +b)2= a2 + 2 ab + b2 =x2 +4xy +4y2
-
12
例1 运用完全平方公式计算:
(2)(x-2y)2 解: (x-2y)2=
x2 -2•x •2y +(2y)2
(a - b)2= a2 - 2 ab + b2 =x2 -4xy +4y2
-
13
算一算
(1)(x+2y)2 = (2)(4-y)2 = (3)(2m-n)2=
-
14
例2、运用完全平方公式计算:
12a5b2
33x-y2
5
-
1
a
2
5b
2
7542
21.2m3n2
44p-2q2
6- 3 x - 2 y2
4 3
89972
-
21
完全平方公式的结构特征
(a+b)2=a2+2ab+b2 a-b2a2-2 a b b2
(1) 公式左边是两个数的和(差)的平方。
特征 (2) 公式右边是两个数的平方和,再加上 结构 (减去)两数积的2倍。
多项式。
-
8
例1 运用完全平方公式计算:
(1)(x+2y)2 解: (x+2y)2=
x2 +2•x •2y +(2y)2
(a +b)2= a2 + 2 ab + b2 =x2 +4xy +4y2
(2) ( 1x – 2y2)2 2
1 解:( x – 2y2)2 = 2
( 1 x)2 – 2 •( x1) •(2y2)
ab
(ab)2 a 2 ababb2
a22abb2
-
7
公式特点:
(a+b)2= a2 +2ab+b2 (a-b)2= a2 - 2ab+b2
1、积为二次三项式;
2、积中两项为两数的平方和;
3、另一项是两数积的2倍,且与乘式中
间的符号相同。
前平方,后平方,积两倍放 中央。
4、公式中的字母a,b可以表示数,单项式和
(7) (7) (-ab-c)2
()
Y
() () N
()
Y
() ()
N
( )N
N
Y
-
19
1、比较下列各式之间的关系:
(1) (-a -b)2 与(a+b)2
(2) (a - b)2 与 (b - a)2 (3) (-b +a)2 与(-a +b)2
相等 相等 相等
-
20
随堂练习
利用完全平方公式计算:
2
2
(a - b)2 = a2 - 2ab + b2
+(2y2)2
下面各式的计算是否正确?如果不正确,应当怎样改正?
(1)(x+y)2=x2 +y2
错 (x +y)2 =x2+2xy +y2
(2)(x -y)2 =x2 -y2
错 (x -y)2 =x2 -2xy +y2
(3) (x -y)2 =x2+2xy +y2
=4m2+12mn+9n2.
(2)原式=
a 2
2
-2·a2·1+12=a42-a+1.
议一议
如何计算 (a+b+c)2
解: (a+b+c)2 =[(a+b)+c]2 =(a+b)2+2·(a+b)·c+c2 =a2+2ab+b2+2ac+2bc+c2 =a2+b2+c2+2ab+2ac+2bc
(a+b) (m+n) = am+an + bm+bn
-
3
算一算:
(a+b)2 =(a+b) (a+b) = a2 +ab +ab +b2 = a2 +2ab+b2
(a-b)2 =(a-b) (a-b)
= a2 - ab - ab +b2
= a2 - 2ab+b2
-
4
完全平方公式的数学表达式:
((aa++bb))22==aa22++2ba2b+2ba2b ((aa--bb))22==aa22-+2ba2b-+2ba2b
(6) (a-1)2=a2-2a-1 解:错误.(a+b)2=a2+2ab+b2
解:错误.(a-1)2=a2-2a+1
-
18
三、在下列多项式乘法中, 能用完全平方公式计算的请填Y, 不能用的请填N.
(1) (-a+2b)2 (2) (b+2a)(b-2a) (3) (1+a)(a+1) (4) (-3ac-b)(3ac+b) (5) (a2-b)(a+b2) (6) ( 100-1)(100+1)
完全平方公式
- 杜堂镇中学
1
教学目标
使学生理解完全平方公式,掌握完全平方公式的结构特 征 ,并会用这两个公式进行计算.
重点、难点、关键
重点 .完全平方公式的结构特征及公式直接运用 难点 .对公式中字母a,b的广泛含义的理解 与正确应用 .
复习提问:
1、多项式的乘法法则是什么?
用一个多项式的每一项乘以另一个多项式的每一项,再把 所得的积相加.
相关文档
最新文档