用对偶单纯形法求对偶问题的最优解

合集下载

(完整版)对偶单纯形法详解

(完整版)对偶单纯形法详解
2.3 对偶单纯形法
一、什么是对偶单纯形法?
对偶单纯形法是应用对偶原理求解原始 线性规划的一种方法——在原始问题的单 纯形表格上进行对偶处理。
注意:不是解对偶问题的单纯形法!
二、对偶单纯形法的基本思想 1、对“单纯形法”求解过程认识的提升— —
从更高的层次理解单纯形法 初始可行基(对应一个初始基本可行解)
3 4
x1, x2 , x3, x4, x5 0
以此形式进行列表求解,满足对偶单纯形 法的基本条件,具体如下:
CB
XB
0
x4
0
x5
cj -2 -3 -4 0 0
xj b
x1 x2 x3 x4 x5
-3
-1 -2 -1 1 0
-4
-2 1 -3 0 1
-Z
0
-2 -3 -4 0 0

值 -2/-2 --- -4/-3 --- ---
2/5
11/5
-2 -3 -4 0 0 x1 x2 x3 x4 x5
0 1 -1/5 -2/5 1/5 1 0 7/5 -1/5 -2/5
cj-zj
0
0 0 -3/5 -8/5 -1/5
最优解: X*=(11/5,2/5, 0, 0, 0)T,
最优值: minW= -maxZ* = -[11/5×(-2)+2/5×(-3)]= 28/5
将三个等式约束两边分别乘以-1,然后
列表求解如下:
CB
XB
0
y3
0
y4
0
y5
-Z

cj yj b
-3 -9 0 y1 y2 y3
00 y4 y5
-2
-1 -1 1 0 0

运筹学862真题答案

运筹学862真题答案

西安电子科技大学硕士研究生入学考试2007 年运筹学试题参考解答考试时间:3 小时一、(25 分)某医院在每天各时段内需护士人数如下表所示时段6:00-8:00 8:00-14:00 14:00-16:00 16:00-22:00 22:00-6:00(次日) 需护士数25 35 32 28 22该医院安排4 个护士上班班次:早班6:00-14:00,白班8:00-16:00,晚班14:00:22:00,夜班22:00-6:00(次日)。

每名护士每天值一个班次。

(1)该医院每天至少需要多少名护士才能满足值班需要?(2)有人提议为简化管理,只设早、晚、夜三个班,取消白班,这种情况下又需要多少名护士能满足值班需要。

对(1)(2)两种情况分别建立数学模型,需要求解。

但需作出直观判断,哪一种情况需要护士数多一些,为什么?二、(25 分)已知线形规划问题用单纯形法求解时,其最终单纯形表如下:x1 X2 X3 X4 X5X1 5/3 1 -1/3 0 1/3 -1/3X3 3 0 1 1 -1/5 2/5cj-xj 0 -2 0 -1/5 -3/5(1)写出上述线形规划的对偶问题及其最优解;(2)若问题中x2 列的系数由(1,3,4)T 变为(3,2,3)T,求新的最优解;(3)若问题中约束(b)的右端项变为30,求解的最优解。

三、(25 分)某公司承担4 条航线的运输任务,已知:(1)各条航线的起点城市和终点城市及每天的航班数(见本题表1);(2)各城市间的航行时间(见本题表2);(3)所有航线都使用同一种船只,每次装船和卸船时间均为1 天,问该公司至少应配备多少条船才能满足所有航线运输的需要?表1表2(航行时间:天)A B C D E FA 0 1 2 14 7 7B 1 0 3 13 8 8C 2 3 0 15 5 5D 14 13 15 0 17 20E 7 8 5 17 0 3F 7 8 5 20 3 0四、(25 分)公司决定使用1000 万元新产品基金开发A、B、C 三种新产品。

16.对偶理论(三)对偶单纯形法

16.对偶理论(三)对偶单纯形法

16.对偶理论(三)对偶单纯形法⼉童节快乐呀这⼀部分我们考虑原问题是标准型的问题,并且介绍对偶单纯形法。

在上⼀节的强对偶定理的证明中,对标准型问题使⽤单纯形法,定义了对偶变量p为p T=c T B B−1。

然后由原问题最优性条件c T−c T B B−1A≥0T得到了等价表达的对偶可⾏性条件p T A≤c T。

那么我们之前介绍的单纯形法可以看作是在保证原问题可⾏的前提下去寻找对偶可⾏的解。

那么反过来,我们也可以从对偶可⾏的前提下去寻找原问题可⾏的解,这种算法称为对偶算法。

在接下来,将介绍对偶单纯形法。

并且说明这个算法事实上求解了对偶问题,更近⼀步,它是从对偶问题的⼀个基本可⾏解移动到另⼀个。

对偶单纯形法考虑⼀个标准型的线性规划问题,假设矩阵A是⾏满秩(为什么这个假设具有⼀般性,可参考线性规划中的⼏何(三))。

记B为基本矩阵,它包含了矩阵A的m个线性⽆关的列。

考虑下表(与之前介绍的单纯形法中的表⼀样)更详细的有不过,在这⾥不再要求B−1b是⾮负的,那就说明此时的解是⼀个原问题的基本解但不⼀定是可⾏解。

但是,我们要求¯c≥0成⽴,也相当于p T A≤c T成⽴(具体见上⼀节强对偶定理证明)。

这说明现在有了⼀个对偶问题的可⾏解,并且对偶问题的⽬标函数值为p T b=c T B B−1b=c T B x B,这恰好就是上表中的左上⾓元素的相反数。

如果不等式B−1b≥0也成⽴,那么这个解也将是⼀个原问题的可⾏解,并且⽬标函数值相同,这说明我们找到了原问题和对偶问题的最优解。

如果不等式B−1b≥0并不成⽴,那么我们将寻找下⼀个基矩阵。

找到满⾜x B(l)<0的l,考虑表中的第l⾏为pivot ⾏(x B(l)),v1,⋯,v n),其中v i为B−1A i的第l个元素。

对于满⾜v i<0的所有i(如果存在的话),我们计算⽐率¯c i/|v i|,然后记j为这些⽐率中最⼩的那个的下标(为什么这么选呢,后⾯会说),也就是说v j<0且¯cj|v j|=min{i∣v i<0}¯ci|v i|.称v j为pivot 元素。

应用运筹学基础:线性规划(4)-对偶与对偶单纯形法

应用运筹学基础:线性规划(4)-对偶与对偶单纯形法

应⽤运筹学基础:线性规划(4)-对偶与对偶单纯形法这⼀节课讲解了线性规划的对偶问题及其性质。

引⼊对偶问题考虑⼀个线性规划问题:$$\begin{matrix}\max\limits_x & 4x_1 + 3x_2 \\ \text{s.t.} & 2x_1 + 3x_2 \le 24 \\ & 5x_1 + 2x_2 \le 26 \\ & x \ge0\end{matrix}$$ 我们可以把这个问题看作⼀个⽣产模型:⼀份产品 A 可以获利 4 单位价格,⽣产⼀份需要 2 单位原料 C 和 5 单位原料 D;⼀份产品 B 可以获利 3 单位价格,⽣产⼀份需要 3 单位原料 C 和 2 单位原料 D。

现有 24 单位原料 C,26 单位原料 D,问如何分配⽣产⽅式才能让获利最⼤。

但假如现在我们不⽣产产品,⽽是要把原料都卖掉。

设 1 单位原料 C 的价格为 $y_1$,1 单位原料 D 的价格为 $y_2$,每种原料制定怎样的价格才合理呢?⾸先,原料的价格应该不低于产出的产品价格(不然还不如⾃⼰⽣产...),所以我们有如下限制:$$2y_1 + 5y_2 \ge 4 \\ 3y_1 + 2y_2 \ge3$$ 当然也不能漫天要价(也要保护消费者利益嘛- -),所以我们制定如下⽬标函数:$$\min_y \quad 24y_1 + 26y_2$$ 合起来就是下⾯这个线性规划问题:$$\begin{matrix} \min\limits_y & 24y_1 + 26y_2 \\ \text{s.t.} & 2y_1 + 5y_2 \ge 4 \\ & 3y_1 + 2y_2 \ge 3 \\ & y \ge 0\end{matrix}$$ 这个问题就是原问题的对偶问题。

对偶问题对于⼀个线性规划问题(称为原问题,primal,记为 P) $$\begin{matrix} \max\limits_x & c^Tx \\ \text{s.t.} & Ax \le b \\ & x \ge 0\end{matrix}$$ 我们定义它的对偶问题(dual,记为 D)为 $$\begin{matrix} \min\limits_x & b^Ty \\ \text{s.t.} & A^Ty \ge c \\ & y \ge 0\end{matrix}$$ 这⾥的对偶变量 $y$,可以看作是对原问题的每个限制,都⽤⼀个变量来表⽰。

第三章对偶单纯形法

第三章对偶单纯形法

··
≥ (c1,c2,…,cn)
y1,y2,…,ym≥0
m个变量,n个约束条件
2﹒约束条件全部为“=”的对偶
原问题:
max z=CX
max z=CX
max z=CX
AX=b
等价
AX≤b AX≥b
AX≤b 等价 -AX≤-b
X≥0
min ω=(Y1,Y2) A
(Y1,Y2) -A Y1,Y2≥0
b -b
承租
出让代价应不低于 用同等数量的资源 自己生产的利润。
厂家能接受的条件:
出 用同让6等代y数价2量应的不y资低3 源于 2 5 y自1 己生2产y2的利y润3。 1
收购方的意愿:
min w 15 y 24 y 5 y
1
2
3


D
设备A
0
设备B
6
调试工序
1
5 15时 2 24时 1 5时
利润(元) 2
x1 0, x2 , x3 0, x4无限制max变S量个数5n y1 约4束y方2 程个6数yn3
2、求下列问题的对偶问题 min Z 2x1 3x2 5x3 x4
4x1 x2 3x3 2x4 5
s.t
3x1 2x2 7x4 2x1 3x2 4x3
4 x4
6
s.t
3﹒约束条件为“≥”的对偶
原问题:
max z=CX
max z=CX

AX≥b
等价
-AX≤ - b

X≥0 min ω=Yb
对偶 问题
X≥0


min ω=Y1 (- b)
YA ≥C Y≤0
令Y= - Y1

运筹学考研试题

运筹学考研试题

2.单纯形法中,要把数学模型化为标准型,须引入 ; 若约束条件中附加变量的系数是 或原约束为 ,则 必须引入 ,以构成初始可行基。 3.0-1规划的隐枚举法的基本思想是从所有变量等于 出 发,依次指定一些变量为 ,直到得到一个可行解。
d i 和 d i 分别表示 4.目标规划中,
对于第i个目标约束 ,如果希望 f i X bi ,则目标函数为
工厂 甲厂 乙厂 运费 利润 运费 利润 运费 利润 3 4 20 25 4 6 25 22 5 3 27 24
丙厂
5
27
3
24
4
22
该公司按以下目标调运产品: 第一目标:满足各销售点的需求; 第二目标:因路况原因,C销售点的服装最好由乙厂供应; 第三目标:甲厂因仓库限制,其产品应尽量全部调出; 第四目标:利润不少于60000元; 第五目标:调运总费用最省; 试建立该目标规划问题的数学模型(不要求求解)。(15分)
(1)求线性规划问题的最优解(20分) (2)求对偶问题的最优解(5分) (3)当△b3=-150时最优基是否发生变化?为什么?(5分) (4)求c2的灵敏度范围(5分) (5)如果x3的系数由[1,3,5]变为[1,3,2],最优基是否改变?若 改变求最优解。(5分)
二、已知某运输问题其供销关系及单位运价表如下表所示:
3.已知线性规划的数学模型如下,请写出对偶问题的 数学模型,并求其对偶问题的最优解。(15分)
max z 5 x1 3 x2 6 x3 x1 2 x2 x3 18 2 x x 3 x 16 1 2 3 s.t. x1 x2 x3 10 x1 , x2 0, x3无约束
运筹学
Operational Research

对偶单纯形法

对偶单纯形法

max W b1 y1 b2 y2
bm ym
a11 a21 am1 y1 c1 am 2 y2 c2 a12 a22 s.t. a a2 n amn ym cn 1n y1 , y2 , , ym 0
ˆ j ( j 1, 2, 如果x ˆi (i 1, 2, y
n j 1
, n)是原问题的可行解
m
, m)是其对偶问题的可行解
i 1
ˆ j bi y ˆi 且有 cjx ˆ j ( j 1, 2, 则x ˆi (i 1, 2, y , n)是原问题的最优解 , m)是其对偶问题的最优解
问题的导出
A B
1
4
C
1
7
拥有量
工 时 材 料 单件利润
1
1
3
9
2
3
3
max Z 2 x1 3x2 3x3
x1 x2 x3 3 s.t. x1 4 x2 7 x3 9 x 0, x 0, x 0 2 3 1
A
工 时 材 料 单件利润
y1≥0
y2≥0
A
工 时 材 料 单件利润
minW 3 y1 9 y2
y1 y 2 2 y 4y 3 1 2 s.t. y1 7 y 2 3 y1 0, y 2 0
1
B
1
C
1
拥有量
3
1
2
4
3
7
3
9
max Z 2 x1 3x2 3x3
对 称 形 式 的 对 偶 问 题

用对偶单纯形法求对偶问题的最优解

用对偶单纯形法求对偶问题的最优解

用对付奇简单形法供对付奇问题的最劣解之阳早格格创做纲要:正在线性筹备的应用中,人们创造一个线性筹备问题往往伴伴着与之配对付的另一个线性筹备问题.将其中一个称为本问题,另一个称为对付奇问题.对付奇表里深刻掀穿了本问题与对付奇问题的内正在通联.由对付奇问题扩充出去的对付奇解有着要害的经济意思.本文主要介绍了对付奇问题的基础形式以及用对付奇简单形法供解对付奇问题的最劣解.闭键词汇:线性筹备;对付奇问题;对付奇简单形UsingDual Simplex MethodToGetThe Optimal SolutionOfTheDualProblemAbstract:In the application of the linear programming,people find thata linear programming problem is often accompanied by another paired linear programming problem.One is called original problem. Another is calledthe dual problem.Duality theory reveals the internal relations between the dual problem and the original problem.The solution ofthe dual problem is of a great economic significance.In this paper,we mainly discuss the basic form of the dual problem and how to use dual simplex method toget the optimal solution of the dual problem.Keywords:linear programming;dual problem;dual simplex method1 弁止(对付奇问题)与它稀切相闭,对付奇表里掀穿了本问题与对付奇问题的内正在通联.底下将计划线性筹备的对付奇问题的基础形式以及用对付奇简单形法供最劣解.正在一定条件下,对付奇简单形法与本初简单形法相比有着隐著的便宜.2 对付奇问题的形式付称性对付奇问题.对付称形对付奇问题设本线性筹备问题为2.1)则称下列线性筹备问题2.2)(2.1)战(2.2)式为一对付对付称型对付奇问题.本初对付奇问题(2.1)战对付奇问题(2.2)之间的对付应闭系不妨用表2-1表示.表2-1本初拘束 Min WMax Z那个表从横背瞅是本初问题,从纵背瞅使对付奇问题.用矩阵标记表示本初问题(2.1)战对付奇问题(2.2)为2.3)2.4). 2.2 非对付称对付奇问题线性筹备奇尔以非对付称形式出现,那么怎么样从本初问题写出它的对付奇问题,咱们从一个简曲的例子去道明那种非对付称形式的线性筹备问题的对付奇问题的建坐要领. 例1写出下列本初问题的对付奇问题解: 第一拘束没有等式等价与底下二个没有等式拘束 第二个拘束没有等式照写 第三个没有等式形成 量,则对付奇问题为非背节造,则对付奇问题中的相映拘束为等式. 3 对付奇简单形法对付奇问题供解具备要害的意思,有多种要领办理对付奇问题.底下介绍用对付奇简单形法去办理线性筹备的对付奇问题.基:假如筹备问题中的一个基..B 的非基背量.. 非基变量:与非基背量相映的变量喊非基变量,非基.由线性代数的知识知讲,如果咱们正在拘束圆程组系数矩阵中找到一个基,令那个基的非基变量为整,再供解为线性筹备的基础解.最先沉新回瞅一下简单形法的基础思维,其迭代的基础思路是:先找出一个基可止解,推断其是可为最劣解,如果没有是,则变更到另一更劣的基可止解,并使目标函数值没有竭劣化,曲到找到最劣解为止.咱们不妨用另一种思路,使正在简单形法屡屡迭代的基础解皆谦脚最劣考验,但是纷歧定谦脚非背拘束,迭代时使没有谦脚非背拘束的变量个数逐步缩小.当局部基变量皆谦脚非背拘束条件时,便得到了最劣解,那种算法便是对付奇简单形法.果此,简单形法是从一个可止解通过迭代转到另一个可止解,曲到考验数谦脚最劣条件为止.对付奇简单形法是从谦脚对付奇可止性条件出收通过迭代逐步搜索出最劣解.正在迭代历程中终究脆持基解的对付奇可止性,而使没有成止性逐步消得.第一,把所给的线性筹备问题转移为尺度型;于是,已供得最劣解,估计终止.可则转为第四步;最小比值出当前终列,则该列量的止战进基变量列接面处的元素为主元举止简单形迭代,再转进第三步.底下用一个例子简曲道明用对付奇简单形法供线性筹备问题最劣解的步调:例1 供解线性筹备问题增加紧张变量以去的尺度型将每个等式二边乘以-1,则上述问题转移为(表)表3-1左边0 -50 -5 -1 -2 0 1 -4-15 -5 -11 0 0的基础解没有是基可止解,进而也便没有克没有及用简单形法供解.底下咱们用一种新的要领对付奇简单形法供解此题,并通过例题去道明要领步调.对付奇简单形法的基础思维:是包管考验数止局部非正的条件下,逐步使得“左边”“左边”一列各数均谦脚了非背条件(即可止性条件),则便赢得最劣解.领的真止,可按底下的要领决定出基变量战进基变量. 出基变量的决定不妨与任性一个具备背值的基变量(普遍可与最小的)为出基变量..3.1)为-3,-2,-2.它们对付应的考验数分别为-15,-5,-11. 于是2-1举止一次迭代便得表2-2,正在表2-2的(1对付(1)再做简单形变更,得表3-1之(2).由于它的“左边”已列出局部非背,故它便是最劣表.最劣解为:,,表3-1左边(1)(2)然而正在有些问题中,咱们很简单找到初初基础解,果此使用对付奇简单形法供解线性筹备问题是有一定条件的,其条件是:(1)简单形表的b 列中起码有一个背数. (2)简单形表中的基础解皆谦脚最劣性考验.对付奇简单形法与本初简单形法相比有二个隐著的便宜:(1)初初解不妨是没有成止解,当考验数皆非正时,即可举止基的变更,那时没有需要引进人为变量,果此简化了估计.(2)对付于变量个数多于拘束圆程个数的线性筹备问题,采与对付奇简单形法估计量较少.果此对付于变量较少、拘束较多的线性筹备问题,不妨先将其转移为对付奇问题,而后用对付奇简单形法供解.对付变量多于拘束条件的线性筹备问题,用对付奇简单形法举止估计不妨缩小估计的处事量.果此对付变量较少,而拘束条件很多的线性筹备问题,可先将此问题转移为对付奇问题,而后用对付奇简单形法供解.用对付奇简单形法供解线性筹备问题的尺度型,央供初初简单形表考验数止的考验数必须局部非正,若没有克没有及谦脚那一条件,则没有克没有及使用对付奇简单形法供解.对付奇简单形法的限造性主假如,对付大普遍线性筹备问题去道,很易找到一个初初可止基,果此那种要领正在供解线性筹备问题时,很少单独应用.参照文件:[1] 吴祈宗.运筹教教习指挥及习题集[M].北京:板滞工业出版社,2006.[2] 孙君曼,冯巧玲,孙慧君,等.线性筹备中本问题与对付奇问题转移要领探讨[J].郑州:工业教院教报(自然科教版),2001,16(2):44~46.[3] 何脆怯.运筹教前提.北京:浑华大教出版社,2000.[4] 周汉良,范玉妹. 数教筹备及其应用.北京:冶金工业出版社.[5] 陈宝林.最劣化表里与算法(第二版).北京:浑华大教出版社,2005.[6] 张建中,许绍凶. 线性筹备. 北京:科教出版社,1999.[7] 姚恩瑜,何怯,陈仕仄.数教筹备与推拢劣化.杭州:浙江大教出版社,2001.[8] 卢启澄.推拢数教算法与分解.浑华大教出版社,1982.[9] Even.Shimon.Algzithmic Combinatorial.The Macmillan Company, New York, 1973.[10] J.P.Tremblay,R.Manohar.Discrete Mathematical Structures with Applications to Computer Science, 1980.[11] 李建睦.图论.华中工教院出版社, 1982.[12] Pranava R G.Essays on optimization and incentive contracts [C].Massachusetts Institute of Technology,Sloan School of Management: Operations Research Center,2007: 57- 65.[13] Schechter,M.A Subgradient Duality Theorem,J.Math Anal Appl.,61(1977),850-855.[14] Maxims S A.Note on maximizing a submodular set function subject to knap sack constraint[J].Operations Research Letters, 2004, 32 (5) : 41 - 43.[15] Schechter,M.More on Subgradient Duality,J.Math.Anal.Appl.,71(1979),251-262.[16] Nemhauser GL, Wolsey L A, Fisher M L.An analysis of approximations formaximizing submodular set functions II[J].Math.Prog.Study, 1978, 8: 73 - 87.[17] SviridenkoM.A note on maximizing a submodular set function subject to knap sack contraint[J].Operations Research Letters, 2004, 32: 41 - 43.[18] 卢启澄.图论及其应用.北京:浑华大教出版社,1981.[19] 张搞宗.线性筹备(第二版).武汉:武汉大教出版社,2007.[20] 周维,杨鹏飞.运筹教.北京:科教出版社,2008.[21] 宁宣熙.运筹教真用教程(第二版).北京:科教出版社收止处,2009.。

对偶单纯形法

对偶单纯形法
min f c j x j
j1 n
c
j
0
n i 1, 2, , m a ij x j bi j1 x 0, j 1, 2, , n j
在引入松弛变量化为标准型之后,约束等 式两侧同乘-1,能够立即得到检验数全部非正 的原规划基本解,可以直接建立初始对偶单纯 形表进行求解,非常方便。
对偶单纯形法求解线性规划问题过程:
1.建立初始单纯形表,检查b列中的各分量,若都为非 负,且检验数均非正,则已得到最优解,若b列中至 少有一个负分量,检验数非正,则转2; 2.确定换出变量
min
(bi 0)
确定对应的基变量xi为出基变量,转3 3.在单纯形表中检查xi所在行的各系数,若所有 aij≥0,则原问题无可行解,停止;否则,若有aij<0 则选 =min{j/aij┃ aij<0}=k/aik 那么xk为进基变量,转4; 4.以aik为主元,进行迭代运算,得到新的单纯形表; 5.重复上述步骤,直到求得最优解。
(2) 影子价格表明资源增加对总效益产生 的影响。根据推论“设x0和y0分别为原规划(P) 和对偶规划(D)的可行解,当cx0=y0b时,x0、 y0 分别是两个问题的最优解”可知,在最优解 的情况下,有关系
Z w b y b2 y bm y
* * * 1 1 * 2
* m
因此,可以将z*看作是bi,i=1,2,… ,m的函数, 对bi求偏导数可得到
影子价格y2 0的经济意义:原料 的供应量b2增加 个单位 B 1 时,最大利润将不变化 .
影子价格y3 50的经济意义:原料 的供应量b2增加 个单位 C 1 时,最大利润将增加 个单位. 50
(3)设该厂将A, B, C三种原料的价格分别定 y1, y2 , y3 , 为

2.2运筹学 对偶问题的基本性质

2.2运筹学 对偶问题的基本性质

y1*
x
* s1
0
y2*xs2* 0
ym*
x
s
* m
0
若y
* 1
0则x
* s1
0
若x
* s1
0则y
* 1
0
对偶变量不为0 ,原问题相应 约束式是等式
原问题约束为
已知线性规划问题
不等式,相应
min 2 x1 3 x2 5 x3 2 x4 3 x5
对偶变量为0
x1 x2 2 x3 x4 3 x5 4
(2)
2 y1 3 y2 5
(3)
y1 y2 2
(4)
3 y1 y2 3
(5)
y1 , y2 0

y* 1
,
y* 2
的值代入约束条件,得(2),(3),(4)为严格不等式;由互
补松弛性得 x*2 x*3 x4* 0。因 y1,y2 0;原问题的两个约束条
件应取等式,故有
x1* 3 x5* 4
B 1b C B B 1b
与-原原问问问题令题题的Y的的基=检C检解验B验(B差数数-1一对,故比负应较可号对-得-)偶---对- 偶问题YS的2=一CB个B-基1N解-C.N
YS1=0
原 问 题
对偶 问题
变量性质
检验数 基解
变量性质
基变量
非基变量
XB 0
-YS2 非基变量
XN
XS
CN-CBB-1N -CBB-1
机械设备
甲 1
原材料A 4
影子价格
原材料B 0
经济意义பைடு நூலகம் 在其它条件 不变的情况 下, 单位资源变 化所引起的 目标函数的 最优值的变 化。

对偶单纯形法

对偶单纯形法

3x2 2x2
x4 x5
x7 3
6
用单纯形 法求解
x1, x2 , x3 , x4 , x5 0
对偶单纯形法的优点:
1、不需要人工变量;
2、当变量多于约束时,用对偶单 纯形法可减少迭代次数;
3、在灵敏度分析中,有时需要用对 偶单纯形法处理简化。
注意:对偶单纯形法仅限于初始基B对应
X(0)为基本可行 解的X(条0)件为?最优解的 条件?
B-1b≥0 C CBB1 A 0
原问题最优解条件
令Y=CBB-1,代入原问题最优解条件,→YA≥C
min Yb
YA C Y无符号限制
取基本解X1 B1b,0
保证对偶问题的可行性,逐
步改进原问题的可行性,求
x1 x3 2
s.t

x2
2x3
5
x1,x2,x3 0
若取初始基B1 P4,P5
则关于B1的标准型为
max Z 4x1 3x2 8x3
不s可.t 行 x1x2
x3 2x3

x4
2 x5 5
x1,x2,x3 , x4 , x5 0
且由对偶理论知,Y0 CB B 1为(D)的最优解
对偶单纯形法步骤:
1. 列出初始单纯形表,检查b 列的数字若都为非负, 则已得到最优解,停止计算,若b列的数字中至少 有一个负分量,转第二步。
2. 确定出基变量
按 min B1b i B1b i 0 B1b l ,对应的基变量法: 求max Z x6 Mx9

2x2 x3 x4 x5
x9 1

第二章 线性规划习题(附答案)

第二章 线性规划习题(附答案)
x2
x3
x4
x5
RHS
z
1
0
4
0
4
2
X3
0
1/2
1
1/2
0
5/2
X1
1
-1/2
0
-1/6
1/3
5/2
(1)写出原线性规划问题;
(2)写出原问题的对偶问题;
(3)直接由原问题的最终单纯形表写出对偶问题的最优解。
解:(1)由于x4, x5为松弛变量,则从表2-45可知, 。设原问题模型为:
则由初始单纯形表和最终单纯形表之间的关系可得:
(8)已知yi为线性规划的对偶问题的最优解,若yi>0,说明在最优生产计划中第i种资源已经完全耗尽;若yi=0,说明在最优生产计划中的第i种资源一定有剩余。
2-2将下述线性规划问题化成标准形式。
解:(1)令 ,增加松弛变量 ,剩余变量 ,则该问题的标准形式如下所示:
(2)令 , , ,增加松弛变量 ,则该问题的标准形式如下所示:
(1)
(2)
解:(1)原问题的对偶问题为:
(2)原问题的对偶问题为:
2-5运用对偶理论求解以下各问题:
(1)已知线性规划问题:
其最优解为
(a)求k的值;
(b)写出并求出其对偶问题的最优解。
解:原问题的对偶问题为:
设该对偶问题的三个人工变量为 ,由于原问题的最优解中的 ,则根据互补松弛性,所增加的人工变量 ,则:
-2/5
0
x3
-3
6/5
3/5
1
0
-1/5
2
当前基既是原始可行基,又是对偶可行基,因而是最优基。最优解为
x1=0,x2=0,x3=2,maxz,=-6,即min z=6

对偶单纯形法详解课件

对偶单纯形法详解课件

终止准则
算法终止的准则有多种,如达到预设的 最大迭代次数、解的变化小于预设阈值 等。
VS
终止判断
在每次迭代后,需要判断是否满足终止准 则,如果满足则算法终止,否则继续迭代 。
04 对偶单纯形法的优化策略
预处理技术
预处理技术
通过预处理,可以消除原问题中的冗 余约束,简化问题规模,提高求解效 率。
线性规划问题的转化
对偶单纯形法详解课 件
目录
CONTENTS
• 对偶单纯形法简介 • 对偶单纯形法的基本原理 • 对偶单纯形法的实现步骤 • 对偶单纯形法的优化策略 • 对偶单纯形法的案例分析 • 对偶单纯形法的展望与未来发展方向
01 对偶单纯形法简介
对偶问题的定义
对偶问题是指原问题的一个等价形式,其目标函数和约束条 件与原问题互为对偶。在优化问题中,对偶问题通常用于求 解原问题的最优解。
对偶单纯形法的应用场景
对偶单纯形法广泛应用于各种优化问题,如线性规划、整数规划、二次规划等。 它适用于求解大规模优化问题,并且具有较高的计算效率和精度。
在实际应用中,对偶单纯形法可以与其他优化算法结合使用,如梯度下降法、共 轭梯度法等,以提高求解效率和精度。同时,对偶单纯形法也可以用于解决一些 复杂的组合优化问题,如旅行商问题、背包问题等。
对偶问题的形式取决于原问题的类型和约束条件。例如,线 性规划的对偶问题就是将原问题的目标函数和约束条件进行 线性变换,得到一个新的优化问题。
对偶单纯形法的概念
对偶单纯形法是一种求解线性规划的方法,它利用对偶问 题的性质,通过迭代和交换变量的方式,逐步逼近最优解 。
在对偶单纯形法中,每次迭代都包括两个步骤:一是根据 对偶问题的最优解更新原问题的解;二是根据原问题的最 优解更新对偶问题的解。这两个步骤交替进行,直到达到 最优解或满足一定的停止准则。

对偶问题

对偶问题
明该资源在生产过程中没有做出贡献,只能理解为第i种 资源有剩余时再增加该资源量不能给企业带来利润或产值 的增加。 4、影子价格是企业生产过程中资源的一种隐含的潜在价值, 表明单位资源的贡献,与市场价格是不同的两个概念。 5、影子价格是一个变量。
对偶单纯形法 思路:(max型)
单纯形法:找基B,满足B-1b0,但 C - CBB-1 A不 全 0,(即检验数)。
XB XB B
CB
XN XS b N Eb
CN 0
XB XB E
CB
XN XS B-1N B-1
CN 0
b B-1b
XB XB E
λ0
XN
XS
B-1N
B-1
CN-CB B-1N -CBB-1
b B-1b -CBB-1b
令Y=CBB-1
CN-CB B-1N≤0 -CBB-1 ≤0
YA ≥C
Y≥0
令Y=CBB-1两边右乘b,则Yb=CBB-1b=Z,有因Y≥0无上界,从 而Yb只存在最小值,得到另一个线性规划问题
x5 1 0 4 0 1 4 λj 6 -2 1 0 0 x1 1 -1/2 1 1/2 0 1 b x5 0 [1/2] 3 -1/2 1 3 λj 0 1 -5 -3 0 x1 1 0 4 0 1 4 c x2 0 1 6 -1 2 6 λj 0 0 -11 -2 -2
一个问题max
有最优解 无最优 无最优解
对(*)求偏导:
Z b
= CBB-1 = y
对偶解
y:b 的单位改变量所引起的目标函数改变量。
yi :反映bi 的边际效益(边际成本)
经济解释: b1
W=yb=(y1 … ym )

= b1 y1 + b2 y2 + … + bm ym

对偶单纯形法(经典运筹学)

对偶单纯形法(经典运筹学)

解:问题化为标准型 max Z 2 x1 x 2 5 x1 x 2 x3 2 x 2 x3 x 4 5 s.t 6x xx 9 xx 2 2 6 x3 3 5 5 9 44 x1 , x 2 , x3,x 4,x5 0
X1 X2 X3 X4 X 5
2 检 0 1 -1 1 2 -4 0 -2 1 1 -6 0 0 1 0 0 0 0 1
Z Z-10
X1 1 X4 0
5 5 -9
X5 0
4
14 13 X1 X 2 X 3

X1 X4
0 1 0 0 0 0 0 1
X4
X5
-1/4 Z-31/4 1/4 1/2 11/4 1/2
所在行的基变量出基 则取br
4、以ari0 为主元素进行换基迭代 ,得一新的单纯形表, 转2
例:用对偶单纯形法 求解下列问题 max Z 2 x1 x 2 x1 x 2 x3 5 2x x 5 11 9 2 3 最优解 X ( ,) s.t 4 4 4 x 6 x 9 2 3 31 x1 , x 2 ,Z x3 0 最优值
-1/2 0 -1/2 0 -2 3/2 1 0
X2
-1/4 9/4
11 9 1 最优解 X ( ,, 0, , 0 ) 4 4 2 初始基 B (P ) 1,P 4,P 5 31 最优值 Z 不是典则形式 4
注意:对偶单纯形法仅限于初始基B对应 可用对偶单 的典则形式中目标函数的系数(检 纯形法 验数)均≤0的情形。 B的典则形式
对偶单纯形法是求解对偶规划的一种方法 × 对偶单纯形法:利用对偶理论得到的一个 求解线性规划问题的方法
单纯形法(原始单纯形法)的两个条件:

用对偶单纯形法求解线性规划问题

用对偶单纯形法求解线性规划问题

例4-7 用对偶单纯形法求解线性规划问题Min z =5x 1+3x 2X 1 - 6 x 2 A 4在表4-17中,b=-16<0,而yA 0,故该问题无可行解. 注意:对偶单纯形法仍是求解原问题 ,它是适用于当原问题无可行基 ,且所有检验数均为负的情况.若原问题既无可行基,而检验数中又有小于0的情况.只能用人工变量法求解.在计算机求解时,只有人工变量法,没有对偶单纯形法.3.对偶问题的最优解由对偶理论可知,在原问题和对偶问题的最优解之间存在着密切的关系 从求解原问题的最优单纯形表中,得到对偶问题的最优解.(1)设原问题(P)为Min z= exs.t.-2 X i + 3x 2 A 6A 0 (j=1,2 )解:将问题转化为 XjMax z = -5X 1 -3 x 2 s.t. 2x i - 3xX 3 = -6-3 x i + 6 X2+ x 4A -4Xj其中,X 3 , X 4 ,3,4 )A 0 (j=1,2 为松弛变量,可以作为初始基变量,单纯形表见表4-17.,可以根据这些关系,Xj > 0 (j=1,2 , 3,4 )则标准型 (LP) 为AX b s.t.X0Max z=CXAX b s.t.X0其对偶线性规划(D )为Max z=b T Y AX b s.t.X0用对偶单纯形法求解 时,有 Pj=-e i , c j =0 (LP ),得最优基B 和最优单纯形表 T ( B )。

对于(LP )来说,当j=n+iT (B )中,对于检验数,有(b n+1,b n+2・・・b n+m) = (C n+i , c n+2…,c n+m ) -C B B -1(Pn +1,Pn+2 …,Pn+m ) =- C B B -1(-I)于是,Y*= (b n+1,b n+2…b n+m T 。

可见,在(LP )的最优单纯形表中,剩余变 量对应的检验数就是对偶问题的最优解。

同时,在最优单纯形表 T ( B )中,由于剩余变量对应的系数 所以从而,在最优单纯形表b n +2 …bB 1 = ( -y n+1 , -y n+2 …-y n+m )例 4-8 求下列线性规划问题的对偶问题的最优解。

对偶单纯形法(经典运筹学)

对偶单纯形法(经典运筹学)
基本解 X 0, 0, 3 , 6, 3
X1 X2 X3 X4 X5 检 X3 -2 -1 0 -3 -1 1 0 0 0 0 Z -3
X4
X5
-4 -3 0
1 2 0
1
0
0
1
-6
3
不 可 行
即max Z 2 x1 x2
3 3x1 x 2 x3 4 x 3x x4 6 1 2 s.t x5 3 x1 2 x 2 x1 , x 2 , x3 , x 4 , x5 0
-1/3 0 -1/3 0 2/3 1
X 3 X4 X5 0 -3/5 -2/5 Z+12/5 1 -1 -1 0
X2 0 X1 1
1 0
0 0
1/5 4/5 6/5 -2/5 -3/5 3/5
3 6 最优解X ( ,, 0, 0, 0 ) 5 5 最优值Z 12 5
则取xi0 为入基变量
1
1
令X N 0 得X B B b 0 得基本可行解 X 1 B b,0
1
1

1 、若所有的检验数 CN B 1 N 0 , 则X 1为最优解
2、检验数 C N C B B 1 N中存在一个分量 0, 且该分量对应的列 向量中所有的分量 0, 则目标函数值在可行解 域内无上界
1、确定出基变量: 设br =min{bi | bi <0} 则取br所在行的基变量 为出基变量 即取X4为出基变量 2、确定入基变量: 原则: 保持检验行系数≤0
i i0 设 min | a ri 0 a ri a ri 0
1 21 3
X1 检 -2/3 X3 -5/3 X2 4/3 X5 -5/3 X1 检 0 X3 0 X3 X4 0 -1/3 1 0 0

用对偶单纯形法求对偶问题的最优解

用对偶单纯形法求对偶问题的最优解

用对偶单纯形法求对偶问题的最优解(共7页)-本页仅作为预览文档封面,使用时请删除本页-用对偶单纯形法求对偶问题的最优解摘要:在线性规划的应用中,人们发现一个线性规划问题往往伴随着与之配对的另一个线性规划问题.将其中一个称为原问题,另一个称为对偶问题.对偶理论深刻揭示了原问题与对偶问题的内在联系.由对偶问题引申出来的对偶解有着重要的经济意义.本文主要介绍了对偶问题的基本形式以及用对偶单纯形法求解对偶问题的最优解.关键词:线性规划;对偶问题;对偶单纯形Using Dual Simplex Method To Get The Optimal Solution Of TheDual ProblemAbstract:In the application of the linear programming, people find that a linear programming problem is often accompanied by another paired linear programming problem. One is called original problem. Another is called the dual problem. Duality theory reveals the internal relationsbetween the dual problem and the original problem. The solution of the dual problem is of a great economic significance. In this paper,we mainly discuss the basic form of the dual problem and how to use dual simplex method to get the optimal solution of the dual problem. Key words: linear programming;dual problem;dual simplex method1 引言首先我们先引出什么是线性规划中的对偶问题.任何一个求极大化的线性规划问题都有一个求极小化的线性规划问题与之对应,反之亦然,如果我们把其中一个叫原问题,则另一个就叫做它的对偶问题,并称这一对互相联系的两个问题为一对对偶问题.每个线性规划都有另一个线性规划(对偶问题)与它密切相关,对偶理论揭示了原问题与对偶问题的内在联系.下面将讨论线性规划的对偶问题的基本形式以及用对偶单纯形法求最优解.在一定条件下,对偶单纯形法与原始单纯形法相比有着显著的优点.2 对偶问题的形式对偶问题的形式主要包括对称形对偶问题[]3和非对称性对偶问题.对称形对偶问题设原线性规划问题为Max1122...n nZ c x c x c x =+++()11112211211222221122...............0.1,2,...,n n n n m m mn n nj a x a x a x b a x a x a x b a x a x a x bx j n +++≤⎧⎪+++≤⎪⎪⎨⎪+++≤⎪≥=⎪⎩()则称下列线性规划问题 Max 1122...m m W b y b y b y =+++()11112211211222221122...............0.1,2,...,n n n n m m mn n nj a y a y a y c a y a y a y c a y a y a y cy j m +++≤⎧⎪+++≤⎪⎪⎨⎪+++≤⎪≥=⎪⎩()为其对偶问题,其中(1,2,...,)i y i m =称其为对偶变量,并称()和()式为一对对称型对偶问题.原始对偶问题()和对偶问题()之间的对应关系可以用表2-1表示.这个表从横向看是原始问题,从纵向看使对偶问题.用矩阵符号表示原始问题()和对偶问题()为 CX Z =max原问题 ⎩⎨⎧≥≤0X b AX ()Yb W =min对偶问题 ⎩⎨⎧≥≤0Y C YA () 其中()12,,...,m Y y y y =是一个行向量. 非对称对偶问题线性规划有时以非对称形式出现,那么如何从原始问题写出它的对偶问题,我们从一个具体的例子来说明这种非对称形式的线性规划问题的对偶问题的建立方法.例1 写出下列原始问题的对偶问题43214765max x x x x Z ++-=⎪⎪⎩⎪⎪⎨⎧=≥-≥++--≤-+--=--+)4,3,2,1(032417281473672432143214321j x x x x x x x x x x x x x j解: 第一约束不等式等价与下面两个不等式约束724321-≤--+x x x x 724321≤++--x x x x 第二个约束不等式照写147364321≤-+-x x x x 第三个不等式变成32417284321≤--+x x x x以 121123,,,y y y y 分别表示这四个不等式约束对应的对偶变量,则对偶问题为 32211131477min y y y y W +++-= ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥--+-≥-++--≥+--≥++-0,,,427746173225286322111322111322111322111322111y y y y y y y y y y y y y y y y y y y y令 12111y y y =-,则上式的对偶问题变为:3213147min y y y W ++-=12312312312323162852317647724,0,y y y y y y y y y y y y y y y ++≥⎧⎪-+≥-⎪⎪-+-≥⎨⎪---≥⎪≥⎪⎩无符号限制一般可以证明,若原问题中的某个变量无非负限制,则对偶问题中的相应约束为等式. 3 对偶单纯形法对偶问题求解具有重要的意义,有多种方法解决对偶问题.下面介绍用对偶单纯形法来解决线性规划的对偶问题.先介绍以下几个线性规划的基本概念[]6:基: 已知A 是约束条件的m n ⨯系数矩阵,其秩为m .若B 是A 中m m ⨯阶非奇异子矩阵(即可逆矩阵),则称B 是线性规划问题中的一个基.基向量:基B 中的一列即称为一个基向量.基B 中共有m 个基向量. 非基向量:在A 中除了基B 之外的一列则称之为基B 的非基向量. 基变量:与基向量相应的变量叫基变量,基变量有m 个.非基变量:与非基向量相应的变量叫非基变量,非基变量有n m -个. 由线性代数的知识知道,如果我们在约束方程组系数矩阵中找到一个基,令这个基的非基变量为零,再求解这个m 元线性方程组就可得到唯一的解了,这个解我们称之为线性规划的基本解.首先重新回顾一下单纯形法的基本思想,其迭代的基本思路是:先找出一个基可行解,判断其是否为最优解,如果不是,则转换到另一更优的基可行解,并使目标函数值不断优化,直到找到最优解为止.我们可以用另一种思路,使在单纯形法每次迭代的基本解都满足最优检验,但不一定满足非负约束,迭代时使不满足非负约束的变量个数逐步减少.当全部基变量都满足非负约束条件时,就得到了最优解,这种算法就是对偶单纯形法.因此,单纯形法是从一个可行解通过迭代转到另一个可行解,直到检验数满足最优条件为止.对偶单纯形法是从满足对偶可行性条件出发通过迭代逐步搜索出最优解.在迭代过程中始终保持基解的对偶可行性,而使不可行性逐步消失.现把对偶单纯形法的基本步骤总结如下[3]:第一,把所给的线性规划问题转化为标准型;第二,找出一个初始正则基0B ,要求对应的单纯形表中的全部检验数0j σ≤,但“右边”列中允许有负数;第三,若“右边”列中各数均非负,则0B 已是最优基,于是,已求得最优解,计算终止.否则转为第四步;第四,换基:“右边”列中取值最小(即负的最多)的数所对应的变量为出基变量.计算最小比值θ.最小比值出现在末列,则该列所对应的变量即为进基变量,换基后得新基1B ,以出基变量的行和进基变量列交点处的元素为主元进行单纯形迭代,再转入第三步.下面用一个例子具体说明用对偶单纯形法求线性规划问题最优解的步骤: 例1 求解线性规划问题 min 12315511W y y y =++;1231231233225524,,0y y y y y y y y y ++≥⎧⎪++≥⎨⎪≥⎩添加松弛变量以后的标准型 min 12315511W y y y =++12341235123453225524,,,,0y y y y y y y y y y y y y ++-=⎧⎪++-=⎨⎪≥⎩ 将每个等式两边乘以-1,则上述问题转化为 min 12315511W y y y =++;12341235123453225524,,,,0y y y y y y y y y y y y y ---+=-⎧⎪---+=-⎨⎪≥⎩如果取()045,B Y y y =作为初试基变量,有如下初试单纯形表(表)由此可见,两个基变量45,y y 均取负值,所以,0B 所确定的基本解不是基可行解,从而也就不能用单纯形法求解.下面我们用一种新的方法对偶单纯形法求解此题,并通过例题来说明方法步骤.对偶单纯形法的基本思想:是保证检验数行全部非正的条件下,逐步使得“右边”一列各数变成非负.一旦“右边”一列各数均满足了非负条件(即可行性条件),则就获得最优解.现在,0B 不是可行基(称为正则基),为保证上述方法的实现,可按下面的方法确定出基变量和进基变量.出基变量的确定 可以取任意一个具有负值的基变量(一般可取最小的)为出基变量.在上例中,两个基变量()45,y y 都取负值,且45y =-最小,故 4y 为出基变量.现在考虑出基变量所对应的负所有元素 0ij a <,对每个这样的元素作比值jija σ',令 30min 0j ij j n ij ija a a σσθ≤≤⎧⎫⎪⎪'=≤=⎨⎬''⎪⎪⎩⎭ () 则 3x 为进基变量.在表2-4中,基变量 4y 所在的行有三个ij a '取负值,其值分别为-3,-2,-2.它们对应的检验数分别为-15,-5,-11. 于是212155115min ,,3222a σθ---⎧⎫===⎨⎬---⎩⎭ 由此可知, 2y 为进基变量.主元素为 2ija '=-,对表2-1进行一次迭代便得表2-2,在表2-2的(1)中,基变量 3y 所取之值 2302b '=-<,故 3y 为出基变量.又21215561522min ,,711722a σθ⎧⎫--⎪⎪-===⎨⎬'-⎪⎪--⎩⎭故 3y 是进基变量;,主元为 2172a '=-.对(1)再作单纯形变换,得表3-1之(2).由于它的“右边”已列出全部非负,故它就是最优表.最优解为:137y '=,2137y '=, 3450y y y '''===;最优值 1107w '=.然而在有些问题中,我们很容易找到初始基本解,因此使用对偶单纯形法求解线性规划问题是有一定条件的,其条件是:(1) 单纯形表的b列中至少有一个负数.(2) 单纯形表中的基本解都满足最优性检验.对偶单纯形法与原始单纯形法相比有两个显著的优点:(1) 初始解可以是不可行解,当检验数都非正时,即可进行基的变换,这时不需要引入人工变量,因此简化了计算.(2) 对于变量个数多于约束方程个数的线性规划问题,采用对偶单纯形法计算量较少.因此对于变量较少、约束较多的线性规划问题,可以先将其转化为对偶问题,然后用对偶单纯形法求解.对变量多于约束条件的线性规划问题,用对偶单纯形法进行计算可以减少计算的工作量.因此对变量较少,而约束条件很多的线性规划问题,可先将此问题转化为对偶问题,然后用对偶单纯形法求解.用对偶单纯形法求解线性规划问题的标准型,要求初始单纯形表检验数行的检验数必须全部非正,若不能满足这一条件,则不能运用对偶单纯形法求解.对偶单纯形法的局限性主要是,对大多数线性规划问题来说,很难找到一个初始可行基,因此这种方法在求解线性规划问题时,很少单独应用.参考文献:[1] 吴祈宗.运筹学学习指导及习题集[M] .北京:机械工业出版社,2006.[2] 孙君曼,冯巧玲,孙慧君,等.线性规划中原问题与对偶问题转化方法探讨[J].郑州:工业学院学报(自然科学版),2001,16(2):44~46.[3] 何坚勇.运筹学基础.北京:清华大学出版社,2000.[4] 周汉良,范玉妹. 数学规划及其应用.北京:冶金工业出版社.[5] 陈宝林.最优化理论与算法(第二版) .北京:清华大学出版社,2005.[6] 张建中,许绍吉. 线性规划. 北京:科学出版社,1999.[7] 姚恩瑜,何勇,陈仕平.数学规划与组合优化.杭州:浙江大学出版社,2001.[8] 卢开澄.组合数学算法与分析.清华大学出版社, 1982.[9] Even. Shimon. Algzithmic Combinatorial. The Macmillan Company, New York, 1973.[10] J.P.Tremblay, R.Manohar.Discrete Mathematical Structures with Applications to Computer Science, 1980.[11] 李修睦.图论.华中工学院出版社, 1982.[12] Pranava R G.Essays on optimization and incentive contracts[C].Massachusetts Institute of Technology, Sloan School of Management: Operations Research Center, 2007: 57- 65.[13] Schechter,M.A Subgradient Duality Theorem,J.Math Anal Appl.,61(1977),850-855.[14] Maxims S A. Note on maximizing a submodular set function subject to knap sack constraint[J]. Operations Research Letters,2004, 32 (5) : 41 - 43.[15] Schechter,M.More on Subgradient Duality,J.,71(1979),251-262.[16] Nemhauser GL, Wolsey L A, Fisher M L.An analysis of approximations formaximizing submodular set functionsII[J].Math.Prog.Study, 1978, 8: 73 - 87.[17] SviridenkoM.A note on maximizing a submodular set function subject to knap sack contraint[J].Operations Research Letters,2004, 32: 41 - 43.[18] 卢开澄.图论及其应用.北京:清华大学出版社,1981.[19] 张干宗.线性规划(第二版).武汉:武汉大学出版社,2007.[20] 周维,杨鹏飞.运筹学.北京:科学出版社,2008.[21] 宁宣熙.运筹学实用教程(第二版).北京:科学出版社发行处,2009.。

对偶单纯形法详解

对偶单纯形法详解

将两个等式约束两边分别乘以-1,得
MaxZ 2 x1 3 x2 4 x3 x1 2 x2 x3 x4 3 s.t. 2 x1 x2 3 x3 x5 4 x ,x ,x ,x ,x 0 1 2 3 4 5
以此形式进行列表求解,满足对偶单纯形 法的基本条件,具体如下:
→迭代→另一个可行基(对应另一个基 本可行解),直至所有检验数≤0为止。
所有检验数≤0意味着
CN CB B N 0 YA C
1

说明原始问题的最优基也是对偶问题的可行 基。换言之,当原始问题的基B既是原始可 行基又是对偶可行基时,B成为最优基。 定理2-5 B是线性规划的最优基的充要条件 是,B是可行基,同时也是对偶可行基。
2.3 对偶单纯形法
一、什么是对偶单纯形法? 对偶单纯形法是应用对偶原理求解原始 线性规划的一种方法——在原始问题的单 纯形表格上进行对偶处理。
注意:不是解对偶问题的单纯形法!
二、对偶单纯形法的基本思想 1、对“单纯形法”求解过程认识的提升— — 从更高的层次理解单纯形法 初始可行基(对应一个初始基本可行解)
3、举例——用对偶单纯形法求解LP:
MinW 2 x1 3 x2 4 x3 x1 2 x2 x3 3 s.t. 2 x1 x2 3 x3 4 x ,x ,x 0 1 2 3
化为标准型 →
MaxZ 2 x1 3 x2 4 x3 x1 2 x2 x3 x4 3 s.t. 2 x1 x2 3 x3 x5 4 x ,x ,x ,x ,x 0 1 2 3 4 5
cj xj CB
-2 x1
-3 x2
-4 x3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用对偶单纯形法求对偶问题的最优解摘要:在线性规划的应用中,人们发现一个线性规划问题往往伴随着与之配对的另一个线性规划问题.将其中一个称为原问题,另一个称为对偶问题.对偶理论深刻揭示了原问题与对偶问题的内在联系.由对偶问题引申出来的对偶解有着重要的经济意义.本文主要介绍了对偶问题的基本形式以及用对偶单纯形法求解对偶问题的最优解.关键词:线性规划;对偶问题;对偶单纯形Using Dual Simplex Method To Get The Optimal Solution OfThe Dual ProblemAbstract:In the application of the linear programming,people find that a linear programming problem is often accompanied by another paired linear programming problem.One is called original problem. Another is called the dual problem. Duality theory reveals the internal relations between the dual problem and the original problem. The solution of the dual problem is of a great economic significance. In this paper,we mainly discuss the basic form of the dual problem and how to use dual simplex method to get the optimal solution of the dual problem.Key words: linear programming;dual problem;dual simplex method1 引言首先我们先引出什么是线性规划中的对偶问题.任何一个求极大化的线性规划问题都有一个求极小化的线性规划问题与之对应,反之亦然,如果我们把其中一个叫原问题,则另一个就叫做它的对偶问题,并称这一对互相联系的两个问题为一对对偶问题.每个线性规划都有另一个线性规划(对偶问题)与它密切相关,对偶理论揭示了原问题与对偶问题的内在联系.下面将讨论线性规划的对偶问题的基本形式以及用对偶单纯形法求最优解.在一定条件下,对偶单纯形法与原始单纯形法相比有着显著的优点.2 对偶问题的形式对偶问题的形式主要包括对称形对偶问题[]3和非对称性对偶问题.2.1对称形对偶问题设原线性规划问题为Max1122...n nZ c x c x c x =+++()11112211211222221122...............0.1,2,...,n n n n m m mn n nj a x a x a x b a x a x a x b a x a x a x bx j n +++≤⎧⎪+++≤⎪⎪⎨⎪+++≤⎪≥=⎪⎩(2.1)则称下列线性规划问题Max 1122...m m W b y b y b y =+++()11112211211222221122...............0.1,2,...,n n n n m m mn n nj a y a y a y c a y a y a y c a y a y a y cy j m +++≤⎧⎪+++≤⎪⎪⎨⎪+++≤⎪≥=⎪⎩(2.2)为其对偶问题,其中(1,2,...,)i y i m =称其为对偶变量,并称(2.1)和(2.2)式为一对对称型对偶问题.原始对偶问题(2.1)和对偶问题(2.2)之间的对应关系可以用表2-1表示.这个表从横向看是原始问题,从纵向看使对偶问题.用矩阵符号表示原始问题(2.1)和对偶问题(2.2)为CX Z =max原问题 ⎩⎨⎧≥≤0X b AX (2.3)Yb W =min对偶问题 ⎩⎨⎧≥≤0Y C YA (2.4)其中()12,,...,m Y y y y =是一个行向量.2.2 非对称对偶问题线性规划有时以非对称形式出现,那么如何从原始问题写出它的对偶问题,我们从一个具体的例子来说明这种非对称形式的线性规划问题的对偶问题的建立方法. 例1 写出下列原始问题的对偶问题43214765m ax x x x x Z ++-=⎪⎪⎩⎪⎪⎨⎧=≥-≥++--≤-+--=--+)4,3,2,1(032417281473672432143214321j x x x x x x x x x x x x x j解: 第一约束不等式等价与下面两个不等式约束724321-≤--+x x x x 724321≤++--x x x x第二个约束不等式照写147364321≤-+-x x x x第三个不等式变成32417284321≤--+x x x x以 121123,,,y y y y 分别表示这四个不等式约束对应的对偶变量,则对偶问题为 32211131477min y y y y W +++-=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥--+-≥-++--≥+--≥++-0,,,427746173225286322111322111322111322111322111y y y y y y y y y y y y y y y y y y y y令 12111y y y =-,则上式的对偶问题变为:3213147m in y y y W ++-=12312312312323162852317647724,0,y y y y y y y y y y y y y y y ++≥⎧⎪-+≥-⎪⎪-+-≥⎨⎪---≥⎪≥⎪⎩无符号限制一般可以证明,若原问题中的某个变量无非负限制,则对偶问题中的相应约束为等式.3 对偶单纯形法对偶问题求解具有重要的意义,有多种方法解决对偶问题.下面介绍用对偶单纯形法来解决线性规划的对偶问题.先介绍以下几个线性规划的基本概念[]6:基: 已知A 是约束条件的m n ⨯系数矩阵,其秩为m .若B 是A 中m m ⨯阶非奇异子矩阵(即可逆矩阵),则称B 是线性规划问题中的一个基.基向量:基B 中的一列即称为一个基向量.基B 中共有m 个基向量. 非基向量:在A 中除了基B 之外的一列则称之为基B 的非基向量. 基变量:与基向量相应的变量叫基变量,基变量有m 个.非基变量:与非基向量相应的变量叫非基变量,非基变量有n m -个. 由线性代数的知识知道,如果我们在约束方程组系数矩阵中找到一个基,令这个基的非基变量为零,再求解这个m 元线性方程组就可得到唯一的解了,这个解我们称之为线性规划的基本解.首先重新回顾一下单纯形法的基本思想,其迭代的基本思路是:先找出一个基可行解,判断其是否为最优解,如果不是,则转换到另一更优的基可行解,并使目标函数值不断优化,直到找到最优解为止.我们可以用另一种思路,使在单纯形法每次迭代的基本解都满足最优检验,但不一定满足非负约束,迭代时使不满足非负约束的变量个数逐步减少.当全部基变量都满足非负约束条件时,就得到了最优解,这种算法就是对偶单纯形法. 因此,单纯形法是从一个可行解通过迭代转到另一个可行解,直到检验数满足最优条件为止.对偶单纯形法是从满足对偶可行性条件出发通过迭代逐步搜索出最优解.在迭代过程中始终保持基解的对偶可行性,而使不可行性逐步消失.现把对偶单纯形法的基本步骤总结如下[3]:第一,把所给的线性规划问题转化为标准型;第二,找出一个初始正则基0B ,要求对应的单纯形表中的全部检验数 0j σ≤,但“右边”列中允许有负数;第三,若“右边”列中各数均非负,则0B 已是最优基,于是,已求得最优解,计算终止.否则转为第四步;第四,换基:“右边”列中取值最小(即负的最多)的数所对应的变量为出基变量.计算最小比值θ.最小比值出现在末列,则该列所对应的变量即为进基变量,换基后得新基1B ,以出基变量的行和进基变量列交点处的元素为主元进行单纯形迭代,再转入第三步. 下面用一个例子具体说明用对偶单纯形法求线性规划问题最优解的步骤: 例1 求解线性规划问题 min 12315511W y y y =++;1231231233225524,,0y y y y y y y y y ++≥⎧⎪++≥⎨⎪≥⎩添加松弛变量以后的标准型 min 12315511W y y y =++12341235123453225524,,,,0y y y y y y y y y y y y y ++-=⎧⎪++-=⎨⎪≥⎩ 将每个等式两边乘以-1,则上述问题转化为 min 12315511W y y y =++;12341235123453225524,,,,0y y y y y y y y y y y y y ---+=-⎧⎪---+=-⎨⎪≥⎩如果取()045,B Y y y =作为初试基变量,有如下初试单纯形表(表)表3-1由此可见,两个基变量45,y y 均取负值,所以,0B 所确定的基本解不是基可行解,从而也就不能用单纯形法求解.下面我们用一种新的方法对偶单纯形法求解此题,并通过例题来说明方法步骤.对偶单纯形法的基本思想:是保证检验数行全部非正的条件下,逐步使得“右边”一列各数变成非负.一旦“右边”一列各数均满足了非负条件(即可行性条件),则就获得最优解.现在,0B 不是可行基(称为正则基),为保证上述方法的实现,可按下面的方法确定出基变量和进基变量.出基变量的确定 可以取任意一个具有负值的基变量(一般可取最小的)为出基变量.在上例中,两个基变量()45,y y 都取负值,且45y =-最小,故 4y 为出基变量.现在考虑出基变量所对应的负所有元素 0ij a <,对每个这样的元素作比值jija σ',令30min 0j ijj n ij ija a a σσθ≤≤⎧⎫⎪⎪'=≤=⎨⎬''⎪⎪⎩⎭ (3.1) 则 3x 为进基变量.在表2-4中,基变量 4y 所在的行有三个ija '取负值,其值分别为-3,-2,-2.它们对应的检验数分别为-15,-5,-11. 于是212155115min ,,3222a σθ---⎧⎫===⎨⎬---⎩⎭ 由此可知, 2y 为进基变量.主元素为 2ija '=-,对表2-1进行一次迭代便得表2-2,在表2-2的(1)中,基变量 3y 所取之值 2302b '=-<,故 3y 为出基变量.又 21215561522min ,,711722a σθ⎧⎫--⎪⎪-===⎨⎬'-⎪⎪--⎩⎭故 3y 是进基变量;,主元为 2172a '=-.对(1)再作单纯形变换,得表3-1之(2).由于它的“右边”已列出全部非负,故它就是最优表.最优解为: 137y '=,2137y '=, 3450y y y '''===;最优值 1107w '=.然而在有些问题中,我们很容易找到初始基本解,因此使用对偶单纯形法求解线性规划问题是有一定条件的,其条件是: (1) 单纯形表的b 列中至少有一个负数. (2) 单纯形表中的基本解都满足最优性检验.对偶单纯形法与原始单纯形法相比有两个显著的优点:(1) 初始解可以是不可行解,当检验数都非正时,即可进行基的变换,这时不需要引入人工变量,因此简化了计算.(2) 对于变量个数多于约束方程个数的线性规划问题,采用对偶单纯形法计算量较少.因此对于变量较少、约束较多的线性规划问题,可以先将其转化为对偶问题,然后用对偶单纯形法求解.对变量多于约束条件的线性规划问题,用对偶单纯形法进行计算可以减少计算的工作量.因此对变量较少,而约束条件很多的线性规划问题,可先将此问题转化为对偶问题,然后用对偶单纯形法求解.用对偶单纯形法求解线性规划问题的标准型,要求初始单纯形表检验数行的检验数必须全部非正,若不能满足这一条件,则不能运用对偶单纯形法求解.对偶单纯形法的局限性主要是,对大多数线性规划问题来说,很难找到一个初始可行基,因此这种方法在求解线性规划问题时,很少单独应用.参考文献:[1] 吴祈宗.运筹学学习指导及习题集[M] .北京:机械工业出版社,2006.[2] 孙君曼,冯巧玲,孙慧君,等.线性规划中原问题与对偶问题转化方法探讨[J].郑州: 工业学院学报(自然科学版),2001,16(2):44~46.[3] 何坚勇.运筹学基础.北京:清华大学出版社,2000.[4] 周汉良,范玉妹. 数学规划及其应用.北京:冶金工业出版社.[5] 陈宝林.最优化理论与算法(第二版) .北京:清华大学出版社,2005.[6] 张建中,许绍吉. 线性规划. 北京:科学出版社,1999.[7] 姚恩瑜,何勇,陈仕平.数学规划与组合优化.杭州:浙江大学出版社,2001.[8] 卢开澄.组合数学算法与分析.清华大学出版社,1982.[9] Even.Shimon.Algzithmic Combinatorial.The Macmillan Company,New York,1973.[10] J.P.Tremblay,R.Manohar.Discrete Mathematical Structures with Applications to Computer Science,1980.[11] 李修睦.图论.华中工学院出版社,1982.[12] Pranava R G.Essays on optimization and incentive contracts [C].Massachusetts Institute of Technology,Sloan School of Management: Operations Research Center,2007: 57- 65.[13] Schechter,M.A Subgradient Duality Theorem,J.Math Anal Appl.,61(1977),850-855.[14] Maxims S A.Note on maximizing a submodular set function subject to knap sack constraint[J].Operations Research Letters,2004,32 (5) : 41 - 43.[15] Schechter,M.More on Subgradient Duality,J.Math.Anal.Appl.,71(1979),251-262.[16] Nemhauser GL,Wolsey L A,Fisher M L.An analysis of approximations formaximizing submodular set functions II[J].Math.Prog.Study,1978,8: 73 - 87.[17] SviridenkoM.A note on maximizing a submodular set function subject to knap sack contraint[J].Operations Research Letters,2004,32: 41 - 43.[18] 卢开澄.图论及其应用.北京:清华大学出版社,1981.[19] 张干宗.线性规划(第二版).武汉:武汉大学出版社,2007.[20] 周维,杨鹏飞.运筹学.北京:科学出版社,2008.[21] 宁宣熙.运筹学实用教程(第二版).北京:科学出版社发行处,2009.。

相关文档
最新文档