第十二章 自蔓延高温合成技术

合集下载

自蔓延高温合成技术与应用

自蔓延高温合成技术与应用

自蔓延高温合成技术与应用1 SHS原理及特点自蔓延高温合成(Self-propagation High Temperature Synthesis),简称SHS. 它是基于放热化学反应的基本原理,利用外部能量诱发局部化学反应(点燃),形成化学反应前沿(燃烧波),此后, 化学反应在自身放热的支持下继续进行, 表现为燃烧波蔓延至整个体系, 最后合成所需的材料(粉体或固结体)[ 1 ]。

其过程如图1所示。

图1 SHS反应过程示意图SHS 技术同其它常规工艺方法相比, 具有设备、工艺简单; 节省时间, 能源利用充分; 产量高; 产物纯度高, 反应转化率接近100%; 在燃烧过程中, 材料经历了很大的温度变化,非常高的加热和冷却速率, 使生成物中缺陷和非平衡相比较集中, 因此某些产物比传统方法制造的产物更具有活性; 复合相分布均匀、相界面清洁和结合好、可以制备具有超性能的材料[2] , 集材料的合成与烧结于一体等优点。

2 SHS 的发展概况19世纪,人们发现一些气、固相或固、固相材料在发生化学反应时具有强烈的放热现象, 所放出的热量能使反应自我维持并蔓延直至形成最终产物。

l895年,德国冶金学家Goldchmidt通过实验研究了铝热反应还原碱金属和碱土金属氧化物,详细报道了固一固相燃烧反应的自蔓延特性。

1967年,前苏联科学院Merzhanov[3]等人发现了可称之为“固体火焰”的Ti—B混合物自蔓延燃烧现象,并将这种依靠混合体化学反应的自身放热来合成新材料的技术首次命名为自蔓延高温合成,即SHS。

随后,前苏联科学家们经过系统而深入的研究,将SHS技术与冶金、机械等加工技术相结合,开发出了多种SHS工艺来制备和加工新型材料,发展了一系列无机材料粉末合成与成型、致密化工艺相结合的技术。

如1972年,SHS法用于了TiC、Ti(CN)、MoTi2、AlN 、六方BN等粉末的生产。

俄罗斯的科学家用燃烧合成方法制取了500多种材料,常见燃烧合成的材料如表1所示[ 4 ]。

自蔓延高温合成技术的发展与应用

自蔓延高温合成技术的发展与应用

收稿日期:2005-04-20 作者简介:谭小桩(1970-),男,1989年毕业于北京科技大学金属材料与热处理专业,工程师. 文章编号:1009-9700(2005)05-0005-05自蔓延高温合成技术的发展与应用谭小桩1,贾光耀2(11广东省钢铁研究所,广东广州510640;21北京科技大学材料学院,北京100083)摘 要:自蔓延高温合成技术是20世纪后期诞生的一门新兴的前沿科学,在粉体合成及陶瓷涂层内衬的制备等方面充分显示其优越性.文章对自蔓延高温合成技术的概念、国内外基本情况进行了阐述,同时简要介绍了自蔓延高温合成的燃烧理论,对利用自蔓延合成技术进行粉体合成及陶瓷内衬钢管的应用研究等作了较为详尽的说明.关键词:自蔓延;氮化铝;陶瓷粉末中图分类号:T B 39 文献标识码:ADevelopment and application of self 2propagating high temperature synthesisT AN X iao 2zhuang 1,J I A G uang 2yao 21G uangdong Research Institute of Iron and S teel ,G uangzhou 510640;2Beijing University of Science and T echnology ,Beijing10083Abstract :Born in late 20th century as a frontier field of science ,self 2propagating high tem perature synthesis (SHS )has shown its merits in powder synthesis and manu facture of inner ceramic lining.This paper is concerned with the definition ,current status both at home and abroad ,and relevant combustion theories ,all inv olved in the SHS.The applications of the SHS technique in syn 2thetizing powders and manu facturing ceramic inner lining in steel pipes are reviewed in detail.K ey w ords :self 2propagating ;aluminum nitride ;ceramic powder1 引言 自蔓延高温合成(Self -Propagating High T em per 2ature Synthesis ,SHS ),也称燃烧合成(C ombustion Syn 2thesis ,CS ),它是一种利用化学反应自身放热使反应持续进行,最终合成所需材料或制品的新技术.任何化学物质的燃烧只要其结果是形成了有实际用途的凝聚态的产品或材料,都可被称为SHS 过程.在SHS 过程中,参与反应的物质可处于固态、液态或气态,但最终产物一般是固态.燃烧合成的基本要素.(1)利用化学反应自身放热,完全或部分不需外部热源;(2)通过快速自动波燃烧的自维持反应得到所需成分和结构的产物;(3)通过改变热的释放和传输速度来控制过程的速度、温度、转化率和产物的成分及结构.SHS 技术制备的产品纯度高、能耗低、工艺简单,用SHS 技术可以制备非平衡态、非化学计量比和功能梯度材料.其特点为:①是一种快速的合成过程;②具有节能效果;③可提高合成材料的纯度;④产物易形成多孔组织;⑤燃烧产物的组织具较大的离散性.因此,探索各种SHS 体系的燃烧合成规律,获得均匀组织也是保障SHS 产业化的关键.2 国内外研究现状1967年,苏联科学院化学物理研究所宏观动力学研究室的Borovinskaya ,Skior 和Merhanov 等人[1]在研究钛和硼的混合粉坯块的燃烧时,发现“固体火焰”,后又发现许多金属和非金属反应形成难熔化合物时都有强烈的放热反应;1972年,该所建立了年产10~12t 难熔化合物粉末(碳化钛、二硼化钛、氮化硼、硅化钼等)的SHS 中试装置;1973年,苏联开始将SHS 产物投入实际应用,并召开了全苏SHS 会总第146期2005年10月 南 方 金 属S OUTHERN MET A LS Sum.146October 2005议;1975年,苏联开始研究SHS 致密化技术,将SHS 和传统冶金及材料加工技术结合,在燃烧合成的同时进行热固结或加工成型,一步合成所需要的形状或尺寸的产品或涂层,并于1979年开始工业化生产M oSi 2粉末和加热元件;1984年,Merhanov 等提出结构宏观动力学的概念,研究燃烧合成过程中的化学转变、热交换、物质交换和结构转变及它们的关系;1987年,苏联成立成立SHS 研究中心,此前苏联几十个城市都有SHS 研究机构.据1991年的统计,前苏联有150多个单位,800多人发表了SHS 方面的论文.工业生产的SHS 产品有T iC 磨料、M oSi 2加热元件、耐火材料、形状记忆合金、硬质合金等,1996年开始规模生产铁氧体.以Merzhanov 院士为代表的俄罗斯学者为SHS 学科的建立和实际应用做出了杰出贡献.80年代初,苏联的SHS 成就引起外界的注意.Crider ,Franhouser 等人对苏联SHS 的介绍促进了外界对SHS 的了解.美国Mccauley ,H olt 等人的SHS 研究也得到了美国政府DARPA 计划的支持.Munir 和H olt [2~3]分别也对SHS 和反应烧结作了许多的研究工作.1988年在美国召开了“高温材料的燃烧合成和等离子合成”国际会议,Merhanov 应邀作了关于SHS 的长篇报告,促进了SHS 的国际交流.80年代初,日本的小田原修,小泉光惠和宫本钦生等开始SHS 研究.1987年日本成立燃烧合成研究协会.1990年,在日本召开了第一次日美燃烧合成讨论会,Merhanov 应邀作了报告.目前,日本研究的陶瓷内衬钢管和T iNi 形状记忆合金已投入实际应用.我国在70年代初期利用M o 2Si 的放热反应制备了M oSi 2粉末[4].1983年,利用超高反应烧结制备C BN 硬质合金复合片.80年代中后期,西北有色金属研究院、北京科技大学、南京电光源研究所、武汉工业大学、北京钢铁研究总院等单位相继展开了SHS 研究[5~9].Munir 教授和Borovinskaya 教授曾分别应邀在北京科技大学和北京有色研究总院介绍了SHS.“八五”期间,国家863计划新材料领域设立SHS 技术项目,支持SHS 研究开发.1994年,在武汉召开了第一届全国燃烧合成学术会议.我国的SHS 产业化成果也得到了国外同行的高度评价.我国研制的陶瓷复合钢管年产近万吨.近年,我国在SHS 领域加强了与国外的合作与交流,发表的SHS 方面的文章数目仅次于俄、美,与日本相近.我国台湾学者在SHS 粉末和不规则燃烧方面也取得了引人注目的科研成果.目前,从事SHS 研究和开发的国家已达30多个.3 自蔓延高温合成技术理论随着对自蔓延高温合成技术实验研究的不断深入和推广应用,其理论日臻完善,目前对自蔓延高温合成技术理论的研究主要体现在以下几方面:SHS 过程热力学、绝热燃烧温度、平衡成份的确定、点火理论及动力学等[10].311 SHS 过程热力学燃烧体系进行热力学分析是SHS 研究过程的基础.绝热燃烧温度是描述SHS 反应特征的最重要的热力学参量.它不仅可以作为判断反应能否自我维持的定性判据,并且还可以对燃烧反应产物的状态进行预测并且可为反应体系的成分设计提供依据.Merzhanov 等人提出以下经验判据.当T ad ≥1800K 时,SHS 反应才能自我持续完成.f (T ad )=2RT ad E T adT ab -T o+1式中:T ad 代表反应绝热温度;T 0代表初始温度;E 代表反应激活能.312 绝热燃烧温度绝热燃烧温度是指绝热条件下燃烧所能达到的最高温度,此时反应放出的热量全部用来加热生成产物.根据其与生成物的熔点之间的关系,对反应Σm i R i =Σn j P j ,其焓变可以表示为:H oT +H o298+∫T tr298C pdT +△Htr+∫T mI ′urC ′p dT +△H m+∫T BT mC ″pdT +△H B+∫T adT BCpdT式中C p C ′p C ″p Cp 分别为反应物的低温固态、高温固态、液态和气态的摩尔热容.(T tr :相变温度;△H tr :相变热;T m :熔点;△H m :熔化热;T B :沸点;△H B :汽化热)313 SHS 产物平衡成份的确定目前有两种计算SHS 产物平衡成份的算法,一种是简化算法,另一种是精确算法,在此基础上可以通过简化推出其它算法.首先设定SHS 产物的化学成份,其设定方法一般只考虑所关心的生成物,绝热燃烧温度也是以上述假定下的化学反应所放出的热量为基础进行的.这种算法对生成物较简单的SHS 体系,特别是生成6 南 方 金 属S OUTHERN MET A LS2005年第5期 物较单一的体系是比较有效的,但对于具有多元的SHS体系,因其产物也较复杂,仅假定所关心的产物相是不够的.要实现对燃烧产物组织结构的严格控制,就必须对整个燃烧合成体系进行详尽的热力学分析,从热力学平衡的角度出发确定产物相,这就需要精确算法.314 热点火理论自蔓延高温合成的燃烧过程是强烈的自维持放热反应的过程.从无机化学反应向稳定的自维持强烈放热反应状态的过渡过程为着火过程,相反,从强烈的放热反应向无反应状况的过渡称做熄火着火的方式很多,一般可分为下列三类着火方式:化学自燃.这类着火通常不需外界给以加热,而是在常温下依靠自身的化学反应发生的.热自燃.如果将燃烧和氧化剂混合物均匀地加热,当混合物加热到某一温度时的便着火,这时是在混合物的整个容积中着火,称为热自燃.点燃.用火花、电弧、热平板、钨丝等高温热源使混合物局部受到强烈的加热而先着火燃烧,随后,这部分已燃的火焰传播到整个反应的空间,这种着火方式称为点火.自蔓延高温合成过程的着火方式绝大多数情况下均为点火方式.该理论以SHS体系的热稳定性或热失稳为研究对象,研究化学反应的动力学过程,热传递过程,着火点火之间的联系.315 燃烧波蔓延作为一类特殊的化学反应,SHS反应区前沿,即燃烧波会随着反应的进行而不断推移.因此需要建立能反映这一特征的动力学参数.燃烧波速率则是这一动力学参数,它描述了燃烧波前的移动速率.在一定的假设条件下,如忽视对流、辐射散热等,以及对燃烧波结构作一定的约束之后,可以求出燃烧波速率υ的解析式.不同的约束条件会得到略有差别的解.大多数的SHS过程,燃烧前沿都存在一个光滑的表面(平面或很小的曲面),这一表面以恒定的速率一层一层传播,称之为稳态燃烧.有时在SHS过程中,燃烧波前沿的传播在时间和空间上都是不稳定的,称之为非稳态燃烧.非稳态燃烧分为振动式和螺旋式两种模式.影响燃烧波速率的因素很多,有化学成分、稀释剂含量、压坯相对密度、反应物尺寸、预热温度等.316 SHS的动力学燃烧合成动力学,主要研究燃烧波附近高温化学转变的速率等规律,燃烧波速率是目前人们普遍采用的一个SHS动力学参量,它直接反映了燃烧前沿的移动速度;另外有关的概念还有质量燃烧速率和能量释放率等.燃烧机制是指物质燃烧过程中所发生的化学反应,物理化学变化和物质传输过程规律以及这些变化之间的关系.燃烧机制可以归纳为以下4种类型:(1)固相扩散机制;(2)气体传输机制;(3)溶解析出机制;(4)气体渗透机制.目前所采用的研究方法包括:SHS过程的快淬保持及随后对试样的逐层分析;燃烧波前沿内物质相组成变化的动力学研究.研究的主要手段有:x射线分析,包括同步辐射,动态x射线衍射分析.其平衡态SHS模型见图1.图1 SHS的平衡态模型 图中a ko反应物浓度,a pb为生成物浓度,T o为反应物初始温度,T b为生成物温度,υ为燃烧波传播速度m/s,η为热释放率.以此模型为基础形成了燃烧合成的热力学、动力学以及燃烧合成的理论包括燃烧理论、燃烧化学及结构宏观动力学等.4 SHS技术的应用燃烧合成自问世以来,已开发出6大类相关技术和工艺[11,12],即燃烧合成制备粉体,燃烧合成烧结技术,燃烧合成致密化技术,燃烧合成熔铸技术,燃烧合成焊接技术及燃烧合成涂层技术.采用燃烧合成技术可以制备常规方法难以得到的结构陶瓷、梯度材料、超硬磨料、电子材料、涂层材料金属间化合物及复合材料等.目前,SHS粉末技术已成功地应用于商业生产,SHS-离心法制备钢管涂层也已成为一种逐渐成熟的工业技术在日本,中国等地得到推广应用.由SHS一步合成致密材料的研究也在7 总第146期谭小桩等:自蔓延高温合成技术的发展与应用进行中,致密化时的加压可在燃烧波蔓延时或蔓延后产物仍处于高温时进行.加压方式可以采用单向加压,等静压,准等静压及动态加载法.SHS粉末合成技术包含的工序类似于粉末冶金制粉.但两者又有区别,其区别主要在合成工序. SHS粉末合成技术的工艺流程如图2所示.图2 SHS粉末合成技术的工艺流程411 利用SHS工艺制备难熔化合物低成本与高性能是许多先进材料研究与应用领域普遍存在的问题[13],利用化学反应释放的高热量低温制备高熔点先进材料的燃烧合成熔化技术可合成许多难熔化合物粉体或复合材料.难熔化合物指碳化物、氮化物、硅化物和硼化物,既包括金属也包括非金属的碳、氮、硅、硼化合物.表1是利用SHS工艺所制备的部分难熔化合物材料.表1 SHS技术合成的部分材料碳化物氮化物硅化物硼化物T iCZ rC CrB2H fC T iN M oS i2H fB2NdC Z rC T aS i2NdB2S iC BN T i5S i3T aB2Cr3C2AiN Z rS i2T iB2B4C S i3N4LaB2WC T aN M oB2412 SHS制备陶瓷内衬钢管41211 基本原理很多高放热SHS体系的燃烧温度超过燃烧产物的熔点,燃烧后的产物是熔体.这种SHS体系与常规的冶金方法相结合,产生了SHS技术,利用SHS法得到熔体,用常规冶金法处理熔体[14,15].SHS冶金包括SHS铸造和SHS-离心技术.铝热反应由于其高放热而被广泛用于SHS冶金.其化学反应式为:(1) Fe2O3+Al→Fe+Al2O3+O(2) 2M oO3+4Al+C→2Al2O3+M o2C+Q41212 SHS-离心法在石油化工、电力及冶金行业,钢管的使用寿命成为人们最关心的问题,然而由于钢管的内径小、长度大,用其它的防腐处理方法很难实现,而用次工艺便可很容易的解决.它是利用铝、镁、硅、锆等粉末与金属氧化物的高放热化学反应,依靠化学反应潜热加热反应物—陶瓷与金属或陶瓷与陶瓷.由于反应温度超过了陶瓷及金属的熔点,整个体系处于熔融状态.在离心力的作用下,熔体按密度大小分层,大密度的组分与钢管基体结合,小密度的陶瓷组分涂覆在钢管的内壁,形成陶瓷涂层,见图3.目前,涂层内衬钢管的生产技术已相当成熟.图3 SHS-离心法原理41213 SHS-重力法比较直的钢管采用离心法是可以的,如果是弯管或其它不规则形状的钢管仍采用离心法显然是不可行的.经过工程技术研究人员的努力,利用重力原理使得在SHS过程中熔体涂覆到钢管的内壁.因铝热反应产生的高温使反应物处于熔融状态,钢管中在反应物料上形成了由金属Fe及陶瓷两相熔体组成的熔池,由于Fe的密度大于涂层相的密度,在重力作用下,两熔体分离,Fe沉积于熔池的底部,熔融的涂层相浮于熔池的上部.随着自蔓延反应的进行,液面逐渐下降,导致Fe的液相和陶瓷液相依次附与钢管内壁并结晶凝固,从而在钢管内壁形成连续均匀的涂层[9].其原理如图4所示.8南 方 金 属S OUTHERN MET A LS2005年第5期 图4 SHS-重力法原理5 结束语 经过材料科学工作者几十年的努力,自蔓延高温合成技术已成功应用于难熔化合物的制备,包括粉体的制备及复合材料的制备等,而采用SHS法制备的陶瓷内衬钢管以其良好的耐磨、耐蚀、耐高温性能和优异的抗机械冲击、抗热冲击性能,产品重量轻、不怕磕碰、价格低等优点在许多工程中也得到了广泛应用,使用寿命是现行管材的几倍几十倍.尽管自蔓延高温合成技术在材料的改性方面已得到了广泛的应用,在性能价格比方面有优越性,但是科学工作者不满于现状仍在继续完善SHS工艺,比如将SHS工艺与加压相结合,可获得更致密与基体结合更牢固的陶瓷涂层材料,以满足于防腐、耐磨、隔热等不同使用环境的要求[4,10,11,15].参考文献[1] Merzhanov A G.C ombustion and Plasma Synthesis of High- T em perature Materials[M].New Y ork:C VH Publ inc, 1990.[2] Munir Z A.Synthesis of High-T em perature Materials by Self-Propagating C ombustion Methods[J].Ceramic Bulletin, 1998,667(2):342~349.[3] H olt J B.The Fabrication of S iC,S i3N4and AlN by C om2bustion Synthesis[J].Ceramic C om ponents for engines, 1983,3(2):721~728.[4] 殷 声.燃烧合成[M].北京:冶金工业出版社,1999.[5] 唐华生.精密陶瓷自燃烧结法的研究与应用[J].兵器材料科学与工程,1990,8(2):8~13.[6] 许伯潘.静态自蔓延合成陶瓷涂层实验研究[J].武汉冶金工业大学学报,1998,21(2):166~169.[7] 傅正义.自蔓延高温合成(SHS)过程的点火模型与分析[J].硅酸盐学报,1994,22(5):447~452.[8] 张树格.材料合成与粉末冶金[J].粉末冶金技术,1992,10(4):301.[9] 赵忠民.重力分离SHS法制备陶瓷涂层内衬复合钢管的组织与性能[J].机械工程材料,1998,22(2):34~37.[10]许兴利,韩杰才,杜善义.自蔓延合成理论研究与进展(一)[J].功能材料,1996,27(6):223~227.[11]李文戈,周和平.燃烧合成陶瓷涂层技术的应用形状及发展前景[J].材料保护,2001,34(1):35~37. [12]殷 声.燃烧合成的发展状况.粉末冶金技术[J].2001,19(2):93~97.[13]薛群基,喇培清.低温制备高熔点先进材料的燃烧合成熔化技术[J].甘肃科技纵横,2002,12(3):28~31. [14]雷林海.材料合成新工艺———自蔓延高温合成[J].石油化工腐蚀与防护,1997,14(3):12~16.[15]殷 声.自蔓延高温合成法(SHS)的发展[J].粉末冶金技术,1992,10(3):223~227.标题新闻 广东省省委副书记、省长黄华华8月15日寄语韶钢,努力把韶钢建成资产或销售收入超千亿元的“航空母舰”,成为我省产业发展的排头兵.9 总第146期谭小桩等:自蔓延高温合成技术的发展与应用。

自蔓延高温合成技术资料

自蔓延高温合成技术资料

自蔓延高温合成技术10粉(1)张凯 1003011020 摘要:自蔓延高温合成技术是20 世纪后期诞生的一门新兴的前沿科学,在粉体合成及陶瓷的制备等方面充分显示其优越性. 文章对自蔓延高温合成技术的概念、自蔓延高温合成的燃烧理论作了简要介绍,并整理总结自蔓延高温合成(SHS) 技术的发展和国内外研究概况,包括制备工艺、应用领域等,同时分析了自蔓延高温合成技术的最新研究动向。

关键词:自蔓延高温合成;燃烧合成;SHS技术;SHS理论;应用1 引言自蔓延高温合成(Self - Propagating High Temperature Synthesis,简称SHS),也称燃烧合成(Combustion Synthesis ,CS) 是利用反应之间的化学反应热的自加热和自传导作用来合成材料的一种技术,当反应物一旦被引燃,便会自动向未反应区传播,直至反应完全。

任何化学物质的燃烧只要其结果是形成了有实际用途的凝聚态的产品或材料,都可被称为SHS 过程. 在SHS 过程中,参与反应的物质可处于固态、液态或气态,但最终产物一般是固态.SHS 技术制备的产品纯度高、能耗低、工艺简单,用SHS 技术可以制备非平衡态、非化学计量比和功能梯度材料. 其特点为: ①是一种速的合成过程; ②具有节能效果; ③可提高材料的纯度;④产物易形成多孔组织; ⑤燃烧产物的组织具较大的离散性. 因此,探索各种SHS 体系的燃烧合成规律, 获得均匀组织也是保障SHS 产业化的关键.2国内外研究概况人们很早就发现了化学反应中的放热现象, 在上个世纪就已发了气-相和固-相的燃烧合成现象。

1892 年,Mo issen 叙述了氧化物和氮化物的燃烧合成。

1895 年, Go ldchm idt 用铝粉还原碱金属和碱土金属氧化物, 发现固2固相燃烧反应, 并描述了放热反应从试料一端迅速蔓延到另一端的自蔓延现象。

本世纪铝热反应已经得到工业应用。

但是, 将燃烧合成和冶金、机械等技术结合起来, 发展成为具有普遍意义的制备材料新技术并用于工业生产, 还应归功于原苏联科学家的努力。

shs

shs

3
4 5 6
烧结致密工艺,燃烧挤压工 艺,燃烧压制工艺
燃烧冶金工艺,燃烧离心铸 造,燃烧表面处理 燃烧焊接工艺 燃烧涂层工艺
SHS技术合成材料
表2 SHS技术合成的部分材料
硼化物
碳化物 碳氮化物 硬质合金 硫化物 复合材料 氢化物 金属间化合物 氮化物 硅化物
CrB2,HfB2,NdB2,TaB2,TiB2,LaB2,MoB2
(2) SHS的节能效果
SHS最大的特点是自发热而自维持的合成过程 , 在合 成过程中不需要外部能源供给, 其节能效果是显著的。然 而仔细考察SHS反应会发现, 对单质合成化合物的过程如 由Ti和C合成TiC, 其产物比反应物更接近自然界存在的物 质, 即必须考虑由自然界存在的矿物提取单质的能耗。 高温有利于杂质的挥发, 但同时也会造成反应物的 挥发, 同时由于SHS合成多相平衡的特点, 反应产物中出 现了副产物相, 在多相的复相陶瓷合成中情况更为显著。 因此对副产物相的控制也是推动SHS产业化的重要环节。
SHS的特点
SHS技术制备的产品纯度高、能耗低、工艺简单,用 SHS技术可以制备非平衡态、非化学计量比和功能梯度材 料。 (1) SHS是一种快速的合成过程 燃烧波的传播过程即材料的合成过程, 这无疑提高 了材料合成的效率。然而也正是这种高速合成的特点, 使合成过程在燃烧波一开始引发后实际上就处于一种不 可控状态。这种不可控的材料合成方法难以为大多数材 料工作者所接受。因此, 探索与SHS合成过程特点相适应 的合成过程控制方法就有重要的意义。
绝热燃烧温度
绝热燃烧温度是指绝热条件下燃烧所能达 到的最高温度, 此时反应放出的热量全部用来 加热生成产物。根据其与生成物的熔点之间的 关系, 对反应Σ miRi=Σ njPj, 其焓变可以表示为:

自蔓延高温合成法

自蔓延高温合成法

自蔓延高温合成法概述自蔓延高温合成法(Self-Propagating High-Temperature Synthesis,简称SHS)是一种以高温反应为基础的合成方法,具有快速、低能耗和高效的特点。

它在材料科学和化学领域有着广泛的应用,可以用于合成金属陶瓷材料、复合材料和无机化学品等。

原理SHS基于自蔓延原理,即通过局部点燃反应混合物中的可燃物质,使整个反应物质迅速发生反应并扩散,形成产物。

该反应过程通常在高温下进行,使用以金属和非金属化合物为主的反应物,产物常为金属、陶瓷和复合材料。

反应机制SHS反应通常由两个步骤组成:点燃阶段和自蔓延扩散阶段。

在点燃阶段,反应体系中局部加热可燃物质,使其自发点燃。

燃烧反应产生的高温和自由基会引发整个反应物质的快速反应。

在自蔓延扩散阶段,反应前驱体与产物之间的扩散作用会加速反应的进行,并不断释放出热量,维持反应的高温。

应用领域1. 金属陶瓷材料SHS在金属陶瓷领域有广泛的应用。

例如,利用SHS可以制备高硬度、耐磨损的刀具材料。

通过选择不同的金属和陶瓷反应物,可以调控材料的硬度、导热性和耐腐蚀性。

2. 复合材料SHS还可用于制备复合材料,在提供机械强度的同时具有轻质和高温性能。

通过选择不同的反应物,可以调控材料的化学成分和微结构,使其具有特定的性能和应用领域。

3. 无机化学品SHS在无机化学品合成中也有重要的应用。

例如,在高温下可以通过SHS方法合成多晶硅粉末,用于制备太阳能电池。

此外,SHS还可用于制备氧化物陶瓷材料、金属硬质合金和火焰喷涂材料等。

实验操作SHS方法的实验操作相对简单,但仍需注意安全事项。

以下是一般的实验操作步骤:1.准备反应物:按照所需的配比准备反应物。

2.混合反应物:将反应物充分混合均匀,以确保反应的全面性。

3.预热反应器:将反应器预热至适当的温度,以提供起始点燃的热源。

4.加入混合物:将混合物加入预热的反应器中,快速封闭反应器。

5.点燃反应物:利用点燃源引发混合物中可燃物质的燃烧。

自蔓延高温合成法

自蔓延高温合成法

自蔓延高温合成法自蔓延高温合成法(Self-Propagating High-Temperature Synthesis,简称SHS)是一种在高温下自发进行的化学合成方法。

SHS技术已被广泛应用于材料科学、能源存储、催化剂制备等领域,其独特的特点使其成为一种高效、环保且经济的合成方法。

SHS技术的原理是在适当的反应条件下,通过引入足够的活化能使化学反应自发发生和持续传播。

这种自蔓延的反应过程是基于氧化还原反应、放热反应和传热传质等多种复杂的物理和化学过程相互耦合而成的。

由于SHS反应在高温下进行,因此可以获得高纯度、致密度高、晶粒细小的产物。

SHS技术的优点主要有以下几个方面:1. 高效性:SHS反应通常在数秒至数分钟内完成,反应速度快,能耗低。

与传统的合成方法相比,SHS技术可以显著缩短合成时间。

2. 环保性:SHS技术不需要使用外部能源,反应过程中产生的高温和自身放热能够驱动反应的进行,使其成为一种绿色合成方法。

此外,由于反应过程中不需要溶剂,减少了有机溶剂的使用和废弃物的产生。

3. 可控性:通过控制反应条件、配比和反应时间等参数,可以实现对产物形态、尺寸和组成的精确控制。

这使得SHS技术在材料制备中具有很大的灵活性。

4. 应用广泛:由于SHS技术能够合成各种复杂的无机、有机和金属材料,因此在材料科学和工程领域有着广泛的应用。

例如,SHS技术可以用于制备金属陶瓷复合材料、纳米材料、催化剂和能源存储材料等。

SHS技术也存在一些挑战和限制。

首先,SHS反应的过程比较复杂,需要对反应机理和热力学行为进行深入研究。

其次,由于反应过程中产生的高温和强热释放,需要对反应系统进行良好的隔热和安全措施。

此外,SHS技术在合成大尺寸和复杂形状的材料时也面临一定的困难。

为了克服这些限制,研究者们正在不断改进和优化SHS技术。

例如,引入外部能量源、微波辐射和压力等调控因素,可以进一步提高反应速率和产物质量。

此外,结合计算模拟和实验研究,可以深入理解SHS反应的机理和动力学行为。

自蔓延高温烧结资料

自蔓延高温烧结资料

• SHS烧结过程难于达到理论密度值,这与原料粉末存在吸 附气体杂质有关。由于采用金属单质作原料,具有较强的 气体吸附性能,在反应时间极短的SHS过程中,来不及排 除。对此可在点火前将混合物置于真空状态进行预热脱气, 受到良好的效果。
3.3 自蔓延高温烧结的应用实例
SHS制备TiB2陶瓷
图6 TiB2制品
图4 SHS图
3、自蔓延高温合成工艺
自蔓延高温合成技术已经发展30多种SHS应用技术与工艺。
可分为6个方面: 燃烧合成制粉技术 燃烧合成烧结技术 燃烧合成致密技术 燃烧合成熔铸技术 燃烧合成焊接技术 燃烧合成涂层技术
采用燃烧合成技术可制 备常规方法难以得到的结 构陶瓷﹑梯度材料﹑超硬 磨料﹑电子材料﹑涂层材 料﹑金属间化合物及复合 材料等
(6)扩大生产规模简单,从实验室走向工业生产所需的时 间短,而且大规模生产的产品质量优于实验室生产的产品; (7)能够生产新产品,例如立方氮化钽; (8)在燃烧过程中,材料经历了很大的温度变化,非常高 的加热和冷却速率,使生成物中缺陷和非平衡相比较集中, 因此某此产物比用传统方法制造的产物史具有活性,更容易 烧结; (9)可以制造某些非化学计量比的产品、中间产物以及亚 稳定相等。与常规方法,SHS的控制参数较为严格(见表1所 示)
预热
机械破碎
自蔓延高温合成
点火引燃
产品性能测试
图5 SHS制备陶瓷粉体的工艺流程图
3.2 SHS工艺制备粉体注意事项
• (1)选择合适的反应剂体系: 即要求所选反应剂之间能 够发生具有足够强度热效应的放热反应;
• (2)实验参数的选择: 即选择合适的反应剂配比、样品 块尺寸、样品块密度和原料密度, 过高或过低都可能影响 SHS的合成效果;

自蔓延高温合成

自蔓延高温合成
常规SHS技术是用瞬间的高温脉冲来局部点燃反应混合 物压坯体,随后燃烧波以蔓延的形式传播而合成目的产 物的技术。
这一技术适用于具有较高放热量的材料体系,例如: TiC-TiB2、TiC-SiC、TiB2-Al2O3、Si3N4-SiC等体系。
其特点是设备简单、能耗低、工艺过程快、反应温度高。
27
1. SHS制粉(2)热爆SHS技术
6
第1节 自蔓延高温合成的热力学基础
设Tm为熔点, ∆Hm为产物的熔解焓,ν为温度下产物中已熔解部分的比 值,则绝热温度和其他几个热力学参数之间的关系有如下三种情况
Tm
∆H 0
T0
<
Cp(T )dT 时, Tad<Tm生成热用式4表达;
T0
Tm
∆H 0
T0
=
Cp(T )dT +ν ∆Hm时, Tad=Tm,绝热温度达到熔点;
24
(2)固-气反应
初始料胚的空隙率和气体分压是影响合成的关键 因素。按照反应动力学的观点,随着气体分压的增大, 合成转化率应提高,有时实验结果并非如此。
25
第3节 自蔓延高温合成工艺
• SHS制粉
自蔓延合成生产工艺
常规SHS技术 热爆SHS技术
• SHS烧结块体材料 • SHS致密化技术
26
1. SHS制粉(1)常规SHS技术
在SHS燃烧波阵面内,当低熔点组分熔化时,熔化的液相在毛 细作用下,铺张到高熔点组分上,如果铺张的时间大于反应的 时间,SHS反应受毛细作用下铺张速率控制;当铺张时间小于 反应时间,SHS反应受组分在生成层中扩散速度控制。
19
不管是毛细作用模式还是扩散模式,均与组分的颗粒尺寸 密切相关。
SHS反应中毛细作用占主导地位

自蔓延高温合成技术

自蔓延高温合成技术

自蔓延高温合成(self–propagation high–temperature synthesis,简称SHS),又称为燃烧合成(combustion synthesis)技术,是利用反应物之间高的化学反应热的自加热和自传导作用来合成材料的一种技术,当反应物一旦被引燃,便会自动向尚未反应的区域传播,直至反应完全,是制备无机化合物高温材料的一种新方法。

基本信息•中文名称:自蔓延高温合成•外文名称:self–propagation high–temperature synthesis•特点:反应温度通常都在2100~3500K•简史:黑色炸药是最早应用特点燃烧引发的反应或燃烧波的蔓延相当快,一般为0.1~20.0cm/s,最高可达25.0cm/s,燃烧波的温度或反应温度通常都在2100~3500K以上,最高可达5000K。

SHS以自蔓延方式实现粉末间的反应,与制备材料的传统工艺比较,工序减少,流程缩短,工艺简单,一经引燃启动过程后就不需要对其进一步提供任何能量。

由于燃烧波通过试样时产生的高温,可将易挥发杂质排除,使产品纯度高。

同时燃烧过程中有较大的热梯度和较快的冷凝速度,有可能形成复杂相,易于从一些原料直接转变为另一种产品。

并且可能实现过程的机械化和自动化。

另外还可能用一种较便宜的原料生产另一种高附加值的产品,成本低,经济效益好。

自蔓延高温合成法发展简史早在2000多年前,中国人就发明了黑色炸药(KNO3+S+C),这是自蔓延高温合成(SHS)方法的最早应用,但不是材料制备。

所谓自蔓延高温合成材料制备是指利用原料本身的热能来制备材料。

1900年法国化学家Fonzes–Diacon发现金属与硫、磷等元素之间的自蔓延反应,从而制备了磷化物等各种化合物。

在1908年Goldschmidt首次提出"铝热法"来描述金属氧化物与铝反应生产氧化铝和金属或合金的放热反应。

1953年,一个英国人写了一篇论文《强放热化学反应自蔓延的过程》,首次提出了自蔓延的概念。

自蔓延高温合成法技术研究

自蔓延高温合成法技术研究

自蔓延高温合成法技术研究陈起龙(南通大学机械工程学院,江苏南通,226000)【摘要】对自蔓延高温合成技术(SHS)的最新研究动态进行了介绍,指出SHS技术作为一种制备和合成材料的新技术,以其高效、节能、经济、材料性能优良等优点,现已成为制备新材料的崭新途径,并提出自蔓延高温合成技术今后的研究方向。

【关键词】自蔓延高温合成;新材料;结构材料;功能材料;应用研究中图分类号: TB39; TG148文献标识码: AResearch Situation of Self-propagating H igh-temperature SynthesisCHEN Qi-long(Nantong university college in mechanical engineering ,Jiangsu nantong ,226000)Abstract:The progress on current research of self-propagating high-temperature synthesis is introduced. Due to some advantages, such as high performance, energy-saving, low cost and so on, the SHS process has already been a newmethod of fabricating advancedmaterials and it is suggested that the development ofself-propagating high-temperature synthesis and technology lies in the investigation and developmentofnewmaterials fabricated by the SHS process.Key words:Self-propagating high-temperature synthesis; New materials; Structural materials; Functional materials; Application research1. 自蔓延高温合成技术原理自蔓延高温合成(Self-propagating High-tem-perature Synthesis,缩写SHS)技术,是利用化学反应自身放热,依靠燃烧波自我维持,并通过控制自维持反应速度、燃烧温度、反应转化率等条件,进而获得具有指定成分结构产物的一种新型材料制备技术。

自蔓延高温合成技术的发展与应用

自蔓延高温合成技术的发展与应用
成果。
、H= 、・; : 一N瓜 : N广 ・ 0 2 A ,+。 ,
D,J T vBJUT H+T' +H+:p C P d d
式 伟, ,C , 分别为反应物的 o 中: 已 ,r心 、 低温t
态、 高温固态、 液态和气态的摩尔热容;t相变 T: r 温度 A , H 为相变热;m ; T 为熔点; m H A 为熔化热; T 为沸点; 为汽化热。 B H AB
方式。
() 燃: 1 化学自 这类着火通常不需外界给以加 热, 而是在常温下依靠自 身的化学反应发生的。 () 燃: 如果将燃烧和氧化剂混合物均匀 2热自 地加热, 当混合物加热到某一温度时便着火, 这时 是在混合物的整个容积中着火, 称为热自 燃。 () 3点燃: 用火花、 电弧、 热平板、 钨丝等高温 热源使混合物局部受到强烈的加热而先着火燃 烧, 随后, 这部分已燃的火焰传播到整个反应的空 间, 这种着火方式称为点火。自 蔓延高温合成过
麟麟 1 a 'x ` } ;i l 瞧wr i t 徽 . 俏翔脚a脚脚城嘿 h N I n }
系进行详尽的热力学分析, 从热力学平衡的角度 出发确定产物相, 这就需要精确算法。
*gi" g
2 热 火 . 点 理论 4
自 蔓延高温合成的燃烧过程是强烈的自 维持 放热反应的过程。从无机化学反应向稳定的自 维 持强烈放热反应状态的过渡过程为着火过程, 相 反, 从强烈的放热反应向无反应状况的过渡称做 熄火。 着火的方式很多, 一般可分为下列 3 类着火
或涂层, 并于1 9 9 年开始工业化生产 Ms 粉末 7 o: i
和加热元件; 8 年,e a v 1 4 M r n 等提出结构宏观动 9 ho 力学的概念, 研究燃烧合成过程中的化学转变、 热

自蔓延高温合成技术

自蔓延高温合成技术
6
4 燃烧波蔓延 作为一类特殊的化学反应,SHS 反应区前沿,即燃烧波会随着反应的进行 而不断推移。因此需要建立能反映这一特征的动力学参数。燃烧波速率 则是这一动力学参数,它描述了燃烧波前的移动速率。 在一定的假设条件下,如忽视对流、辐射散热等,以及对燃烧波结构作一定 的约束之后,可以求出燃烧波速率的解析式。不同的约束条件会得到略有 差别的解。 稳态燃烧-大多数的SHS 过程,燃烧前沿都存在一个光滑的表面(平面或很 小的曲面) ,这一表面以恒定的速率一层一层传播,称之为稳态燃烧。
13
经过材料科学工作者几十年的努力,自蔓延高温合成 技术已成功应用于难熔化合物的制备,包括粉体的制 备及复合材料的制备等,而采用SHS 法制备的陶瓷内 衬钢管以其良好的耐磨、耐蚀、耐高温性能和优异 的抗机械冲击、抗热冲击性能,产品重量轻、不怕磕 碰、价格低等优点在许多工程中也得到了广泛应用, 使用寿命是现行管材的几倍至几十倍。尽管自蔓延 高温合成技术在材料的改性方面已得到了广泛的应 用,在性能价格比方面有优越性,但是科学工作者不满 于现状仍在继续完善SHS 工艺,比如将SHS 工艺与加 压相结合,可获得更致密与基体结合更牢固的陶瓷涂 层材料,以满足于防腐、耐磨、隔热等不同使用环境 的要求。
6. 1 利用SHS 工艺制备难熔化合物 低成本与高性能是许多先进材料研究与应用领域普遍存在的问题,利用化学反应释放 的高热量低温制备高熔点先进材料的燃烧合成熔化技术可合成许多难熔化合物粉体 或复合材料。难熔化合物指碳化物、氮化物、硅化物和硼化物,既包括金属也包括非 金属的碳、氮、硅、硼化合物。
下表是利用SHS 工艺制备的部分难熔化合物材料。
10
6.2 SHS 制备陶瓷内衬钢管 (1) 基本原理 很多高放热SHS 体系的燃烧温度超过燃烧产物的熔点,燃烧后 的产物是熔体。这种SHS 体系与常规的冶金方法相结合,产生 了SHS 技术,利用SHS 法得到熔体, 用常规冶金法处理熔体。 SHS 冶金包括SHS 铸造和SHS - 离心技术。铝热反应由于其 高放热而被广泛用于SHS冶金。其化学反应式为:

自蔓延高温燃烧合成法

自蔓延高温燃烧合成法

自蔓延高温燃烧合成法
自蔓延高温燃烧合成法是指利用物质反应热的自传导作用,使不同的物质之间发生化学反应,在极短的瞬间形成化合物的一种高温合成方法。

利用某些合成反应的强放热作用,反应一旦开始即能自我维持,并迅速扩展、蔓延至整个试样区,完成合成反应的方法。

原理
一旦引燃反应物,反应则以燃烧波的方式向尚未反应的区域迅速推进,放出大量热,可达到1500~4000℃的高温,直至反应物耗尽.根据燃烧波蔓延方式,可分为稳态和不稳态燃烧。

一般认为反应绝热温度低于1527℃的反应不能自行维持。

对于不稳态燃烧应采取化学炉或预热等方法,防止反应中途熄灭。

特点
该工艺具有节能、成品纯度高、活性大、操作方便等一系列优点。

利用SHS法的固态-气态,固态-固态,金属间化合物和复合物四种主要反应类型,已合成了几百种化合物。

类型
其中包括各种氮化物、碳化物、硼化物、硅化物、不定比化合物和金属间化合物
等。

适用范围
某些领域已进入了应用阶段,如制备陶瓷基复合材料,硬质合金,形状记忆合金和高温构件用的金属间化合物等。

第十二章_自蔓延高温合成技术

第十二章_自蔓延高温合成技术

(2)气相传输SHS涂层: 此法是指用适当的气体作为载体来输送反应原料,并在工件表面 发生化学反应,反应物沉积于工件表面的涂层技术。 其可在不同工件表面沉积10~250μm厚的涂层。
特点:由于气相传输反应是涂层形成的基础,气相传输助剂可将 涂层物质输运到试件的各个表面,因而保证了在复杂形状试件内 表面形成均匀的涂层。
2、SHS烧结技术
收缩变形小
概念:SHS烧结技术是指在燃烧过程中发生固相烧结,从而制 备具有一定形状和尺寸的零件。
特点:1)SHS烧结能够保证制品的外形精度,
2)烧结产品的孔隙度可以控制在5~70%。
应用:多孔过滤器、
催化剂载体、 生物陶瓷 耐火材料等。
原理:高的反应速率,以及高的温 度梯度,易导致生成物的晶体 点阵具有高密度的缺陷的特点 来形成多孔的骨架结构。
产物分离:Al2O3相对密度小,可依靠重力实现分离。
(2)镁热剂反应 镁热剂反应是将镁粉与金属或非金属氧化物粉末按一定比例配制 成的混合物用引燃剂点燃,反应剧烈进行后,得到氧化镁与金属 或非金属单质并释放出大量的热量。 镁热剂反应的通式: 产物分离: 1)重力分离 2)酸洗分离: HCl可将MgO以及剩余的金属Mg除去
SHS涂层主要工艺:
(1)熔铸SHS涂层技术:
概念:将传统的铸造和材料表面复合强化技术相结合,利用铸造过 程中高温钢水或铁水的热量,使粘贴在铸型壁上的反应物料压坯熔 融或烧结致密同时引发原位高温化学反应,从而在铸件表面获得涂 层,是近年来发展起来的一种制备金属基复合材料的新技术。
特点: 1)该工艺一次成型 、简化工序; 2)充分利用了浇注及凝固时所产生的余热,降低能耗; 3)实现表面合金化,大大提高了铸件表面的硬度、耐磨、耐热、 耐蚀等性能。 4)使表面的合金元素呈梯度分布,提高结合强度。

自蔓延高温合成法

自蔓延高温合成法

自蔓延高温合成法自蔓延高温合成法(Self-propagating High-temperature Synthesis,SHS)是一种新型的材料制备技术,它利用化学反应自身释放的热量来实现材料的快速合成。

这种方法具有反应速度快、能耗低、产物纯度高等优点,在材料制备领域得到了广泛的应用。

一、原理SHS法的基本原理是利用化学反应自身释放的热量,使反应体系达到高温条件,从而实现材料的快速合成。

在SHS反应中,通常需要加入一个起始剂(initiator),以引发化学反应。

当起始剂受到外界刺激(如火焰、电火花等)时,它会迅速分解并释放出大量热量,使反应体系升温并引发化学反应。

同时,在反应过程中还会产生大量气体和固体产物,这些产物会促进反应继续进行,并形成一个自我维持的循环系统。

最终,在高温和高压条件下,原料将被转化为所需产品。

二、工艺流程SHS法通常分为两个步骤:起始剂激发和自蔓延反应。

具体工艺流程如下:(1)起始剂激发:将起始剂与反应物混合均匀,并置于反应器中。

然后,通过火焰、电火花等方式对起始剂进行激发,引发化学反应。

(2)自蔓延反应:一旦化学反应开始,它就会在整个反应体系中迅速传播,并释放出大量热量。

这些热量将维持反应的高温和高压状态,使得原料能够快速转化为所需产物。

在自蔓延过程中,产生的气体和固体产物会促进反应的继续进行,并形成一个自我维持的循环系统。

三、优点与缺点SHS法具有以下优点:(1)快速:SHS法具有非常快的反应速度,通常只需要几秒钟或几分钟就可以完成材料的合成。

(2)能耗低:SHS法不需要外部加热设备,只需要一个起始剂就可以实现材料的快速合成,因此能耗非常低。

(3)产物纯度高:由于SHS法是在高温和高压条件下进行的,因此产物通常具有非常高的纯度。

(4)适用范围广:SHS法可以用于制备各种材料,包括金属、陶瓷、复合材料等。

SHS法的缺点主要有以下几点:(1)难以控制:由于SHS法是一种自我维持的反应过程,因此很难对反应过程进行精确的控制。

自蔓延高温烧结

自蔓延高温烧结

• (8)激光点火:用激光脉冲照射自蔓延材料表面,点燃
自蔓延高温合成反应,也有用连续激光点火
2.3 SHS相图
根据SHS燃烧波传播的方式
自蔓延
稳态 非稳态
“热爆”
振荡燃烧
波的特征 稳态
螺旋燃烧
表面燃烧 重复燃烧
SHS图可以为实际生产工艺的制定提供理论指导
生产磨料时,为了获得大尺寸的
颗粒,那么工艺制定就应选择在SHS
• (3)引燃技术的选择: 这也是影响工艺成败的关键之一。 迄今为止, 可用的引燃技术主要有燃烧波点火、辐射点火、 激光点火、热爆点火、微波点火、化学点火和机械点火等。
究竟采用哪种方式应根据具体情况选定。通常根据反应热、
反应剂和产物的特征、影响反应动力学的工艺参数以及反 应器的气氛及其压力等因素而确定点火方式。
得邻近的物料温度骤然升高而引发新的化学反应,以燃烧
波的形式蔓延通过整个反应物,同时反应物转变为生成物。 自蔓延高温烧结就是利用SHS技术对陶瓷生坯实现烧结的 工艺方法。
根据SHS反应模式,将自蔓延高温合成技术分为两种:常规SHS 技术和热爆SHS技术。 常规SHS技术:用瞬间的 高温脉冲来局部点燃反应 混合物压坯体,随后燃烧 波以蔓延的形式传播而合 成目的产物,适用于具有 较高放热量的材料体系如 Ti-TiB2、TiC-SiC、 TiB2-Al2O3、Si3N4-SiC 等,特点是设备简单、能 耗低、工艺过程快、反应 温度高。 热爆SHS技术:将反应混合
Synthesis 缩写 SHS ),又称燃烧合成( Combustion
Synthesis缩写CS)是20世纪80年代迅速兴起的一门材料 制备技术。SHS是化学、材料和工程学的有机结合,是现 代材料最活跃的分支之一。

自蔓延高温合成技术

自蔓延高温合成技术

自蔓延高温合成技术也称燃烧合成,是一种利用化学反应(燃烧)本身放热制备材料的新技术,其特点为: (1)利用化学反应自身放热,完全(或部分)不需要外热源; (2)通过快速自动波燃烧的自维持反应得到所需要成分和结构的产物; (3)通过改变热的释放和传输速度来控制反应过程的速度、温度、转化率和产物的 成分及结构。

图4-15是自蔓延高温合成技术的原理示意图。

把原料按一定比例混合成型,然后通过点火引燃,使其局部发生燃烧反应,并得到所需要的反应产物。

同时,燃烧反应放出的热量足以使其它部分原料逐步燃烧,使整个坯料完全发生反应,获得具有所需要的一定成分和结构的材料。

图4-15 是自蔓延高温合成技术的原理示意图 自蔓延高温合成技术具有节能、工艺设备较简单、产品纯度高,可制备非平衡材料、多种类型复合材料等优点,是一种制备陶瓷和金属间化合物的新方法,从1967年在原苏联首次发现以来,受到了人们的广泛重视。

但这种方法也有一定的局限性,限制了它的发展,如反应温度高、制造的粉末粒度较粗、反应复杂、瞬时高温和生产过程不易控制等。

表4-9列出了自蔓延高温合成的一些参数。

一些材料。

自蔓延高温合成(self–propagation high–temperature synthesis,简称SHS),又称为燃烧合成(combustion synthesis)技术,是利用反应物之间高的化学反应热的自加热和自传导作用来合成材料的一种技术,当反应物一旦被引燃,便会自动向尚未反应的区域传播,直至反应完全,是制备无机化合物高温材料的一种新方法。

燃烧引发的反应或燃烧波的蔓延相当快,一般为0.1~20.0cm/s,最高可达25.0cm/s,燃烧波的温度或反应温度通常都在2100~3500K以上,最高可达5000K。

SHS以自蔓延方式实现粉末间的反应,与制备材料的传统工艺比较,工序减少,流程缩短,工艺简单,一经引燃启动过程后就不需要对其进一步提供任何能量。

SHS--自蔓延高温合成技术讲稿

SHS--自蔓延高温合成技术讲稿

SHS的特点
(3) SHS提高合成材料的纯度 SHS燃烧波的温度很高, 可导致低熔点杂质的挥发, 从而形成比传统合成方法更为纯净的产物。保证杂质的 挥发是合成纯净材料的重要条件, 而挥发过程必然造成 产物中有较大数量的气孔。通过加压自蔓延的方式可以 合成致密度较高的材料,但却不利于杂质的挥发。 高温有利于杂质的挥发, 但同时也会造成反应物的挥 发, 同时由于SHS合成多相平衡的特点, 反应产物中出 现了副产物相, 在多相的复相陶瓷合成中情况更为显著。 因此对副产物相的控制也是推动SHS产业化的重要环节。
• 气态-固态反应 以氢化物的合成为例,说明气态 固态反应。实 践表明,在相当多的场合下,金属与氢能进行自 持续燃烧反应,SHS法可合成 ZrH2、TiH2、ScH2等。 一般认为,采用SHS工艺合成氢化物过程中,可分 成两个阶段,第一阶段是在金属中形成固溶体, 第二阶段则为氢化物相的形成过程,这是受热力 学限制的结果。氢化物与其他化合物相比,它属 不稳定产物,500-600℃ 之间倾向于分解。
SHS的动力学
燃烧合成 动 力 学, 主 要 研究 燃烧 波 附 近 高 温化学转变的速率等规律,燃烧波速率是目前人 们普遍采用的一个SHS动力学参量,它直接反映 了燃烧 前 沿 的 移 动 速度 ; 另外 有 关 的 概念 还 有 质量燃烧速率和能量释放率等。 燃烧机制是指 物质燃烧过程中所发 生 的化学 反应,物理化学变化和物质传输过程规律以及这 些变化之间的关系。燃烧机制可以归纳为以下四 种类型: (1)固相扩散机制 ;(2)气体传输机制; (3)溶解析出机制 ;(4)气体渗透机制 。
ü 硼与钛以及硼与其他难熔金属的反应是另一类固 -固反应,这类反应的特点是既可以采用这些元 素直接进行反应,又可以采用它们的金属氧化物 与硼反应来制取产物。不过,后者通常用于金属 不能直接与硼进行燃烧反应的场合,例如铬(钨 也可以)的硼化物的合成可以通过下述反应制取 产物。其中氧化硼可以溶于热水中,从而从产物 中去除它。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020/12/2
10
三、自蔓延及合成材料的特点
自蔓延的主要特点:
合成材料的特点:
1)获得高温:
1)产物纯度高;
燃烧波温度2100~3500℃,最高可达5000℃;
2)反应快速:
2)制备工序少,周期短;
燃烧波的蔓延速度:0.1~25cm/s;
加热速度:103~106℃/s
3)节能;
3)自发进行: 一经点燃无需进一步提供能量;
T↓
η=0
η=0
η↑
η↑到1
η=1
q=0
q =0
q↑到q max q max 到q↓
q↓
未受影响区 预热区 初始燃烧区 结构转化区 冷却区
2020/12/2
9
整体点火方 式
2、热爆模式 这种方法是把粉末压块放在炉内加热,直至整个样品同时
发生燃烧反应。反应不以波的形式传播,而是在整个反应物内 同时发生。这一反应过程温度高,最高燃烧温度可达上万度 以上。 这样的温度,可使生成物熔化,在加压方式下获得致密的产 物。
1972年,SHS开始用于粉末的工业生产;1975年,开始把SHS和 烧结、热压、热挤、轧制、爆炸、堆焊和离心铸造等技术结合; 20世纪70年代末,一些致密SHS制品已工业生产。
国内情况:我国在20世纪70年代已利用Mo-Si的放热反应来制 备MoSi2粉末。西北有色金属研究院、武汉理工大学、冶金部钢 铁研究总院和中南工业大学等单位开展了SHS研究。
式中:Nx---氧化物、卤化物等 M----金属还原剂(Mg、Al、Ca等) Z----非金属或非金属化合物(N2,C,B2O3,SiO2等) Ny---合成产品 Mx---金属还原剂的化合物 Q----合成反应所放出的热量
2020/12/2
14
应用: ① 制备金属单质 M+AO→MO+A+ Q
热剂法是表面冶金 中有效的方法!
无机材料合成
第十二章 自蔓延高温合成技术
目录
1、什么是自蔓延高温合成法? 2、自蔓延传播原理 3、自蔓延高温合成法的特点 4、自蔓延合成方法分类及反应原理 5、自蔓延高温合成技术及应用
精品资料
你怎么称呼老师? 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进? 你所经历的课堂,是讲座式还是讨论式? 教师的教鞭 “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……” “太阳当空照,花儿对我笑,小鸟说早早早……”
4)产物活性高,易形成复杂 相、固溶体(缺陷)、亚稳相、
4)温度梯度大; 5)冷凝速度大;
梯度材料; 5)晶粒尺寸小;
2020/12/2
11
四、自蔓延合成方法分类及反应原理
1、直接合成法
直接合成法是两种或两种以上反应物发生反应直接合成产物。
以简单的二元反应体系为例, 其原理为:
xA + yB —— AxBy + Q 其中A、B为金属或非金属单质, AxBy为合成反应的产物,Q为合 成反应放出的热量。
热量大,温度高。 ② 相对于单质元素的化合反应,
燃烧由稳态向不稳定态的转变主要是反应所生成的热量不足所 致,最终能导致燃烧过程熄灭。因此,低放热反应要使燃烧波持 续蔓延是比较困难的。
2020/12/2
8
燃烧波以稳态传播时,燃烧波就在试样(或空间)建立起温度、 转化率和热释放率分布图,图中燃烧波从右向左蔓延。
T0
T﹥T0 T﹥T着火点 T↑到T max
2020/12/2
12
原料:金属、非金属单质、金属氧化物
应用:制备高熔点的碳化物、硼化物、硅化物以及粉末冶金领域 中制取难熔的金属间化合物和金属基陶瓷等 。
原理:
气、固
N2&+4B=2CrB2+B2O3
气体单质直接与硼反应生成硼化物 金属单质直接与硼反应生成硼化物
● 燃烧合成(combustion synthesis):
燃烧:任何具有化学特征、结果能生成有实用价值的凝聚物的放热 反应都可称谓燃烧。
自蔓延合成的要求:
1、剧烈的放热反应 2、绝热燃烧温度(Ta) 1) 要使燃烧能够自持,产物的Ta大于1800K; 2) Ta大于产物熔点,存在液相,反应易进行
Ta---绝热温度: 反应过程中能达到的最高温度.
金属氧化物与硼反应生成硼化物
固、固
溶于热
2020/12/2
水除 去
13
2、热剂法
概念:热剂反应泛指一种还原剂(一般为金属)与另一种金属或 非金属氧化物反应,形成一种更稳定的氧化物和相应的金属或 非金属,同时释放出大量热量的化学反应。
本质:是自蔓延高温还原合成反应
反应式: Nx+ M +(Z)= Mx+ Ny1+(Ny2)+ Q
2020/12/2
5
一、自蔓延高温合成
● 自蔓延高温合成
实质:就是一种高 放热化学反应!
(Self-propagating High-temperature Synthesis,简称SHS)
概念:利用化学反应放出的热量使燃烧反应自发的进行下去,以获 得具有指定成分和结构的燃烧产物。
强烈的放热反应
反应以反应波 的形式传播
2020/12/2
7
二、自蔓延传播原理
自蔓延高温合成分燃烧和热爆两种模式:
局部点火方 式
1、燃烧模式 大多数燃烧过程,特别是固—固反应,燃烧以恒定的线速逐层
蔓延,蔓延的速度取决于热的发生和耗散过程:
若反应的生成热与消耗的热处于平衡,则燃烧以匀速蔓延通过整 个反应物,反应处于稳定燃烧状态。
如果反应热和耗散热处于不平衡状态,则燃烧随时间呈不均匀的 位移,反应处于不稳定燃烧状态,
② 表面冶金:制备金属的碳化物、硼化物、硅化物;

3Mg+Cr2O3+B2O3→2CrB+3MgO+ Q
④ 制备金属间化合物:

12Al+4Fe3O4+B2O3→2FeB+2Fe3Al+Al2O3+ Q
金属间化合物的Ta小, 需要对反应物进行预烧。
2020/12/2
15
特点: ① 热剂反应最显著的特点是放
4
自蔓延技术的发展历史
19世纪,发现固-固相燃烧反应: 并描述了放热反应从试料一端 迅速蔓延到另一端的自蔓延现象。
20世纪60年代,自蔓延高温合成命名:研究人员发现钛-硼混合 物的自蔓延燃烧合成现象,称之为“固体火焰”。将这种靠反应自 身放热来合成材料的技术称为自蔓延高温合成,即SHS。
20世纪后期,工业化应用:铝热反应已经得到工业应用;
相关文档
最新文档