带电粒子在电场中类平抛运动的典型一题

合集下载

高中物理带电粒子在电场中的运动解题技巧及练习题及解析

高中物理带电粒子在电场中的运动解题技巧及练习题及解析

高中物理带电粒子在电场中的运动解题技巧及练习题及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图,一带电荷量q =+0.05C 、质量M =lkg 的绝缘平板置于光滑的水平面上,板上靠右端放一可视为质点、质量m =lkg 的不带电小物块,平板与物块间的动摩擦因数μ=0.75.距平板左端L =0.8m 处有一固定弹性挡板,挡板与平板等高,平板撞上挡板后会原速率反弹。

整个空间存在电场强度E =100N/C 的水平向左的匀强电场。

现将物块与平板一起由静止释放,已知重力加速度g =10m/s 2,平板所带电荷量保持不变,整个过程中物块未离开平板。

求:(1)平板第二次与挡板即将碰撞时的速率; (2)平板的最小长度;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量。

【答案】(1)平板第二次与挡板即将碰撞时的速率为1.0m/s;(2)平板的最小长度为0.53m;(3)从释放平板到两者最终停止运动,挡板对平板的总冲量为8.0N•s 【解析】 【详解】(1)两者相对静止,在电场力作用下一起向左加速, 有a =qEm=2.5m/s 2<μg 故平板M 与物块m 一起匀加速,根据动能定理可得:qEL =12(M +m )v 21 解得v =2.0m/s平板反弹后,物块加速度大小a 1=mgmμ=7.5m/s 2,向左做匀减速运动平板加速度大小a 2=qE mgmμ+=12.5m/s 2, 平板向右做匀减速运动,设经历时间t 1木板与木块达到共同速度v 1′,向右为正方向。

-v 1+a 1t 1=v 1-a 2t 1解得t 1=0.2s ,v 1'=0.5m/s ,方向向左。

此时平板左端距挡板的距离:x =v 1t 122112a t -=0.15m 此后两者一起向左匀加速,设第二次碰撞时速度为v ,则由动能定理12(M +m )v 2212-(M +m )21'v =qEx 1解得v 2=1.0m/s(2)最后平板、小物块静止(左端与挡板接触),此时小物块恰好滑到平板最左端,这时的平板长度最短。

高中物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)及解析

高中物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)及解析

设此时的圆心位置为 O ,有: Oa r sin 30
OO 3d Oa 解得 OO d
即从 O 点进入磁场的电子射出磁场时的位置距 O 点最远
所以 ym 2r 2d 电子束从 y 轴正半轴上射入电场时的纵坐标 y 的范围为 0 y 2d 设电子从 0 y 2d 范围内某一位置射入电场时的纵坐标为 y,从 ON 间射出电场时的位
);
(3) 0 B 16mv0 或 15qL
B 16mv0 3qL
【解析】 【分析】 (1)a、b 碰撞,由动量守恒和能量守恒关系求解碰后 a、b 的速度; (2)碰后 a 在电场中向左做类平抛运动,根据平抛运动的规律求解 P 点的位置坐标; (3)要使 b 球不从 CD 边界射出,求解恰能从 C 点和 D 点射出的临界条件确定磁感应强度的 范围。 【详解】 (1)a 匀速,则
解得: L 9 d 4
当3 d 2y 2y
【点睛】本题属于带电粒子在组合场中的运动,粒子在磁场中做匀速圆周运动,要求能正 确的画出运动轨迹,并根据几何关系确定某些物理量之间的关系;粒子在电场中的偏转经 常用化曲为直的方法,求极值的问题一定要先找出临界的轨迹,注重数学方法在物理中的 应用.
6.如图所示,荧光屏 MN 与 x 轴垂直放置,与 x 轴相交于 Q 点, Q 点的横坐标 x0 6cm ,在第一象限 y 轴和 MN 之间有沿 y 轴负方向的匀强电场,电场强度 E 1.6105 N / C ,在第二象限有半径 R 5cm 的圆形磁场,磁感应强度 B 0.8T ,方 向垂直 xOy 平面向外.磁场的边界和 x 轴相切于 P 点.在 P 点有一个粒子源,可以向 x 轴 上方 180°范围内的各个方向发射比荷为 q 1.0108C / kg 的带正电的粒子,已知粒子的

高考物理带电粒子在电场中的运动试题经典

高考物理带电粒子在电场中的运动试题经典
(1)试求AD间的距离;
(2)若去除磁场,改为纸平面内垂直于AC方向的匀强电场,要想由A射入的粒子仍然能经过D点,试求该电场的强度的大小及方向;粒子此时经D点时速度的偏向角比60°角大还是小?为什么?
【答案】(1) (2)
【解析】
【详解】
(1)带电粒子在磁场中做匀速圆周运动,速度偏角为 ,则粒子转过的圆心角为 ,
(1)物块第一次与挡板碰撞前瞬间物块的速度大小;
(2)物块从置于绝缘板到第二次与挡板碰撞过程中,电场力所做的功W。
解得
因此物体在0~2 s内,以 的加速度加速,
在2~4 s内, 的加速度减速,即在2s时,速度最大
由 得,
(2)物体在0~2s内与在2~4s内通过的位移相等.通过的位移
在0~2 s内,电场力做正功 -
在2~4 s内,电场力做负功
电场力做功W=40 J
5.如图所示,半径r=0.06m的半圆形无场区的圆心在坐标原点O处,半径R=0.1m,磁感应强度大小B=0.075T的圆形有界磁场区的圆心坐标为(0,0.08m),平行金属板MN的极板长L=0.3m、间距d=0.1m,极板间所加电压U=6.4x102V,其中N极板收集到的粒子全部中和吸收.一位于O处的粒子源向第一、二象限均匀地发射速度为v的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x轴正方向,已知粒子在磁场中的运动半径R0=0.08m,若粒子重力不计、比荷 =108C/kg、不计粒子间的相互作用力及电场的边缘效应.sin53°=0.8,cos53°=0.6.
(1)带电粒子在磁场中运动的轨迹半径;
(2)粒子从 轴正半轴上射入电场的纵坐标范围;
(3)带电粒子打到荧光屏上的位置与 点间的最远距离.
【答案】(1) (2) (3)

高二带电粒子在匀强电场中的类平抛运动1

高二带电粒子在匀强电场中的类平抛运动1

带电粒子在匀强电场中的类平抛运动一、模型原题一质量为m ,带电量为q 的正粒子从两极板的中部以速度v 0水平射入电压为U 的竖直向下的匀强电场中,的竖直向下的匀强电场中,如图所示,如图所示,如图所示,已知极板长度已知极板长度为L ,极板间距离为d 。

1.初始条件:带电粒子有水平初速度v 0 2.受力特点:带电粒子受到竖直向下的恒定的电场力mq d U3.运动特点:水平方向为匀速直线运动,水平方向为匀速直线运动,竖直方向为初速度为零的匀竖直方向为初速度为零的匀加速直线运动。

加速直线运动。

4.运动时间:若带电粒子与极板不碰撞,则运动时间为0v Lt =;若带电粒子与极板碰撞,则运动时间可以从竖直方向求得2212t mq d U d=,故Uqm dt =二、模型特征 1.特征描述:侧移2)(21v Lm qd U y =2.能量特点:电场力做正功qy dUW =。

电场力做多少正功,粒子动能增加多少,电势能减少多少。

电场力做多少正功,粒子动能增加多少,电势能减少多少。

3.重要结论:速度.重要结论:速度偏向角的正切偏向角的正切200tan dmv UqLv v y==q ,位移偏向角的正,位移偏向角的正切切22tan dmv UqLL y ==f ,即f q tan 2tan =,即带电粒子垂直进入匀强电场,它离开电场时,就好象是从初速度方向的位移中点沿直线射出来的。

线射出来的。

三、典型题例例1:如图所示,一电子沿Ox 轴射入电场,在电场中运动轨迹为OCD ,已知AB OA =,电子过C 、D 两点时竖直方向分速度分别为Cy v 和Dy v ,电子在OC 段和OD 段动能增量分别为1K E D 和2K E D ,则(,则( ) A.2:1:=DyCyvvB.4:1:=DyCyvv C.3:1:21=D D K K EE D.4:1:21=D D K K EE解析:带电粒子在水平方向做匀速直线运动,由于AB OA =,故带电粒子经过OA 和AB 两段的时间相等;两段的时间相等;带电粒子在竖直方向做初速度为零的匀加速直带电粒子在竖直方向做初速度为零的匀加速直线运动,根据at v =,得2:1:=DyCy v v ,根据221at y =和qEy W =,得4:1:=ODOCyy, 3:1:=CDOCyy ,3:1:=CDOCW W,再根据动能定理3:1:21=D D K K EE,答案选A 、C 。

带电粒子在电场中的运动练习题(经典)

带电粒子在电场中的运动练习题(经典)

带电粒子在电场中的运动专题练习知识点:1.带电粒子经电场加速:处理方法,可用动能定理、牛顿运动定律或用功能关系。

qU =mv t 2/2-mv 02/2 ∴ v t = ,若初速v 0=0,则v = 。

2.带电粒子经电场偏转: 处理方法:灵活应用运动的合成和分解。

带电粒子在匀强电场中作类平抛运动, U 、 d 、 l 、 m 、 q 、 v 0已知。

(1)穿越时间: (2)末速度:(3)侧向位移:(4)偏角:1、如图所示,长为L 、倾角为θ的光滑绝缘斜面处于电场中, 一带电量为+q 、质量为m 的小球,以初速度v 0从斜面底端 A 点开始沿斜面上滑,当到达斜面顶端B 点时,速度仍为v 0,则 ( )A .A 、B 两点间的电压一定等于mgLsin θ/qB .小球在B 点的电势能一定大于在A 点的电势能C .若电场是匀强电场,则该电场的电场强度的最大值一定为mg/qD .如果该电场由斜面中点正止方某处的点电荷产生,则该点电荷必为负 电荷2、如图所示,质量相等的两个带电液滴1和2从水平方向的匀强电场中0点自由释放后,分别抵达B 、C 两点,若AB=BC ,则它们带电荷量之比q 1:q 2等于( ) A .1:2 B .2:1C .1:2D .2:13.如图所示,两块长均为L 的平行金属板M 、N 与水平面成α角放置在同一竖直平面,充电后板间有匀强电场。

一个质量为m 、带电量为q 的液滴沿垂直于电场线方向射人电场,并沿虚线通过电场。

下列判断中正确的是( )。

A 、电场强度的大小E =mgcos α/qB 、电场强度的大小E =mgtg α/qC 、液滴离开电场时的动能增量为-mgLtg αD 、液滴离开电场时的动能增量为-mgLsin α4.如图所示,质量为m 、电量为q 的带电微粒,以初速度V 0从A 点竖直向上射入水平方向、电场强度为E 的匀强电场中。

当微粒经过B 点时速率为V B =2V 0,而方向与E 同向。

专题24 带电粒子在电场中的运动----2022年高考物理一轮重难点复习(解析版)

专题24 带电粒子在电场中的运动----2022年高考物理一轮重难点复习(解析版)

专题24 带电粒子在电场中的运动重点知识讲解 一、带电粒子在匀强电场中的加速1.带电粒子在电场中运动时,重力一般远小于静电力,因此重力可以忽略。

2.如图所示,匀强电场中有一带正电q 的粒子(不计重力),在电场力作用下从A 点加速运动到B 点,速度由v 0增加到v.,A 、B 间距为d ,电势差为U AB.(1)用动力学观点分析:Eq a m =, U E d=,2202v v ad -= (2)用能量的观点(动能定理)分析:2201122AB qU mv mv =- 能量观点既适用于匀强电场,也适用于非匀强电场,对匀强电场又有AB W qU qEd ==。

二、带电粒子在匀强电场中的偏转(1)带电粒子以垂直于电场线方向的初速度v 0进入匀强电场时,粒子做类平抛运动。

垂直于场强方向的匀速直线运动,沿场强方向的匀加速直线运动。

(2)偏转问题的处理方法,类似于平抛运动的研究方法,粒子沿初速度方向做匀速直线运动,可以确定通过电场的时间0lt v =。

粒子沿电场线方向做初速度为零的匀加速直线运动,加速度F qE qU a m m md===; 穿过电场的位移侧移量:221at y =222001().22Uq l ql U md v mv d=⋅=; 穿过电场的速度偏转角: 20tan y v qlU v mv dθ==。

两个结论:(1)不同的带电粒子从静止开始,经过同一电场加速后再进入同一偏转电场,射出时的偏转角度总是相同的。

(2)粒子经过电场偏转后,速度的反向延长线与初速度延长线的交点为粒子水平位移的中点。

(与平抛运动的规律一样) 三、示波管的构造原理(1)示波管的构造:示波器的核心部件是示波管,示波管的构造简图如图所示,也可将示波管的结构大致分为三部分,即电子枪、偏转电极和荧光屏。

(2)示波管的原理a 、偏转电极不加电压时,从电子枪射出的电子将沿直线运动,射到荧光屏的中心点形成一个亮斑。

b 、在XX '(或YY ')加电压时,则电子被加速,偏转后射到XX '(或YY ')所在直线上某一点,形成一个亮斑(不在中心),如图所示。

高中物理每日一点十题之带电粒子在复合场中的类平抛运动

高中物理每日一点十题之带电粒子在复合场中的类平抛运动

高中物理每日一点十题之带电粒子在复合场中的类平抛运动一知识点带电粒子在复合场中的类平抛运动的求解步骤首先根据牛顿第二定律求其加速度.其次将运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向的匀加速直线运动,在两个方向上分别列运动学方程.涉及功能关系,也可用动能定理列方程.例题:(多选)如图所示,倾角为45°的绝缘斜面置于竖直向上的匀强电场(未画出)中,电场强度为E,一质量为m,电荷量为q的带正电小球从斜面上的P点以速度v0水平向右抛出后落在斜面上.已知静电力的大小为重力的一半,不计空气阻力,下列说法正确的是A.小球从抛出到落在斜面上的时间为mv0 qEB.小球落在斜面上时的速度大小为5v0C.落点与P点的距离为22mv02qED.小球落在斜面上时的速度方向与竖直方向的夹角大于30°解:对小球受力分析如图所示则有mg-qE=ma,且qE=12mg,故竖直方向上有h=12at2,水平方向上有x=v0t,又tan 45°=hx联立解得小球从抛出到落在斜面上的时间为t=2mv0qE,A错误;由平抛运动的推论知tan α=2tan 45°=2,则v y=2v0由速度的合成与分解得v=v02+v y2故v=5v0,B正确;由于x=v0t,t=2mv0qE解得x=2mv02qE根据几何关系可得s=2x=22mv02qE,C正确;设v与竖直方向的夹角为β,则tan β=v0v y =v02v0=12<33,故小球落在斜面上时的速度方向与竖直方向的夹角小于30°,D错误.十道练习题(含答案)一、单选题(共7小题)1. 真空中的某装置如图所示,其中平行金属板A、B之间有加速电场,C、D之间有偏转电场,M为荧光屏。

今有质子、氘核和α粒子均由A板从静止开始被加速电场加速后垂直于电场方向进入偏转电场,最后打在荧光屏上。

已知质子、氘核和α粒子的质量之比为1∶2∶4,电荷量之比为1∶1∶2,则下列判断中正确的是( )A. 三种粒子从B板运动到荧光屏经历的时间相同B. 三种粒子打到荧光屏上的位置相同C. 偏转电场的电场力对三种粒子做功之比为1∶2∶2D. 偏转电场的电场力对三种粒子做功之比为1∶2∶42. 如图所示,静止的电子在加速电压为U1的电场的作用下从O经P板的小孔射出,又垂直进入平行金属板间的电场,在偏转电压U2的作用下偏转一段距离.现使U1加倍,要想使电子的运动轨迹不发生变化,应该( )A. 使U2加倍B. 使U2变为原来的4倍C. 使U2变为原来的1/5倍D. 使U2变为原来的1/2倍3. 如图所示,从炽热的金属丝飘出的电子(速度可视为零),经加速电场加速后从两板中间垂直射入偏转电场.电子的重力不计.在满足电子能射出偏转电场的条件下,下述四种情况中,一定能使电子的偏转角变大的是( )A. 仅将偏转电场极性对调B. 仅增大偏转电极板间的距离C. 仅增大偏转电极板间的电压D. 仅减小偏转电极板间的电压4. 如图所示,一价氢离子(H)和二价氦离子(He)的混合体,经同一加速电场加速后,垂直射入同一偏转电场中,偏转后,打在同一荧光屏上,则它们( )A. 同时到达屏上同一点B. 先后到达屏上同一点C. 同时到达屏上不同点D. 先后到达屏上不同点5. 如图所示,地面上某区域存在着竖直向下的匀强电场,一个质量为m的带负电小球以水平方向的初速度v0由O点射入该区域,刚好通过竖直平面中的P点,已知连线OP与初速度方向的夹角为45°,则此带电小球通过P点时的动能为( )A. mvB.C. 2mvD.6. 如图所示,一带负电的液滴,从坐标原点O以速率v0射入水平的匀强电场中,v0的方向与电场方向成θ角,已知油滴质量为m,测得它在电场中运动到最高点P时的速率恰为v0,设P点的坐标为(x P,y P),则应有( )A. x P<0B. x P>0C. x P=0D. 条件不足无法确定7. 喷墨打印机的简化模型如图所示,重力可忽略的墨汁微滴,经带电室带负电后,以速度v垂直匀强电场飞入极板间,最终打在纸上,则微滴在极板间电场中( )A. 向负极板偏转B. 电势能逐渐增大C. 运动轨迹是抛物线D. 运动轨迹与所带电荷量无关二、多选题(共3小题)8. 如图所示,氕、氘、氚的原子核以初速度为零经同一电场加速后,又经同一匀强电场偏转,最后打在荧光屏上,那么( )A. 经过加速电场的过程中,电场力对氚核做的功最多B. 经过偏转电场的过程中,电场力对三种核做的功一样多C. 三种原子核打在屏上的速度一样大D. 三种原子核都打在屏上同一位置处9. 一个质量为m,电荷量为+q的小球以初速度v0水平抛出,在小球经过的竖直平面内,存在着若干个如图所示的无电场区和有理想上下边界的匀强电场区,两区域相互间隔,竖直高度相等,电场区水平方向无限长.已知每一电场区的场强大小相等,方向均竖直向上,不计空气阻力,下列说法正确的是( )A. 小球在水平方向一直做匀速直线运动B. 若场强大小等于,则小球经过每一电场区的时间均相同C. 若场强大小等于,则小球经过每一无电场区的时间均相同D. 无论场强大小如何,小球通过所有无电场区的时间均相同10. 如图所示,水平放置的平行板电容器与某一电源相连,它的极板长L=0.4 m,两极板间距离d=4×10-3 m,有一束由相同带电微粒组成的粒子流以相同的速度v0从两极板中央平行极板射入,开关S 闭合前,两极板间不带电,由于重力作用,微粒能落到下极板的正中央.已知微粒质量m=4×10-5 kg、电荷量q=+1×10-8 C,g=10 m/s2则下列说法正确的是( )A. 微粒的入射速度v0=10 m/sB. 电容器上板接电源正极时微粒有可能从平行板电容器的右边射出电场C. 电源电压为180 V时,微粒可能从平行板电容器的右边射出电场D. 电源电压为100 V时,微粒可能从平行板电容器的右边射出电场1. 【答案】B【解析】设加速电压为U1,偏转电压为U2,偏转极板的长度为L,板间距离为d,在加速电场中,由动能定理得qU1=mv,解得v0=,三种粒子从B板运动到荧光屏的过程,水平方向做速度为v0的匀速直线运动,由于三种粒子的比荷不同,则v0不同,所以三种粒子从B板运动到荧光屏经历的时间不同,故A错误;根据推论y=、tan θ=可知,y与粒子的种类、质量、电量无关,故三种粒子偏转距离相同,打到荧光屏上的位置相同,故B正确;偏转电场的电场力做功为W=qEy,则W与q成正比,三种粒子的电荷量之比为1∶1∶ 2,则电场力对三种粒子做功之比为1∶1∶2,故C、D错误2. 【答案】A【解析】要使电子轨迹不变,则应使电子进入偏转电场后任一水平位移x所对应的偏转距离y保持不变.由y=at2=··()2=;qU1=mv得y=.可见在x、y一定时,U2∝U1.3. 【答案】C【解析】改变偏转电场的极性,只能改变电子受力方向,但电子的偏转角大小不变,选项A错误;根据E=可知,当两极板间距离d增大时,E减小,所以电子受到的电场力减小,其偏转角也减小,选项B错误;电子进入偏转电场后做类平抛运动,则L=v0t、e=ma及tan θ=可得tan θ=,当U增大时偏转角也增大,选项C正确,D错误4. 【答案】B【解析】一价氢离子(H)和二价氦离子(He)的比荷不同,经过加速电场的末速度不同,因此在加速电场及偏转电场的时间均不同,但在偏转电场中偏转距离相同,所以会先后打在屏上同一点,选B 5. 【答案】D【解析】由题可知:小球到P点时,水平位移和竖直位移相等,即v0t=t,合速度v P==v0,则E kP=mv=mv,故选D6. 【答案】A【解析】由于液滴在电场中既受电场力又受重力,由动能定理得:-mgh+W电=mv/2-mv/2=0.即W电=mgh,电场力做正功.由于是负电荷所受电场力方向向左,要使电场力做正功,因而位移方向必须也向左,则必有x P<0,故A正确,B、C、D错7. 【答案】C【解析】带负电的微滴进入电场后受到向上的静电力,故带电微滴向正极板偏转,选项A错误;带电微滴垂直进入电场受竖直向上的静电力作用,静电力做正功,故墨汁微滴的电势能减小,选项B错误;根据x=v0t,y=at2及a=,得带电微滴的轨迹方程为y=,即运动轨迹是抛物线,与所带电荷量有关,选项C正确,D错误8. 【答案】BD【解析】同一加速电场、同一偏转电场,三种原子核带电荷量相同,故在同一加速电场中电场力对它们做的功都相同,在同一偏转电场中电场力对它们做的功也相同,A错,B对;由于质量不同,所以三种原子核打在屏上的速度不同,C错;再根据偏转距离公式或偏转角公式y=,tan θ=知,与带电粒子无关,D对.9. 【答案】AC【解析】将小球的运动沿着水平方向和竖直方向正交分解,水平方向不受外力,以v0做匀速直线运动,故A正确;竖直方向,在无电场区只受重力,加速度为g,竖直向下,有电场区除重力外,还受到竖直向上的恒定的电场力作用,加速度的大小和方向取决于合力的大小和方向.当电场强度等于时,电场力等于mg,故在电场区小球所受的合力为零,在无电场区小球匀加速运动,故经过每个电场区时,小球的速度均不等,因而小球经过每一电场区的时间均不相等,故B错误;当电场强度等于时,电场力等于2mg,故在电场区小球所受的合力大小等于mg,方向竖直向上,加速度大小等于g,方向竖直向上,根据运动学公式有:经过第一个无电场区y=gt,v1=gt1,经过第一个电场区,y=v1t2-gt,v2=v1-gt2,联立解得t1=t2,v2=0.接下来小球的运动重复前面的过程,即在竖直方向上每次通过无电场区都是自由落体运动,每次通过电场区都是末速度为零的匀减速直线运动,故C正确;通过前面的分析可知,小球通过每个无电场区的初速度不一定相同,所以通过无电场区的时间不同,故D错误.10. 【答案】AC【解析】开关S闭合前,两极板间不带电,微粒落到下板的正中央,由=gt2,=v0t,得v0=10 m/s,A 对;电容器上板接电源正极时,微粒的竖直方向加速度更大,水平位移将更小,B错;设微粒恰好从平行板右边缘下侧飞出时的加速度为a,电场力向上,则=at,L=v0t1,mg-=ma,得U1=120 V,同理微粒在平行板右边缘上侧飞出时,可得U2=200 V,所以平行板上板带负电,电源电压为120 V≤U≤200 V时微粒可以从平行板电容器的右边射出电场,C对,D错.。

【物理选修3-1】经典例题-带电粒子在电场中的运动讲解及习题(含答案)

【物理选修3-1】经典例题-带电粒子在电场中的运动讲解及习题(含答案)

带电粒子在电场中的运动专项练习[同步导学] 1.带电粒子的加速(1)动力学分析:带电粒子沿与电场线平行方向进入电场,受到的电场力与运动方向在同一直线上,做加(减)速直线运动,如果是匀强电场,则做匀加(减)速运动.(2)功能关系分析:粒子只受电场力作用,动能变化量等于电势能的变化量. 221qU mv =(初速度为零);2022121qU mv mv -= 此式适用于一切电场. 2.带电粒子的偏转(1)动力学分析:带电粒子以速度v 0垂直于电场线方向飞入两带电平行板产生的匀强电场中,受到恒定的与初速度方向成900角的电场力作用而做匀变速曲线运动 (类平抛运动). (2)运动的分析方法(看成类平抛运动): ①沿初速度方向做速度为v 0的匀速直线运动. ②沿电场力方向做初速度为零的匀加速直线运动.例1如图1—8—1所示,两板间电势差为U ,相距为d ,板长为L .—正离子q 以平行于极板的速度v 0射入电场中,在电场中受到电场力而发生偏转,则电荷的偏转距离y 和偏转角θ为多少? 解析:电荷在竖直方向做匀加速直线运动,受到的力F =Eq =Uq/d 由牛顿第二定律,加速度a = F/m = Uq/md水平方向做匀速运动,由L = v 0t 得t = L/ v 0由运动学公式221at s =可得: U dmv qL L md Uq y 202202)v (21=⋅= 带电离子在离开电场时,竖直方向的分速度:v ⊥dmv qULat 0==离子离开偏转电场时的偏转角度θ可由下式确定:dmv qULv v 200Ítan ==θ. 3.示波管的原理(1)构造及功能如图l —8—2所示 ①电子枪:发射并加速电子.②偏转电极YY ,:使电子束竖直偏转(加信号电压) XX ,:使电子束水平偏转(加扫描电压). ③荧光屏.(2)工作原理(如图1—8—2所示)偏转电极XX ,和YY ,不加电压,电子打到屏幕中心;若电压只加XX ,,只有X 方向偏;若电压只加YY ,,只有y 方向偏;若XX ,加扫描电压,YY ,加信号电压,屏上会出现随信号而变化的图象.4.在带电粒子的加速或偏转的问题中,何时考虑粒子的重力?何时不计重力?一般来说:(1)基本粒子:如电子、质子、α粒子、离子等除有特别说明或有明确暗示以外,一般都不考虑重力(但不忽略质量).(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有特别说明或有明显暗示以外,一般都不能忽略重力. 5.易错易混点带电粒子在电场中发生偏转,—定要区分开位移的方向与速度的方向,它们各自偏角的正切分别为:x y=αtan ,xy v v =βtan ,切不可混 例2两平行金属板相距为d ,电势差为U ,一电子质量为m ,电荷量为e ,从O 点沿垂直于极板的方向射出,最远到达A 点,然后返回,如图1—8—3所示,OA =h ,此电子具有的初动能是 ( )A .UedhB .edUhC .dheUD .d eUh ..例3一束质量为m 、电荷量为q 的带电粒子以平行于两极板的速度v 0进入匀强电场, 如图1—8—4所示.如果两极板间电压为U ,两极板间的距离为d 、板长为L .设粒子束不会击中极板,则粒子从进入电场到飞出极板时电势能的变化量为 .(粒子的重力忽略不计) 分析:带电粒子在水平方向做匀速直线运动,在竖直方向做匀加速运动.电场力做功导致电势能的改变. 3. 在真空中存在空间范围足够大的、水平向右的匀强电场.若将一个质量为m 、带正电电量q 的小球在此电场中由静止释放,小球将沿与竖直方向夹角为︒37的直线运动。

高中物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)含解析

高中物理带电粒子在电场中的运动常见题型及答题技巧及练习题(含答案)含解析
解得:
【点睛】
本题的关键是分析小球的受力情况,来确定小球的运动情况.从力和能两个角度研究动力学问题是常用的思路.
9.如图所示,x轴的上方存在方向与x轴成 角的匀强电场,电场强度为E,x轴的下方存在垂直纸面向里的匀强磁场,磁感应强度 有一个质量 ,电荷量 的带正电粒子,该粒子的初速度 ,从坐标原点O沿与x轴成 角的方向进入匀强磁场,经过磁场和电场的作用,粒子从O点出发后第四次经过x轴时刚好又回到O点处,设电场和磁场的区域足够宽,不计粒子重力,求:
(1)电场反向后匀强电场的电场强度大小;
(2)整个过程中电场力所做的功。
【答案】(1) (2)
【解析】(1)设t末和2t末小物块的速度大小分别为 和 ,电场反向后匀强电场的电场强度大小为E1,小金属块由A点运动到B点过程:

小金属块由B点运动到A点过程:
联立解得: ,则: ;
(2)根据动能定理,整个过程中电场力所做的功:
(1)求粒子到达O点时速度的大小;
(2)如图2所示,在PQ(与ACDB重合且足够长)和收集板MN之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB圆弧面的粒子经O点进入磁场后最多有 能打到MN板上,求所加磁感应强度的大小;
(3)如图3所示,在PQ(与ACDB重合且足够长)和收集板MN之间区域加一个垂直MN的匀强电场,电场强度的方向如图所示,大小 ,若从AB圆弧面收集到的某粒子经O点进入电场后到达收集板MN离O点最远,求该粒子到达O点的速度的方向和它在PQ与MN间运动的时间.
解得
(2)粒子在电场和磁场中的运动轨迹如图所示,粒子第一次出磁场到第二次进磁场,两点间距为
由类平抛规律 ,
由几何知识可得x=y,解得
两点间的距离为 ,代入数据可得

高中物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)及解析

高中物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)及解析

高中物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,竖直平面内有一固定绝缘轨道ABCDP ,由半径r =0.5m 的圆弧轨道CDP 和与之相切于C 点的水平轨道ABC 组成,圆弧轨道的直径DP 与竖直半径OC 间的夹角θ=37°,A 、B 两点间的距离d =0.2m 。

质量m 1=0.05kg 的不带电绝缘滑块静止在A 点,质量m 2=0.1kg 、电荷量q =1×10﹣5C 的带正电小球静止在B 点,小球的右侧空间存在水平向右的匀强电场。

现用大小F =4.5N 、方向水平向右的恒力推滑块,滑块到达B 点前瞬间撤去该恒力,滑块与小球发生弹性正碰,碰后小球沿轨道运动,到达P 点时恰好和轨道无挤压且所受合力指向圆心。

小球和滑块均视为质点,碰撞过程中小球的电荷量不变,不计一切摩擦。

取g =10m/s 2,sin37°=0.6,cos37°=0.8.(1)求撤去该恒力瞬间滑块的速度大小v 以及匀强电场的电场强度大小E ; (2)求小球到达P 点时的速度大小v P 和B 、C 两点间的距离x ;(3)若小球从P 点飞出后落到水平轨道上的Q 点(图中未画出)后不再反弹,求Q 、C 两点间的距离L 。

【答案】(1)撤去该恒力瞬间滑块的速度大小是6m/s ,匀强电场的电场强度大小是7.5×104N/C ;(2)小球到达P 点时的速度大小是2.5m/s ,B 、C 两点间的距离是0.85m 。

(3)Q 、C 两点间的距离为0.5625m 。

【解析】 【详解】(1)对滑块从A 点运动到B 点的过程,根据动能定理有:Fd =12m 1v 2, 代入数据解得:v =6m/s小球到达P 点时,受力如图所示,由平衡条件得:qE =m 2g tanθ, 解得:E =7.5×104N/C 。

高考物理带电粒子在电场中的运动真题汇编(含答案)

高考物理带电粒子在电场中的运动真题汇编(含答案)
电子进入磁场后做匀速圆周运动,洛仑兹力提供向心力
1分
由图可知 1分
得 1分
(3)由抛物线的对称关系,电子在电场中运动的时间为3t1= 1分
电子在磁场中运动的时间t2= 2分
电子从A运动到D的时间t=3t1+ t2= 1分
考点:带电粒子在电场中做类平抛运动匀速圆周运动牛顿第二定律
7.静电喷漆技术具有效率高、质量好、有益于健康等优点,其装置可简化为如图甲所示.A、B为水平放置的间距d=1.6m的两块足够大的平行金属板,两板间有方向由B指向A的 的匀强电场.在A板的中央放置一个安全接她的静电油漆喷枪P,油漆喷枪可向各个方向均匀地喷出初速度大小均为 的油漆微粒,已知油漆微粒的质量均为m=1.0×10-5kg,带负电且电荷量均为q=1.0×10-3C,不计油漆微粒间的相互作用以及油漆微粒带电量对板间电场和磁场的影响,忽略空气阻力,g取 ,已知sin53°=0.8,cos53°=0.6.求(计算结果小数点后保留一位数字):
(1)粒子到达P2点时的速度大小和方向;
(2) ;
(3)粒子第一次从磁场下边界穿出位置的横坐标;
(4)粒子从P1点出发后做周期性运动的周期.
【答案】(1) v0,与x成53°角;(2) ;(3)2L;(4) .
【解析】
【详解】
(1)如图,粒子从P1到P2做类平抛运动,设到达P2时的y方向的速度为vy,
高考物理带电粒子在电场中的运动真题汇编(含答案)
一、高考物理精讲专题带电粒子在电场中的运动
1.如图甲所示,粗糙水平轨道与半径为R的竖直光滑、绝缘的半圆轨道在B点平滑连接,过半圆轨道圆心0的水平界面MN的下方分布有水平向右的匀强电场E,质量为m的带正电小滑块从水平轨道上A点由静止释放,运动中由于摩擦起电滑块电量会增加,过B点后电量保持不变,小滑块在AB段加速度随位移变化图像如图乙.已知A、B间距离为4R,滑块与轨道间动摩擦因数为μ=0.5,重力加速度为g,不计空气阻力,求

带电粒子在匀强电场中的类平抛运动及解法

带电粒子在匀强电场中的类平抛运动及解法

带电粒子在匀强电场中的类平抛运动及解法当带电粒子垂直匀强电场进入、且只受电场力时,粒子以类平抛运动进行偏转。

原题:设真空中两平行金属板板间距离为d ,板长为l ,板间加以电压U ,如图所示,一质量为m 电量为q 的粒子以v 0的初速度沿中轴线射入,且能从板间射出。

则:在垂直场强方向做匀速运动:v x =v 0,穿越电场时间0v l t = ① 在电场方向做匀加速运动:md Uq m Eq a ==② 离开电场时y 方向分速度0mdv Uql at v y == ③ 离开电场时y 方向上的位移:2022221dmv Uql at y == ④ 离开电场时偏转角θ:200tan mdv Uql v v y==θ ⑤ 结论:带电粒子在两平行板间的电场中偏转时,其板长为L ,在满足带电粒子能射出平行板区的条件下,将带电粒子射出电场时运动的方向反向延长与x 轴的交点,必在2L 处,所以有Ly v v y2tan 0==ϕ. 变式题一:由2022221dmv Uql at y ==知,随入射初速度v 0的减小y 增大,则粒子会不能从板间穿出(如图),则运动时间t 是由公式0v x t =决定(或a y t 2=)。

其它解法同类平抛运动。

变式二:若静止的带电粒子先在电场U 1中加速度,然后进入电场U 2中偏转(如图),带电粒子在加速电场中,由动能定理可知:20121mv qU = ⑥由④⑤⑥得:1224dU l U y = ⑦ 122tan dU l U =θ ⑧ 注意:微观带电粒子,在电场中或在磁场中时,其重力一律忽略不计,宏观带电微粒,在电场中或在磁场中时,其重力不能忽略,根据具体形况分析求解。

例1.如图9-5-1所示,一束带电粒子(不计重力)垂直电场方向进入偏转电场,试讨论以下情况中,粒子应具备什么条件下才能得到相同的偏转距离y 和偏转角φ(U 、d 、L 保持不变)(1)进入偏转电场的速度相同 (2)进入偏转电场的动能相同(3)进入偏转电场的动量相同(4)先由同一加速电场加速后,再进入偏转电场〖解析〗由题意可得:偏转距离y :22221o mdv UqL y == 偏转角φ:2arctan omdv UqL =ϕ(1)因为v 0相同,当q/m 相同,y 、φ相同 (2)因为2021mv 相同,当q 相同,y 、φ相同 (3)因为mv 0相同,当q/v 0相同,y 、φ相同(4)设加速电压为U′,由 221'o mv qU = 可得: '2arctan ,'42dU UL vU UL y ==ϕ 不论带电粒子的m 、q 如何,只要经过同一加速电场加速,再垂直进入同一偏转电场,y 和φ都相同。

高考物理带电粒子在电场中的运动试题(有答案和解析)及解析

高考物理带电粒子在电场中的运动试题(有答案和解析)及解析

高考物理带电粒子在电场中的运动试题(有答案和解析)及解析一、高考物理精讲专题带电粒子在电场中的运动1.如图,质量分别为m A=1kg、m B=2kg的A、B两滑块放在水平面上,处于场强大小E=3×105N/C、方向水平向右的匀强电场中,A不带电,B带正电、电荷量q=2×10-5C.零时刻,A、B用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s末细绳断开.已知A、B与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s2.求:(1)前2s内,A的位移大小;(2)6s末,电场力的瞬时功率.【答案】(1) 2m (2) 60W【解析】【分析】【详解】(1)B所受电场力为F=Eq=6N;绳断之前,对系统由牛顿第二定律:F-μ(m A+m B)g=(m A+m B)a1可得系统的加速度a1=1m/s2;由运动规律:x=12a1t12解得A在2s内的位移为x=2m;(2)设绳断瞬间,AB的速度大小为v1,t2=6s时刻,B的速度大小为v2,则v1=a1t1=2m/s;绳断后,对B由牛顿第二定律:F-μm B g=m B a2解得a2=2m/s2;由运动规律可知:v2=v1+a2(t2-t1)解得v2=10m/s电场力的功率P=Fv,解得P=60W2.如图所示,竖直平面内有一固定绝缘轨道ABCDP,由半径r=0.5m的圆弧轨道CDP和与之相切于C点的水平轨道ABC组成,圆弧轨道的直径DP与竖直半径OC间的夹角θ=37°,A、B两点间的距离d=0.2m.质量m1=0.05kg的不带电绝缘滑块静止在A点,质量m2=0.1kg、电荷量q=1×10-5C的带正电小球静止在B点,小球的右侧空间存在水平向右的匀强电场.现用大小F=4.5N、方向水平向右的恒力推滑块,滑块到达月点前瞬间撤去该恒力,滑块与小球发生弹性正碰,碰后小球沿轨道运动,到达P点时恰好和轨道无挤压且所受合力指向圆心.小球和滑块均视为质点,碰撞过程中小球的电荷量不变,不计一切摩擦.取g=10m/s2,sin37°=0.6,cos37°=0.8.(1)求撤去该恒力瞬间滑块的速度大小v 以及匀强电场的电场强度大小E ; (2)求小球到达P 点时的速度大小v P 和B 、C 两点间的距离x . 【答案】(1) 6m /s ;7.5×104N /C (2) 2.5m /s ;0.85m 【解析】 【详解】(1)对滑块从A 点运动到B 点的过程,根据动能定理有:2112Fd m v = 解得:v =6m /s小球到达P 点时,受力如图所示:则有:qE =m 2g tan θ, 解得:E =7.5×104N /C(2)小球所受重力与电场力的合力大小为:2cos m gG 等θ=小球到达P 点时,由牛顿第二定律有:2P v G r=等解得:v P =2.5m /s滑块与小球发生弹性正碰,设碰后滑块、小球的速度大小分别为v 1、v 2, 则有:m 1v =m 1v 1+m 2v 222211122111222m v m v m v =+ 解得:v 1=-2m /s(“-”表示v 1的方向水平向左),v 2=4m /s 对小球碰后运动到P 点的过程,根据动能定理有:()()22222211sincos 22P qE x r m g r r m v m v θθ--+=- 解得:x =0.85m3.如图所示,一内壁光滑的绝缘圆管ADB 固定在竖直平面内.圆管的圆心为O ,D 点为圆管的最低点,AB 两点在同一水平线上,AB=2L ,圆管的半径为r=2L(自身的直径忽略不计).过OD 的虚线与过AB 的虚线垂直相交于C 点,在虚线AB 的上方存在方向水平向右、范围足够大的匀强电场;虚线AB 的下方存在方向竖直向下、范围足够大的匀强电场,电场强度大小E 2=mgq.圆心O 正上方的P 点有一质量为m 、电荷量为-q(q>0)的小球(可视为质点),PC 间距为L .现将该小球从P 点无初速释放,经过一段时间后,小球刚好从管口A 无碰撞地进入圆管内,并继续运动.重力加速度为g .求:(1)虚线AB 上方匀强电场的电场强度E 1的大小; (2)小球在AB 管中运动经过D 点时对管的压力F D ;(3)小球从管口B 离开后,经过一段时间到达虚线AB 上的N 点(图中未标出),在圆管中运动的时间与总时间之比ABPNt t . 【答案】(1)mg q (2)2mg ,方向竖直向下(3)4ππ+【解析】 【分析】(1)小物体释放后在重力和电场力的作用下做匀加速直线运动,根据正交分解,垂直运动方向的合力为零,列出平衡方程即可求出虚线AB 上方匀强电场的电场强度;(2)根据动能定理结合圆周运动的规律求解小球在AB 管中运动经过D 点时对管的压力F D ;(3)小物体由P 点运动到A 点做匀加速直线运动,在圆管内做匀速圆周运动,离开管后做类平抛运动,结合运动公式求解在圆管中运动的时间与总时间之比. 【详解】(1)小物体释放后在重力和电场力的作用下做匀加速直线运动,小物体从A 点沿切线方向进入,则此时速度方向与竖直方向的夹角为45°,即加速度方向与竖直方向的夹角为45°,则:tan45°= mg Eq解得:mg qE =(2)从P 到A 的过程,根据动能定理:mgL+EqL=12mv A 2 解得v A =2gL小球在管中运动时,E 2q=mg ,小球做匀速圆周运动,则v 0=v A =2gL在D 点时,下壁对球的支持力2022v F m mg r==由牛顿第三定律,22F F mg =='方向竖直向下.(3)小物体由P 点运动到A 点做匀加速直线运动,设所用时间为t 1,则:211222L gt =解得12L t g= 小球在圆管内做匀速圆周运动的时间为t 2,则:2323244A rL t v gππ⋅==小球离开管后做类平抛运动,物块从B 到N 的过程中所用时间:322L t g= 则:24t t ππ=+ 【点睛】本题考查带点小物体在电场力和重力共同作用下的运动,解题关键是要分好运动过程,明确每一个过程小物体的受力情况,并结合初速度判断物体做什么运动,进而选择合适的规律解决问题,匀变速直线运动利用牛顿第二定律结合运动学公式求解或者运用动能定理求解,类平抛利用运动的合成和分解、牛顿第二定律结合运动学规律求解.4.如图1所示,光滑绝缘斜面的倾角θ=30°,整个空间处在电场中,取沿斜面向上的方向为电场的正方向,电场随时间的变化规律如图2所示.一个质量m=0.2kg ,电量q=1×10-5C 的带正电的滑块被挡板P 挡住,在t=0时刻,撤去挡板P .重力加速度g=10m/s 2,求:(1)0~4s 内滑块的最大速度为多少? (2)0~4s 内电场力做了多少功? 【答案】(1)20m/s (2)40J 【解析】 【分析】对滑块受力分析,由牛顿运动定律计算加速度计算各速度. 【详解】【解】(l)在0~2 s 内,滑块的受力分析如图甲所示,电场力F=qE11sin F mg ma θ-=解得2110/a m s =在2 ---4 s 内,滑块受力分析如图乙所示22sin F mg ma θ+=解得2210/a m s =因此物体在0~2 s 内,以2110/a m s =的加速度加速, 在2~4 s 内,2210/a m s =的加速度减速,即在2s 时,速度最大由1v a t =得,max 20/v m s =(2)物体在0~2s 内与在2~4s 内通过的位移相等.通过的位移max202v x t m == 在0~2 s 内,电场力做正功1160W F x J == - 在2~4 s 内,电场力做负功2220W F x J ==-电场力做功W=40 J5.一电路如图所示,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平行板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有一未知的、待研究的带电粒子沿虚线方向以v0=2.0m/s 的初速度射入MN 的电场中,已知该带电粒子刚好从极板的右侧下边缘穿出电场,求该带电粒子的比荷q/m (不计粒子的重力,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -⨯ (2)46.2510/C kg -⨯【解析】 【分析】 【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++;电容器两端电压:222816R U U IR V V ===⨯=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==⨯⨯=⨯(2)粒子在电场中做类平抛运动,则:0L v t =21122Uq d t dm= 联立解得46.2510/qC kg m-=⨯6.如图所示,荧光屏MN 与x 轴垂直放置,与x 轴相交于Q 点,Q 点的横坐标06x cm =,在第一象限y 轴和MN 之间有沿y 轴负方向的匀强电场,电场强度51.610/E N C =⨯,在第二象限有半径5R cm =的圆形磁场,磁感应强度0.8B T =,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为81.010/qC kg m=⨯的带正电的粒子,已知粒子的发射速率60 4.010/v m s =⨯.不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点间的最远距离. 【答案】(1)5cm (2)010y cm ≤≤ (3)9cm 【解析】 【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动20v qv B m r=解得:05mv r cm qB== (2)由(1)问中可知r R =,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示,由几何关系可知四边形1PO FO '为菱形,所以1//FO O P ',又O P '垂直于x 轴,粒子出射的速度方向与轨迹半径1FO 垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为010y cm ≤≤.(3)假设粒子没有射出电场就打到荧光屏上,有000x v t =2012h at =qE a m=解得:18210h cm R cm =>=,说明粒子离开电场后才打到荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则0x v t =212y at =代入数据解得2x y =设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出的电场时速度方向与x 轴正方向间的夹角为θ,000tan 2y qE x v m v yv v θ===g,所以()()00tan 22H x x x y y θ=-=-g , 由数学知识可知,当()022x y y -=时,即 4.5y cm =时H 有最大值,所以max 9H cm =7.能量守恒是自然界基本规律,能量转化通过做功实现。

【物理】 高考物理带电粒子在电场中的运动试题(有答案和解析)及解析

【物理】 高考物理带电粒子在电场中的运动试题(有答案和解析)及解析

【答案】(1) E mg q
(2) xCN 7L
(3)
t总=(3
3 4
)
2L g
【解析】
(1)小物体无初速释放后在重力、电场力的作用下做匀加速直线运动,小物体刚好沿切线 无碰撞地进入圆管内,故小物体刚好沿 PA 连线运动,重力与电场力的合力沿 PA 方向;又
PA AC L ,故 tan 450 qE ,解得: E mg
6.如图所示,一根光滑绝缘细杆与水平面成 α=30°角倾斜固定.细杆的一部分处在场强 方向水平向右的匀强电场中,场强 E=2 3 ×104N/C.在细杆上套有一个带负电的小球, 带电量为 q=1×10﹣5C、质量为 m=3×10﹣2kg.现使小球从细杆的顶端 A 由静止开始沿杆 滑下,并从 B 点进入电场,小球在电场中滑至最远处的 C 点.已知 AB 间距离 x1=0.4m,g =10m/s2.求: (1)小球通过 B 点时的速度大小 VB; (2)小球进入电场后滑行的最大距离 x2; (3)试画出小球从 A 点运动到 C 点过程中的 v﹣t 图象.
解得:小球抛出时的初速度
v0
23 3
m
s
(2)在
B
点时, sin60
vy vB
,则 vB
43 3
m s
小球在
A
点时, FN
qE
mg
m
vA2 R
,解得: vA
3ms
小球从 B 到 A 过程,由动能定理得: (mg qE)(R Rcos ) Wf
1 2
mvA2
1 2
mvB2
解得:小球从 B 到 A 的过程中克服摩擦所做的功Wf
mg qE ma ,解得:小球的加速度
a mg qE 210 1103 104 m / s2 5m / s2

高中物理模型16 电场中的类平抛(解析版)

高中物理模型16 电场中的类平抛(解析版)

高中物理模型16 电场中的类平抛(原卷版)1.运动情况:如果带电粒子以初速度v0垂直电场强度方向进入匀强电场中,则带电粒子在电场中做类平抛运动,如图所示。

2.处理方法:将粒子的运动分解为沿初速度方向的匀速直线运动和沿电场力方向的匀加速直线运动。

根据运动的合成与分解的知识解决有关问题。

3.基本关系式:运动时间t=,加速度a===,偏转量y=at2=,偏转角θ的正切值tan θ===。

4.带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的。

证明:由qU1=my=at2=··tan θ=得y=,tan θ=。

(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O为粒子水平位移的中点,即O到偏转电场边缘的距离为。

5.带电粒子在匀强电场中偏转的功能关系带电粒子的末速度v也可以从能量的角度进行求解:qU y =mv2-m,其中U y =y,指初、末位置间的电势差。

【典例1】图示为示波管的工作原理图:电子经电场加速后垂直于偏转电场方向射入偏转电场,若加速电压为U1,偏转电压为U2,偏转电场的极板长度与极板间的距离分别为L和d,y为电子离开偏转电场时发生的偏转距离。

取“单位偏转电压引起的偏转距离”来描述示波管的灵敏度,即(该比值越大则灵敏度越高),则下列方法可以提高示波管的灵敏度的是()。

A.增大U1B.增大U2C.减小LD.减小d【变式训练1】(多选)如图甲所示,氕核、氘核、氚核三种粒子从同一位置无初速度地飘入电场线水平向右的加速电场E1,之后进入电场线竖直向下的匀强电场E2发生偏转,最后打在屏上。

整个装置处于真空中,不计粒子重力及其相互作用,那么()。

甲A.偏转电场E2对三种粒子做功一样多B.三种粒子打到屏上时的速度一样大C.三种粒子运动到屏上所用时间相同D.三种粒子一定打到屏上的同一位置【典例2】(多选)如图所示,电荷量之比q A∶q B=1∶3的带电粒子A、B以相等的速度v0从同一点出发,沿着与电场强度垂直的方向射入平行板电容器中,分别打在C、D点,若OC=CD,忽略粒子重力的影响,则()。

高考物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)含解析

高考物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)含解析

高考物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)含解析一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L ,L<y<2L 的区域内,有沿y 轴正方向的匀强电场.现有一质量为四电荷量为q 的带负电粒子从坐标(L ,3L/2)处以初速度0v 沿x 轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E ;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小B ;(3)求第(2)问中粒子从进入磁场到坐标(-L ,0)点所用的时间.【答案】(1)2mv E qL=(2)04nmv B qL =n=1、2、3......(3)02L t v π= 【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有: 0L v t =,2122L at =,qE ma = 联立解得: 2mv E qL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyv v θ==l 速度大小002sin v v v θ== 设x 为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L ,0 )点,应满足L=2nx ,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x 时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R ,圆弧对应的圆心角为2π.则有2R ,此时满足L=2nx 联立可得:22R n=由牛顿第二定律,洛伦兹力提供向心力,则有:2v qvB m R=得:04nmv B qL=,n=1、2、3.... 轨迹如图乙设圆弧的半径为R ,圆弧对应的圆心角为2π.则有222x R ,此时满足()221L n x =+联立可得:()2212R n =+由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB m R =得:()02221n mv B qL+=,n=1、2、3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qB v ππππ++=⨯==2.平面直角坐标系的第一象限和第四象限内均存在垂直纸面向里的匀强磁场,磁感应强度大小分别为2B 和B (B 的大小未知),第二象限和第三象限内存在沿﹣y 方向的匀强电场,x 轴上有一点P ,其坐标为(L ,0)。

带电粒子在匀强电场中的运动典型例题与练习(含答案)

带电粒子在匀强电场中的运动典型例题与练习(含答案)

专题: 带电粒子在匀强电场中的运动典型题注意:带电粒子是否考虑重力要依据情况而定(1)基本粒子:如电子、质子、 粒子、离子等,除有说明或明确的暗示外,一般都不考虑重力(但不能忽略质量)。

(2)带电颗粒:如液滴、油滴、尘埃、小球等,除有说明或明确的暗示外,一般都不能忽略重力。

一、带电粒子在匀强电场中的加速运动【例1】如图所示,在真空中有一对平行金属板,两板间加以压U 。

在板间靠近正极板附近有一带正电荷q 的带电粒子,它在电场力作用下由开始从正极板向负极板运动,速度为多大?【例2】如图所示,两个极板的正中央各有一小孔,两板间加以电压U ,一带正电荷q 的带电粒子以初速度v 0从左边的小孔射入,并从右边的小孔射出,则射出时速度为多少?二、带电粒子在电场中的偏转(垂直于场射入)⑴运动状态分析:粒子受恒定的电场力,在场中作匀变速曲线运动.⑵处理方法:采用类平抛运动的方法来分析处理——(运动的分解).02102v tat t 垂直于电场方向匀速运动:x=沿着电场方向作初速为的匀加速:y=两个分运动联系的桥梁:时间相等设粒子带电量为q ,质量为如图6-4-3两平行金属板间的电压为U,板长为L ,板间距离为d .则场强UE d =,加速度qE qUammd, 通过偏转极板的时间:0L t v 侧移量:y22221242LU qUL at dU mdv 偏加偏转角:0tanat v 202LU qULdU mdv 偏加(U 偏、U加分别表示加速电场电压和偏转电场电压)带电粒子从极板的中线射入匀强电场,其出射时速度方向的反向延长线交于入射线的中点.所以侧移距离也可表示为: tan 2Ly .粒子可看作是从两板间的中点沿直线射出的 M N q U M N qUv 0 v 图6-4-3【例3】质量为m 、电荷量为q 的带电粒子以初速0v 沿垂直于电场的方向,进入长为l 、间距为d 、电压为U 的平行金属板间的匀强电场中,粒子将做匀变速运动,如图所示,若不计粒子重力,则可求出如下相关量:(1)粒子穿越电场的时间t :(2)粒子离开电场时的速度v(3)粒子离开电场时的侧移距离y : (4)粒子离开电场时的偏角ϕ:(5)速度方向的反向延长线必过偏转电场的中点 解:(1)粒子穿越电场的时间t :粒子在垂直于电场方向以0v v x =做匀速直线运动,t v l 0=,0v l t =; (2)粒子离开电场时的速度v :粒子沿电场方向做匀加速直线运动,加速度mdqUm qE a ==,粒子离开电场时平行电场方向的分速度0mdv qUl at v y ==,所以20222)(mdv qUl v v v v y x +=+=。

模型21类平抛运动(带电粒子在电场中的偏转)(教师版含解析)-高考物理模型专题突破

模型21类平抛运动(带电粒子在电场中的偏转)(教师版含解析)-高考物理模型专题突破

21类平抛运动(带电粒子在电场中的偏转)1.(2020·湖南知源学校高二月考)AB 板间存在竖直方向的匀强电场,现沿垂直电场线方向射入三种比荷(电荷量与质量的比)相同的带电微粒(不计重力)a 、b 和c 的运动轨迹如图所示,其中b 和c 是从同一点射入的.不计空气阻力,则可知粒子运动的全过程说法错误的是( )A .运动加速度∶a a =a b =a cB .飞行时间∶t b =t c >t aC .水平速度∶v a >v b >v cD .电势能的减少量∶ΔE c =ΔE b >ΔE a 【答案】D 【详解】A .根据牛顿第二定律得:微粒的加速度为qEa m=,比荷相同,E 相同,所以加速度相同,即a a =a b =a c .故A 正确。

B .三个带电微粒竖直方向都做初速度为零的匀加速直线运动,由212y at =得:t =由图有:y b =y c >y a ,则得:t b =t c >t a .故B 正确。

C .三个带电微粒水平方向都做匀速直线运动,由x =v 0t ,由图知:x a >x b >x c ,又t b =t c >t a .则得:v a >v b >v c .故C 正确。

D .电场力做功为 W =qEy ,由于电荷量关系不能确定,所以不能确定电场力做功的大小,也就不能确定电势能减少量的大小。

故D 错误。

本题选择错误的,故选D 。

2.(2020·江西九江·高二期中)如图所示,一带电小球从A 处竖直向上进入一水平方向的匀强电场中,进入电场时小球的动能为E k A =4 J ,运动到最高点B 时小球的动能为E k B =5 J ,小球运动到与A 点在同一水平面上的C 点(图中未画出)时小球的动能为E k C ,则E k A :E k C 为( )A .l :lB .2:7C .1:4D .l :6【答案】D 【详解】设小球在A 点的初速度为v 0,已知2k 01=4J 2A E mv =到达最高点B 点时速度为v 1,方向水平,且2k 11=5J 2B E mv =到达C 点时的速度为v C ,并以水平向右为x 轴正方向,竖直向上为y 轴正方向建立平面直角坐标系。

易错点18 电容器 带电粒子在电场中的运动(解析版) -备战2023年高考物理考试易错题

易错点18 电容器 带电粒子在电场中的运动(解析版) -备战2023年高考物理考试易错题

易错点18电容器 带电粒子在电场中的运动例题1. (2022·重庆·高考真题)如图为某同学采用平行板电容器测量材料竖直方向尺度随温度变化的装置示意图,电容器上极板固定,下极板可随材料尺度的变化上下移动,两极板间电压不变。

若材料温度降低时,极板上所带电荷量变少,则( )A .材料竖直方向尺度减小B .极板间电场强度不变C .极板间电场强度变大D .电容器电容变大【答案】A【解析】D .根据题意可知极板之间电压U 不变,极板上所带电荷量Q 变少,根据电容定义式QC U=可知电容器得电容C 减小,D 错误; BC .根据电容的决定式r 4SC kdεπ=可知极板间距d 增大,极板之间形成匀强电场,根据UE d=可知极板间电场强度E 减小,BC 错误; A .极板间距d 增大,材料竖直方向尺度减小,A 正确。

故选A 。

【误选警示】误选BC 的原因:没有结合具体情境,判断出两极板间的距离减小,从而距离电场强度和电势差的关系,判断电场强度的变化情况。

误选D 的原因:没有结合具体情境,判断出两极板间的距离减小,进一步结合平行板电容器电容的因素决定式,判断电容如何变化。

例题2. (多选)(2022·全国·高考真题)地面上方某区域存在方向水平向右的匀强电场,将一带正电荷的小球自电场中Р点水平向左射出。

小球所受的重力和电场力的大小相等,重力势能和电势能的零点均取在Р点。

则射出后,( ) A .小球的动能最小时,其电势能最大 B .小球的动能等于初始动能时,其电势能最大C .小球速度的水平分量和竖直分量大小相等时,其动能最大D .从射出时刻到小球速度的水平分量为零时,重力做的功等于小球电势能的增加量【答案】BD【解析】A .如图所示Eq mg =故等效重力G '的方向与水平成45︒。

当0y v =时速度最小为min 1v v =,由于此时1v 存在水平分量,电场力还可以向左做负功,故此时电势能不是最大,故A 错误; BD .水平方向上0Eq v t m=在竖直方向上v gt =由于Eq mg =,得0v v =如图所示,小球的动能等于末动能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带电粒子在电场中类平抛运动的典型一题本题显像管原理联系实际的问题,该题就考查类平抛运动的知识与方法来讲还是比较全面的,是个训练类平抛运动知识与方法的好题,并且该还设计了偏转电压过大电子打到偏转极板上的陷井,有效地防止了这类问题形成解题方法的思维定势。

【例】如图所示,若电子由阴极飞出时的初速度忽略不计,电子发射装置的加速电压为U0.电容器板长和板间距离均为L=10 cm,下极板接地.电容器右端到荧光屏的距离也是L =10 cm.在电容器两极板间接一交变电压,上极板的电势随时间变化的图象如图所示.每个电子穿过两极板的时间极短,可以认为电压是不变的,求:
(1)在t=0.06 s时刻,电子打在荧光屏上的何处?
(2)荧光屏上有电子打到的区间有多长?
(3)屏上的亮点如何移动?
解析:(1)由图象知t=0.06 s时刻偏转电压为U=1.8U0
电子经加速电场加速,可得mv02/2=eU0
电子进入偏转电场做类平抛运动,有
L=v0t1,y1=at2/2,vy=at1,a=eU/mL
类平抛运动中速度方向反向延长线过水平位移的中点这一
规律利用相似三角形得
y1/y=(L/2)/(L/2+L)
电子打在荧光屏上距离O点的距离:y=3UL/4U0
代入数值解得y=13.5 cm.
(也可用电子飞出偏转电场后做匀速直线运动,在水平方向上有L=v0t2
竖直方向上,有y2=vyt2
电子打在荧光屏上距离O点的距离:y=y1+y2=3UL/4U0)
(2)同理可以求出电子的最大侧向位移为0.5L(偏转电压超过2.0U0,电子就打到极板上了),此时可得y2′=L,所以荧光屏上电子能打到的区间长为3L=30 cm.。

相关文档
最新文档