数列型不等式的放缩方法与技巧
证明数列不等式之放缩技巧及缩放在数列中的应用大全甄选.
证明数列不等式之放缩技巧及缩放在数列中的应用大全[精选.]证明数列不等式之放缩技巧以及不等式缩放在数列中应用大全证明数列型不等式,其思维跨度大、构造性强,需要有较高的放缩技巧,充满思考性和挑战性。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩.一、利用数列的单调性 例1.证明:当Z n n ∈≥,6时,(2)12nn n +<. 证法一:令)6(2)2(≥+=n n n c n n ,则0232)2(2)3)(1(1211<-=+-++=-+++n nn n n n n n n n c c , 所以当6n ≥时,1n n c c +<.因此当6n ≥时,66831.644n c c ⨯≤==< 于是当6n ≥时,2(2)1.2n n +< 证法二:可用数学归纳法证.(1)当n = 6时,66(62)48312644⨯+==<成立. (2)假设当(6)n k k =≥时不等式成立,即(2)1.2kk k +< 则当n =k +1时,1(1)(3)(2)(1)(3)(1)(3)1.222(2)(2)2k kk k k k k k k k k k k k++++++++=⨯<<++ 由(1)、(2)所述,当n ≥6时,2(1)12n n +<. 二、借助数列递推关系 例 2.已知12-=n n a .证明:()23111123n n N a a a *++++<∈. 证明:nn n n n a a 121121************⋅=-⋅=-<-=+++, ∴32])21(1[321)21(...12111112122132<-⋅=⋅++⋅+<+++=-+n n n a a a a a a S . 例3. 已知函数f(x)=52168xx+-,设正项数列{}n a 满足1a =l ,()1n n a f a +=.(1) 试比较n a 与54的大小,并说明理由; (2) 设数列{}n b 满足n b =54-n a ,记S n =1ni i b =∑.证明:当n ≥2时,S n <14(2n-1).分析:比较大小常用的办法是作差法,而求和式的不等式常用的办法是放缩法。
数列不等式放缩技巧
数列不等式放缩技巧何谓放缩?就是当要证明不等式A<B成立时,可以将它的一边放大或缩小,寻找一个中间量,如将A放大成C,即A<C,后证C<B,这种证法便称为放缩法,简称放缩。
在高考数列不等式中,常常伴随着类似形式的不等式证明,这类式子无法通过求和化简或数学归纳法证明,然而通过适当的放缩技巧,却能快速使问题简单化。
【知识技巧】1、放缩的几种形式:①构造特殊数列求和进行放缩;技巧积累:(1);(2)(3)(4)(5)(6)(7)②应用基本不等式或函数单调性放缩;③加强命题,转化为数学归纳法证明题(注意点:形式、方向、首项)。
2、放缩的注意事项①熟练掌握裂项技巧,如:,这类数列由于可以裂项求和,所以在证明不等式时,大可不必放缩;②放与缩要注意形式、方向和首项,要注意放缩度的把握。
③可以只对数列的一部分进行放缩法,保留一些项不变(多为前几项)。
【例题讲解】1、通项公式的放缩1、(2013广东理)设数列的前项和为.已知,,.(Ⅰ) 求的值;(Ⅱ) 求数列的通项公式;(Ⅲ) 证明:对一切正整数,有.2、求证:3、(2012广东理)设数列{an}的前n项和为Sn,满足,n∈N﹡,且a1,a2+5,a3成等差数列.(1)求a1的值;(2)求数列{an}的通项公式.(3)证明:对一切正整数n,有.2、递推式的放缩1、已知,求证:当时,2、已知数列满足:,.求证:证明:因为,所以与同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:.令,所以,两式相减得:,所以,所以,故得.3、加强命题1、数列中,,对任何,都有。
(1)求通项公式;(2)证明:对任何,4、利用不等式或函数放缩1.设,求证解析: 此数列的通项为,,即2、设,如图,已知直线及曲线:,上的点的横坐标为().从上的点作直线平行于轴,交直线于点,再从点作直线平行于轴,交曲线于点.的横坐标构成数列.(Ⅰ)试求与的关系,并求的通项公式;(Ⅱ)当时,证明;(Ⅲ)当时,证明.解析:(过程略).证明(II):由知,∵,∴.∵当时,,∴.证明(Ⅲ):由知.∴恰表示阴影部分面积,显然④∴.【课后练习】1、(2014广东文)设各项为正数的数列的前和为,且满足(1)求的值;(2)求数列的通项公式;(3)证明:对一切正整数,有2、(2014新课标2理)已知数列满足=1,.(Ⅰ)证明是等比数列,并求的通项公式;(Ⅱ)证明:.3、已知,,求证:.4、已知数列中,。
高三数学数列不等式证明——裂项相消与放缩法总结
高三数学数列不等式证明——裂项相消与放缩法总结一、裂项相消法通项特征:通项一般是分式,分母为偶数个因式相乘,且满足a是常数,a-=原分子分母大的因式分母小的因式2.解题思路类型①⎪⎭⎫⎝⎛+-=+knnkknn111)(1类型②()nknknkn-+=++11类型③⎪⎭⎫⎝⎛+--=-121121211412nnn类型④()()⎪⎭⎫⎝⎛++--=--121121114412nnnn nn类型⑤kkkk nnnnn+-+=++++112121)2)(2(2类型⑥kakakakaaannnnn+-+=++⎪⎭⎫⎝⎛-++1111))((11二、错位相减法错位相消法三种思维求法:以下三种思维,但还是建议练熟第一种。
如果第一种都掌握不了的学生,基本上也记不住第二和第三种方法。
1.思维结构结构图示如下2.公式型记忆:1(),n S=n+)q,,11n nn nC a n b q A B ca b AB C Bq q-=⋅++-==---则其前项和(其中A=3.可可裂项为如下11(),q1),[(1))](),((())k=pq-pp tb=pqnnn n nn n n na knb qa p n t q pn t q C C C pn t qtq t++=+≠=++-+=-=+⎧⎨+-⎩(则其中可通过方程组计算出、值:11=a()n=a[( )( )( )...( )]n=1 n=2 n=3 n=n-++++=⇑⇑⇑⇑原式分母小的因式分母大的因式前项和化简放缩模型——平方型与指数型证明下列不等式:1、、2、)(21......31211222*∈<++++Nnn3、)(471......31211222*∈<++++Nnn4、)(351......31211222*∈<++++Nnn)(21)12()12(1......751531311*∈<+⨯-++⨯+⨯+⨯NnnnnnS + + +...+n=1 n=2 n=3 n=nqS + + +...+q-=⇑⇑⇑⇑=①②①的基础上左右同时乘,即在①式中指数加1①②代入通项公式,等差数列当等比数列的系数在n-+k( )=+k( )=-S=--n得(1q)S①中的第一项指数函数相加②的最后一项①中的第一项等比求和公式②的最后一项化简两边同时除以(1q)即得平方型:分母是两项积可放缩到裂项相消模型指数型:可放缩为等比模型5、)(45)12(1......51311222*∈<-++++N n n6、),2(32121......121121121432*∈≥<-++-+-+-N n n n7、)(23231......231231231332211*∈<-++-+-+-N n nn8、)(342 (3232221211)432*+∈<-++-+-+-N n n n n一、单选题1.已知数列{}n a 的首项是11a =,前n 项和为n S ,且()1231n n S S n n N *+=++∈,设()2log 3n n c a =+,若存在常数k ,使不等式()()116n nc k n N n c *-≥∈+恒成立,则k 的取值范围为( ) A .1,9⎡⎫+∞⎪⎢⎣⎭B .1,16⎡⎫+∞⎪⎢⎣⎭C .1,25⎡⎫+∞⎪⎢⎣⎭D .1,36⎡⎫+∞⎪⎢⎣⎭2.已知数列{}n a 的首项是11a =,前n 项和为n S ,且1231n n S S n +=++(*N n ∈),设()2log 3n n c a =+,若存在常数k ,使不等式()116n n c k n c -≥+(*N n ∈)恒成立,则k 的最小值为( )A .19B .116C .125D .136二、填空题3.已知数列{}n a 中,112a =,()1n n n n a a a +-=,*n ∈N ,数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n S .若对于任意的*n ∈N ,不等式n S t <恒成立,则实数t 的取值范围是________.4.已知首项为1的数列{}n a 的前n 项和为n S ,且()12n n nS n S +=+,数列2112n n n n a a a +++⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若()110n n T λ++-⋅>,且λ∈Z ,则λ=___________.三、解答题5.已知数列{}n a 中11a =,)2n a n =≥.(1)求{}n a 的通项公式;(2)若21n n c a -=,数列1n c ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:21211n n n a T a +--<≤.6.已知数列{}n a 满足1222n n a a a a =-,*n N ∈.(1)证明:数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)记12n n T a a a =,*n N ∈,22212n n S T T T =++.证明:当*n N ∈时,11243n n S a +>-.7.已知函数()()3log 1(0)1x f x x x +=>+的图像上有一点列()()*,n n n P x y n N ∈,点n P 在x 轴上的射影是(),0n n Q x ,且(1322n n x x n -=+≥,且)*1,2n N x ∈=.(1)求证:{}1n x +是等比数列,并求数列{}n x 的通项公式;(2)对任意的正整数n ,当[]1,1m ∈-吋,不等式239181n y t mt <-+恒成立,求实数t 的取值范围;(3)设四边形11n n n n P Q Q P ++的面积是n T ,求证:1211132nT T nT +++<.8.已知正项数列{}n a 的首项11a =,前n 项和nS 满足)2n a n ≥. (1)求数列{}n a 的通项公式;(2)记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若对任意的*N n ∈,不等式24n T a a <-恒成立,求实数a 的取值范围.9.已知数列{}n a 满足11a =,且11n n a a n +-=+,n S 是1n a ⎧⎫⎨⎬⎩⎭的前n 项和.(1)求n S ;(2)若n T 为数列2n S n ⎧⎫⎪⎪⎛⎫⎨⎬ ⎪⎝⎭⎪⎪⎩⎭的前n 项和,求证:232n nT n >>+.10.已知数列{}n a 的前n 项和为n S ,11a =,22a =,且214n n n S S a ++=+. (1)求n a ;(2)求证:121112111n a a a +++<+++.11.已知数列{}n a 的前n 项和为n S ,13a =,24a =,()112322n n n S S S n +-+=-≥. (1)证明:数列{}2n a -是等比数列,并求数列{}n a 的通项公式;(2)记112n n n n b a a -+=,数列{}n b 的前n 项和为n T ,证明:11123n T≤<.12.证明:135212462n n -⨯⨯⨯⋯⨯13.已知数列{}n a 是等差数列,23a =,数列{}n b 是等比数列,18b =,公比3q >,且3q a =,2213b a a =.(1)求{}n a ,{}n b 的通项公式; (2)设24log n n n b c a =,n *∈N ,求证:1212nc c c ++⋅⋅⋅+<.14.已知各项为正的数列{}n a 满足:113a =,()*134N n n n a a n a +=∈+. (1)设0a >,若数列1log 1a n a ⎧⎫⎛⎫⎪⎪+⎨⎬ ⎪⎪⎪⎝⎭⎩⎭是公差为2的等差数列,求a 的值;(2)设数列1n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n S ,证明4543n S n ≤<+.参考答案:1、 通项公式为: ()()⎪⎭⎫⎝⎛+--=+-=1211212112121n n n n a n2、通项公式为: ()⎪⎭⎫ ⎝⎛--=-<=≥n n n n n a n n 111111,22 3、通项公式为: ⎪⎭⎫ ⎝⎛+--=-<=≥111121111,222n n n n a n n 4、通项公式为: ⎪⎭⎫ ⎝⎛+--=-<==≥1211212144441,2222n n n n n a n n 5、通项公式为: ()⎪⎭⎫⎝⎛--=-<+-=-=≥n n n n n n n a n n 111414411441121,2222 6、通项公式为:()11111123121211221221121,2---++⋅=≤≤=-=-<-=≥n n n n n n n a a a n 7、通项公式为:11313231231--=⋅-<-=n n n n n n a 8、通项公式为:nn n n n nn n n n a n 2222,21<-+=-=≥+ 1.C 【详解】由1231n n S S n +=++,则当2n ≥时,得123(1)1n n S S n -=+-+, 两式相减得123n n a a +=+,变形可得:132(3)n n a a ++=+,又134a +=,122123116a a S S +==+⨯+=,所以25a =,2132(3)a a +=+, ∴数列{}3n a +是以4为首项、2为公比的等比数列,故113422n n n a -++=⨯=,所以2log (3)1n n c a n =+=+,所以2111116(16)(16)(1)17168172517n n c n n n c n n n n n n -===≤=++++++++, 当且仅当4n =时等号成立,故125k ≥.故选:C. 2.C 【详解】当2n ≥ 时,由1231n n S S n +=++可得-123-2n n S S n =+,两式相减得:123n n a a +=+ ,即132(3)n n a a ++=+,而134a +=,2121224,5a a S S a +==+=, 故2132(3)a a +=+ ,所以{3}n a + 是以134a +=为首项,2q为公比的等比数列,则11342,23n n n n a a -++=⨯=- ,故()122log 3log 21n n n c a n +=+==+,所以()111616(16)(1)17n n c n n c n n n n -==+++++,而16N ,8n n n*∈+≥ ,当且仅当4n = 时取等号, 故()11116162517n n c n c n n-=≤+++,当且仅当4n = 时取等号, 所以若存在常数k ,使不等式()116n n c k n c -≥+(*N n ∈)恒成立,则k 的最小值为125,故选:C 3.[)4,+∞【详解】由()1n n n n a a a +-=得11n n a n a n++=,则有 312412321234112321n n n n a a a a a n n a a a a a n n ----⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯--,化简得1n a n a =,即2n n a =, 所以1114114()1(1)122n n n n a a n n n n +===-+⋅++⨯, 所以111114(1)4(11)4223341111111n S n n n n n ---=-+-+-+++=-++<, 所以不等式n S t <恒成立,则有4t ≥.故答案为:[)4,+∞ 4.0【详解】由()12n n nS n S +=+,得()1()2n n n n S a n S ++=+, 即12n n na S +=,当1n =时,2122a S ==,21021a a -=;可知当2n ≥时,12n n na S +=,()112n n n a S --=, 两式相减整理,得101n na a n n,所以n a n ⎧⎫⎨⎬⎩⎭是以1为首项,0为公差的等差数列,所以1na n=,n a n =,所以()()21111211221221n n n n n n n a n a a n n n n ++++++==-⋅⋅+⋅⋅+,所以()12231111111()()()21222223221n n n T n n +=-+-+⋅⋅⋅+-⨯⨯⨯⨯⋅⋅+()111221n n +=-⋅+, ()110n n T λ++-⋅>等价于()()11111212n n n λ++-⋅>-⋅+;当n 是正奇数时,()111212n n λ+>-⋅+,因为()12111132122228n n +-≤-⨯=-⋅+,所以38λ>-; 当n 是正偶数时,()111221n n λ+<-⋅+,因为()1311111122122324n n +-≥-=⋅+⨯,所以1124λ<; 综上所述,λ的取值范围为311824λ-<<,则整数λ的值为0.故答案为:0. 5.(1)n a =证明见解析【解析】(1)将)2n a n =≥两边同时平方,整理得()22112n n a a n --=≥, 所以数列{}2n a 是首项为211a =,公差为1的等差数列,所以()2111n a n n =+-⨯=.由题知0n a >,所以n a(2)因为n a =21n n c a -==1n c =. 先证21n n T a -≤:当1n =时,11a =,11T =,满足21n n T a -≤; 当2n ≥时,1n c ==所以)(21112n n T n a -<++++-==.故21n n T a -≤得证.再证211n n T a+>-:因为1nc ==>=所以)(211211n n T n a +>++++==-.故不等式21211nn n a Ta +--<≤成立.【点睛】关键的点睛:本题考查等差数列的证明,以及放缩法证明不等式,本题的第二问的难点是对通项公式的放缩,放缩后,再进行裂项相消法求和,1n c==<=1n c ==>= 6.(1)证明见解析;()*12n n a n N n +=∈+(2)证明见解析 【解析】(1)当1n =时,1122a a =-,123a =,当2n ≥时,1222n n a a a a =-;121122n n a a a a --=- 相除得11(2)1n n n a a n a --=≥-,整理为:1111(2)111n n n n a n a a a -==-≥---,即1111(2)11n n n a a --=≥--, 11n a ⎧⎫∴⎨⎬-⎩⎭为等差数列,公差1d =,首项为1131a =-;所以()13121n n n a =+-=+-,整理为:()*12n n a n N n +=∈+,经检验,符合要求. (2)由(1)得:()*12n n a n N n +=∈+.1222n n T a a a n ==+, 2244114(2)(2)(3)23n T n n n n n ⎛⎫∴=>=- ⎪+++++⎝⎭,22212111112441342333n n S T T T n n n ⎛⎫⎛⎫∴=++>-++-=-- ⎪ ⎪+++⎝⎭⎝⎭,112224333n n n S a n ++∴>-=-+, 所以,当*n N ∈时,11243n n S a +>-.7.(1)证明见解析,31nn x =-(2)()(),22,∞∞--⋃+(3)证明见解析【解析】(1)因为2n ≥,且*1,32n n n N x x -∈=+,所以()1131n n x x -+=+,即1131n n x x -+=+(常数); 因为113x +=,所以{}1n x +是首项为3,公比为3的等比数列,所以11333n n n x -+=⨯=,即31n n x =-;数列{}n x 的通项公式为31n n x =-.(2)由题可知()()3*log 10,1n n nn x y xn N x +=>∈+,由(1)可得3log 3033n n n n n y ==>,所以1113n ny n y n ++=<,即1n n y y +<,数列{}n y 为单调递减数列.所以n y 最大值为113y =;因为当[]1,1m ∈-吋,不等式239181n y t mt <-+恒成立,所以29180t mt ->恒成立.所以2291809180t t t t ⎧->⎨+>⎩,解得2t <-或2t >.所以t 的取值范围为()(),22,∞∞--⋃+.(3)四边形11n n n n P Q Q P ++的面积是()()114123n n n n n y y x x n T +++-+==.因为()()331134111n n n n n n ⎛⎫<=- ⎪+++⎝⎭,所以1211111111111313122233411n T T nT n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++<-+-+-++-=- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 因为*n ∈N,所以13313311n n ⎛⎫-=-< ⎪++⎝⎭;所以121113.2nT T nT +++<8.(1)21n a n =-;(2)1a ≤-或2a ≥.【解析】(1)当2n ≥时,n a=∴1nn S S --=1=1=, 所以数列是首项为1,公差为1n ,又由n a 121n n n =+-=-(2n ≥),当1n =时,11a =也适合,所以21n a n =-. (2)∴()()()111111221212121n n a a n n n n +==--+-+,∴11111111111233521212212n T n n n ⎛⎫⎛⎫=-+-++-=-< ⎪ ⎪-++⎝⎭⎝⎭, 又∴对任意的*N n ∈,不等式24n T a a <-恒成立,,∴22a a ≤-,解得1a ≤-或2a ≥.即所求实数a 的范围是1a ≤-或2a ≥. 9.(1)21n nS n =+(2)证明见解析 【解析】(1)∴11n n a a n +-=+,∴212a a -=,323a a -=,…1n n a a n --= 由上述1n -个等式相加得12n a a n -=++,∴()1122n n n a a n +=+++=, ∴11121n a n n ⎛⎫=- ⎪+⎝⎭,11111122121223111n n S n n n n ⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪+++⎝⎭⎝⎭.(2)令()()22221441112n n S b n n n n n ⎛⎫⎛⎫⎛⎫===>⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭, ∴11111111244233412222n n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫>-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥++++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 又因为()22221411441111n n S b n n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫===<=- ⎪ ⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭⎝⎭,且11b =∴11111111414143323341211n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫<+-+-++-=+-=-< ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,综上,232nn T n >>+,得证. 10.(1)()12n n a n -*=∈N (2)证明见解析【解析】(1)解:由214n n n S S a ++=+得24n n a a +=. 所以,当()21n k k *=-∈N 时,21214k k a a +-=,所以数列{}21k a -是首项为11a =,公比为4的等比数列, 故11211414k k k a a ---=⨯=⨯,即()211222122k k k a ----==. 当()2n k k *=∈N 时,则2224k k a a +=,所以,数列{}2k a 是首项为22a =,公比为4的等比数列,所以,1121224242k k k k a a ---=⨯=⨯=.所以()12n n a n -*=∈N .(2)证明:由(1)知11111212n n n a --⎛⎫=< ⎪+⎝⎭,所以0121121111111111221111122221122nn n a a a -⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭+++<++++=<= ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭--.故原不等式成立.11.(1)证明见解析,122n n a -=+(2)证明见解析【解析】(1)解:当2n ≥时,由11232n n n S S S +-+=-可变形为()1122n n n n S S S S +--=--, 即122n n a a +=-,即()1222n n a a +-=-,所以()12222n n a n a +-=≥-,又因为13a =,24a =,可得1221,22a a -=-=,所以21222a a -=-,所以数列{}2n a -是以1为首项,2为公比的等比数列,所以122n n a --=,所以数列{}n a 的通项公式为122n n a -=+.(2)解:由122n n a -=+,可得()()11111221122222222n n n n nn n n n b a a ----+===-++++, 所以123n n T b b b b =+++⋅⋅⋅+1111111111134466102222322n n n-=-+-+-+⋅⋅⋅+-=-+++,因为1022n >+,所以1113223n -<+,即13n T <,又因为()11322n f n =-+,n *∈N 单调递增, 所以()()111212212n T b ≥==++,所以11123n T ≤<. 12.证明见解析 【详解】证明:212221n n n n -<+,∴135212452246235721n nn n -⨯⨯⨯⋯⨯<⨯⨯⨯⋯⨯+.213521135212421()()()24622462352121n n n n n n n --∴⨯⨯⨯⋯⨯<⨯⨯⨯⋯⨯⨯⨯⨯⋯⨯=++.∴135212462n n -⨯⨯⨯⋯⨯()f x x x -,x ∈当4π,∴cos cos 4x π>∴()10f x x '->()f x x x ∴-在上递增,()(0)0f x f ∴>=x x >,=∴综上:135212462n n -⨯⨯⨯⋯⨯< 13.(1)1n a n =+ ,212n n b +=(2)证明见解析【解析】(1)由题意,数列{}n a 是等差数列,23a =,数列{}n b 是等比数列,18b =,公比3q >, 设{}n a 的公差为d ,由()()23833q d q d d =+⎧⎪⎨=-⋅+⎪⎩可得()()()28333d d d +=-+,∴3d =-或1d =±,33q d =+>,∴1d =,∴4q =可得:()()223211n a a n d n n =+-=+-⨯=+, 11211842n n n n b b q --+==⨯=.(2)()()()()2124443log 2212221111n n n n c n n n n +++==<=++++ 且()()()3112n n n n +>++∴()()()()()21112112n c n n n n n n n <=-+++++∴()()()121111111122323341122n c c c n n n n ++⋅⋅⋅+<-+-+⋅⋅⋅+-<⨯⨯⨯⨯+++,故不等式得证. 14.(1)2(2)证明见解析 【解析】(1)因为()*134N n n n a a n a +=∈+,所以111141n n a a +⎛⎫+=+ ⎪⎝⎭等式两边同时取以a 为底的对数可得111log 1log 1log 4a a a n n a a +⎛⎫⎛⎫+=++⎪ ⎪⎝⎭⎝⎭,()*N n ∈又数列1log 1a n a ⎧⎫⎛⎫⎪⎪+⎨⎬ ⎪⎪⎪⎝⎭⎩⎭是公差为2的等差数列可知log 42a =,即2a =(2)由(1)可知数列11n a ⎧⎫+⎨⎬⎩⎭是公比为4的等比数列,可得11111414n n n a a -⎛⎫+=+= ⎪⎝⎭,可得数列{}n a 的通项公式为()*1N 14n n a n =∈- 记1n n n a b a +=可求得其通项公式为()1*4141N n n n b n +-=∈- 显然{}n b 为正项数列,因此()11*N 5n S S b n ≥==∈另一方面,构造数列{}n c 满足()*N 4n n c b n =-∈可得其通项公式为()*1N 34n n c n =∈- 注意到1113134414n n n n c ---⎛⎫=≤ ⎪⋅+-⎝⎭,记{}n c 的前n 项和为n T ,可得11441314n n T -≤<-, 而由于4n n c b =-,因此()*4N n n T S n n =-∈,从而443n S n <+,综上所述,4543n S n ≤<+.。
放缩法大全
a −1 + 1 − 2a − ln x 解(1):令g ( x) = f ( x) − ln x = ax + x 1 (a , x 1) 2 a − 1 1 ax 2 − x + 1 − a [ax − (1 − a)]( x − 1) g ( x) = a − 2 − = = 2 x x x x2 1 a[ x − ( − 1)]( x − 1) a g ( x) = 0 (或用二次函数图象分 析) 2 x
1 1 1 1 1 1 + + ... + dx + dx + ... + dx 2 3 n +1 1 x x x 2 n
n +1 2 3 n +1
n
=
1
1 dx = ln( n + 1) x
1 n
n +1
n
1 dx = ln( n + 1) − ln n x
同理证右。
n +1 1 n ln( ) ln( ) n n n −1
所以:
ln n 2 f (n) − f (n − 1) 2 n
由
ln n 2 f (n) − f (n − 1) 2 n
取n=2,3,…,n累加
ln 2 2 ln 32 ln n 2 2n 2 − n − 1 + 2 + ... + 2 f (n) − f (1) = 2 2 3 n 2(n + 1)
1 m an = 4n − 3, { }前n项和为S n , 若S 2 n +1 − S n 恒成立, an 15 求整数m的最小值。
1 1 1 m 解: + + ... + 对n N + 恒成立, an +1 an + 2 a2 n +1 15 1 1 1 令f ( n ) = + + ... + , an +1 an + 2 a2 n +1 1 1 1 f (n − 1) = + + ... + an an +1 a2 n −1
放缩法技巧全总结
2010高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<1211212144411222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n nn(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Trr rn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n n n (5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n n n n (8)nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11))2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221n n nn n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15))2(1)1(1≥--<+n n n n n(15)111)11)((1122222222<++++=+++--=-+-+j i ji j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn 412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(1n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222n n n -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n 当3≥n 时,)12)(1(61++>+n n n n n,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例 4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b -≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([ 故只要证∑∑∑=++==++-+<+<--nk m m nk m nk m m k k k m k k1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nn n a a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n n n n T -+-=-----=+++-++++= 所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n n n n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+ 证明:nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+ 二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n +++--<++++因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>--- 所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n nnααααααα解析:构造函数x x x f ln )(=,得到2ln ln n n n n ≤α,再进行裂项)1(1111ln 222+-<-≤n n n n n ,求和后可以得到答案函数构造形式: 1ln -≤x x ,)2(1ln ≥-≤αααn n例10.求证:n n n 1211)1ln(113121+++<+<++++ 解析:提示:2ln 1ln 1ln 1211ln )1ln(++-++=⋅⋅-⋅+=+ n n nn n n nn n函数构造形式:x x x x 11ln ,ln -><当然本题的证明还可以运用积分放缩 如图,取函数xx f 1)(=,首先:⎰-<n i n ABCFx S 1,从而,)ln(ln |ln 11i n n x x i n n i n nin --==<⋅--⎰取1=i 有,)1ln(ln 1--<n n n,所以有2ln 21<,2ln 3ln 31-<,…,)1ln(ln 1--<n n n ,n n n ln )1ln(11-+<+,相加后可以得到: )1ln(113121+<++++n n另一方面⎰->n i n ABDExS 1,从而有)ln(ln |ln 11i n n x x i i n n i n ni n --==>⋅---⎰取1=i 有,)1ln(ln 11-->-n n n ,所以有nn 1211)1ln(+++<+ ,所以综上有nn n 1211)1ln(113121+++<+<++++例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和e n <+⋅⋅++)311()8111)(911(2 . 解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 函数构造形式:)0(13)1ln(1)0(132)1ln(>+>++⇔>+->+x x x x x x x (加强命题)例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 例14. 已知11111,(1).2n n a a a n n+==+++证明2n a e <.解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案)F E D C BAn-inyxO放缩思路:⇒+++≤+n n n a n n a )2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21n n n n a 211ln 2+++≤。
数列求和中常见放缩方法和技巧含答案
数列求和中常见放缩方法和技巧一、放缩法常见公式: (1)()()111112-<<+n n n n n(2)()12122112--=-+<+=<++n n n n n n n n n (3)()()211++<+<n n n n n (4)122+>n n(二项式定理)(5)1+>x e x,1ln -<x x (常见不等式)常见不等式: 1、均值不等式; 2、三角不等式; 3、糖水不等式; 4、柯西不等式; 5、绝对值不等式;若欲证不等式含有与自然数n 有关的n 项和,可采用数列中裂项求和等方法来解题。
例4. 已知n ∈N*,求n 2n131211<…++++。
2==<=,则()()()11122123221n n n++<+-+-++--1<<例5. 已知*N n ∈且)1n (n 3221a n +++⨯+⨯= ,求证:2)1(2)1(2+<<+n a n n n 对所有正整数n 都成立。
证明:因为n n n n =>+2)1(,所以2)1n (n n 21a n +=+++> , 又2)1()1(+<+n n n n , 所以2)1n (21n 225232)1n (n 232221a 2n +=++++=++++++< ,综合知结论成立。
例6、求证:2222111171234n ++++< 证明:21111(1)1n n n n n<=--- 222221111*********1()().1232231424n n n n ∴++++<++-++-=+-<- 此题采用了从第三项开始拆项放缩的技巧,放缩拆项时,不一定从第一项开始,须根据具体题型分别对待,即不能放的太宽,也不能缩的太窄,真正做到恰倒好处。
nn n 1211)1ln(113121+++<+<++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111nn n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例6. 已知函数1212)(+-=x x x f ,证明:对于*N n ∈且3≥n 都有1)(+>n n n f 。
高中数学讲义:放缩法证明数列不等式
放缩法证明数列不等式一、基础知识:在前面的章节中,也介绍了有关数列不等式的内容,在有些数列的题目中,要根据不等式的性质通过放缩,将问题化归为我们熟悉的内容进行求解。
本节通过一些例子来介绍利用放缩法证明不等式的技巧1、放缩法证明数列不等式的理论依据——不等式的性质:(1)传递性:若,a b b c >>,则a c >(此性质为放缩法的基础,即若要证明a c >,但无法直接证明,则可寻找一个中间量b ,使得a b >,从而将问题转化为只需证明b c >即可 )(2)若,a b c d >>,则a c b d +>+,此性质可推广到多项求和:若()()()121,2,,n a f a f a f n >>>L ,则:()()()1212n a a a f f f n +++>+++L L (3)若需要用到乘法,则对应性质为:若0,0a b c d >>>>,则ac bd >,此性质也可推广到多项连乘,但要求涉及的不等式两侧均为正数注:这两条性质均要注意条件与结论的不等号方向均相同2、放缩的技巧与方法:(1)常见的数列求和方法和通项公式特点:① 等差数列求和公式:12nn a a S n +=×,n a kn m =+(关于n 的一次函数或常值函数)② 等比数列求和公式:()()1111n n a q S q q -=¹-,n n a k q =×(关于n 的指数类函数)③ 错位相减:通项公式为“等差´等比”的形式④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项(2)与求和相关的不等式的放缩技巧:① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。
高考数学难点---数列放缩法技巧总结
高考数学备考之一 放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩例1.(1)求∑=-n k k 12142的值; (2)求证:35112<∑=nk k .解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n nn k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk技巧积累:(1)⎪⎭⎫⎝⎛+--=-<=1211212144441222n n n n n(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC T r r rn r(4)25)1(123112111)11(<-++⨯+⨯++<+n n n n (5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8) n n n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21≥---=--=--<--=--n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n nn n 11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n (13) 3212132122)12(332)13(2221nn n n n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14) !)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n (15)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:n n412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n n n (4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222n nn -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合n n n -+<+221进行裂项,最后就可以得到答案 (4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析: 一方面: 因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n kn k 另一方面: 1111)1(143132111914112+=+-=+++⨯+⨯+>++++n nn n n n 当3≥n 时,)12)(1(61++>+n n nn n ,当1=n 时,2191411)12)(1(6nn n n ++++=++ ,当2=n 时,2191411)12)(1(6n n n n ++++<++ , 所以综上有35191411)12)(1(62<++++≤++n n n n例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>. 解析: 由数学归纳法可以证明{}n a 是递增数列, 故 若存在正整数k m ≤, 使b a m ≥, 则b a a k k ≥>+1,若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m n k m nk m m k k k m k k1111111])1[()1(])1([,即等价于m m mm m k k k m k k-+<+<--+++111)1()1()1(, 即等价于11)11(11,)11(11++-<+-+<++m m kk m k km 而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,n nn a a a T +++= 212,求证:23321<++++n T T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n nnn T -+-=-----=+++-++++= 所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nnT⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n n T T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明: nn n n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++ . 解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n nn+++--<++++cause ⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111nn n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---n例 例11.例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n 解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到: 12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x , 所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n ,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知11111,(1).2n n a a a n n +==+++证明2n a e <.解析:n n n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到n n n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+nnn a n n a )2111(21⇒++++≤+nn an n a ln )2111ln(ln 1nn n n a 211ln 2+++≤。
放缩法技巧全总结计划
放缩法技巧全总结计划2010 高考数学备考之放缩技巧证明数列型不等式,因其思想跨度大、结构性强,需要有较高的放缩技巧而充满思虑性和挑战性,能全面而综合地考察学生的潜能与后继学习能力,因此成为高考压轴题及各级各种比赛试题命题的极好素材。
这种问题的求解策略常常是:经过多角度察看所给数列通项的结构,深入分析其特点,抓住其规律进行适合地放缩;其放缩技巧主要有以下几种:一、裂项放缩例 1.(1) 求n2的值 ;(2)求证 :n1 5 .k 14k 21k 1 k 2 3分析 :(1) 因为221 1 , 所以 n2 11 2n4n21(2n1)(2n 1)2n 1 2n 1k 1 4k 21 2n 12 n 1(2)因为 11411, 所以 n1111125221 21n 21 4 n 21 k 1k3 5 2n 1 2n 1 3 3n 2 2n 1 2n 14奇巧累积 :(1)1 4 421 1(2) 1 2 1 1n 2 4n 2 4n 2 12n 1 2n1C n 1 1 C n 2(n 1)n(n 1) n(n 1) n(n 1)(3)T r 1r 1n! 1 1 1 1 12)C n n rr! (n r )! n rr! r ( r 1) r 1 r ( r(4)(1 1 )n 1 1 1 1 3 11 1)5n 2 2 n(n2(5)111(6)1n 2n2 n ( 2n 1) 2 n1 2 nn 2(7)2( n 1 n )1 2( n n 1) (8)2 1 11 1n2n 1 2n 3 2 n(2n 1) 2n 1 (2 n 3) 2 n(9)1111 , 1 1 1 1k (n 1 k )n 1 kk nn(n 1k)k 1n n 1 k1(10)n 1 1(11)12 22(n 1) !n ! (n 1) !2( 2n 12n 1)n2n 12n111nn22 (11)2 n2n2 n 2n 111 ( n 2)(2n 1)2(2n 1)(2n1) (2 n 1)( 2n 2)(2n 1)(2n 1 1) 2n 11 2 n1 (12)1 111 11n 3 n n 2n(n 1)(n 1) n(n 1)n (n 1)n 1 n 1 11 n 1n 11 1n 1 n12 nn 1 n 1(13)2n 1n(31)2 n3 3(2n1) 2 n2n 12n 1 2n2 232n 13(14)k 21 1(15)1nn 1(n2)k! (k1)! (k2)!(k 1) ! ( k 2) !n(n 1)(15)i 2 1j 2 1i 2 j 2 ij1i j(ij)( i21 j 21)i 21j21例 2.(1) 求证 : 1 117 112 52( 2n 1)26 ( n 2)3 2( 2n 1)(2)求证 : 111 1 21 14 16 36 4n 2 4n(3)求证 : 11 3 1 3 5 1 3 5 (2n 1)2n 1 122 4 2 4 62 4 6 2n(4)求证:1 1 1 2( n 1 1) 132 ( 2n 1 1)2n放缩法技巧全总结计划分析 :(1) 因为11111, 所以n11 1(11)1 1(11 )(2n1)2(2n 1)( 2n 1) 2 2n 1 2n 1i 1 (2i 1)22 3 2n 12 3 2n 1(2)1 1 1 1 1 1 1 1 1416364n 24 (1 22n 2 )4 (1 1 n )(3)先运用分式放缩法证明出1 3 5 (2n 1)1 , 再联合2 4 62n2 n 1 (4)第一 12(n 1n )2 , 所以简单经过裂项获得nn 1n2 ( n 1 1) 1 1113n21n 2nn 2进行裂项 , 最后就能够获得答案再 证而由均值不等式知道这是明显建立的,所以1 2 n 1)2 222 ( 2 n 112n 11 1 n2nnn2211 1 12( 2n 1 1)23n例 3. 求证 : 6n1 1 1 1 5(n1)( 2n 1)4 9n 23分析: 一方面 :因为 114211, 所以n 214n 22n 1 2n 1n 2 14n1 12 11 1 1 12 5k 1 k 23 5 2 n 1 2n 1 3 3 另一方面 : 1 1 11 1 1 31 41 1) 1 1 1n n 14 9 n 2 2 3 n(n n 当 n3时 , n1 (n 6 n, 当 n 1 时, 6n 1) 11 1 1 ,n 1)( 2n 1)(n 1)(2n 4 9n 2当 n2 时 , 6n 1 1 11 , 所以综上有(n 1)(2n 1) 4 9n26n11 115( n 1)(2n 1)4 9n 23例 4.(2008 年全国一卷 )设函数f ( x)x x ln x .数列a n 知足 0 a 1 .an 1f (a n) . 设b (a 1,1) ,整数 k ≥ a 1 b . 证1a 1 ln b明 : a k 1 b .分析 : 由数学概括法能够证明n是递加数列 , 故存在正整数 m k , 使 a m b ,则aak 1a kb ,不然若a mb( m k ) ,则由 0a 1 a mb 1知a m ln a ma 1 ln a m a 1 lnb 0 ,ak 1aka kln aak a m ln a , 因为 k a ln amk (a ln b) ,k1mm1m 1m 1于是 aa1k | a ln b | a1(b a ) bk 111例 5. 已知 n ,m N , x1, S m 1m 2 m 3mn m , 求证 : n m 1 (m 1)S n ( n 1) m 1 1 .分析 : 第一能够证明 : (1 x)n1nxn m 1 n m 1 (n 1)m 1 ( n 1) m 1 (n 2 )m 11m 1 0 n [ k m 1 (k 1)m1] 所以要证k 1n m 1(m 1)S n (n 1) m 1 1只需证 :n(k 1)m 1 ] n k m (n 1)m 1 1 ( n 1)m 1n m 1 n m 1 (n 1)m 1 2 m 1 1 m 1n[( k 1) m 1 k m 1 ] 故[ k m 1 (m 1)k 1k 1k 1只需证 n [ k m 1 (k 1)m 1] (m 1) n k mn[( k 1)m 1k m 1 ] , 即等价于k 1k 1 k 1放缩法技巧全总结计划k m 1( k1) m 1(m 1)k m(k1)m 1k m , 即等价于1m1(11)m 1,1m1(1 1 )m 1k k k k而正是建立的 , 所以原命题建立 .例6.已知a n 4 n2n ,T na12n, 求证: T1T2T3T n 3 .a2a n2分析: T41 4 2434n( 21 2 22n )4(14 n )2(12n )4(4 n1) 2 (12 n ) n14123所以2n 2 n2n 3 2n32n T n4 (4n1) 2 (1 2n )4 n 14 2 2n 14n 122 n 14n 1 3 2n 12 2 2 (2n ) 2 3 2 n1333333 2 n3112 (2 2 n1)( 2n1) 2 2n 1 2n 11进而TTT T 3 1 1 1 1113123n2 3 3 7 2 n 1 2n 112例 7. 已知x,x n n(n 2k1,kZ),求证:11n1(n2k,k Z)1112 (n11)(n N *) 4 x2 x34 x4 x54 x2n x2 n 1证明 :11111 2 ,因为4 x2n x2 n 14 ( 2n 1)(2n 1) 4 4 n21 4 4n2 2 n 2 n2n n n1,所以122 2 (n1n )4 x2n x2n 1 2 n n n 1所以1112 (n11)(n N *)4 x2 x34 x4 x54 x2 n x2 n 1二、函数放缩例 8. 求证:ln 2ln 3ln 4ln 3n3n5n6*). 2343n6(n N分析 : 先结构函数有ln x xln x11 ,进而 ln 2ln 3ln 4ln 3n n 1 11 1x2343 1 ()x3n 2 3 3 n因为 1111111111111123n23456789n n1n 32235 3 36 6 9 所以 ln 2ln 32 3 例 9. 求证 :(1)993n13n 15n1827 2 3n 13n6ln 4ln 3n n15n n5n 64n336362,ln 2ln 3ln n2n2n 123n2(n(n 2)1)分析 : 结构函数ln x,获得ln n ln n2, 再进行裂项ln n21111, 乞降后能够获得答案f ( x )n n2n2n2n( n 1) x函数结构形式 : ln x x 1 ,ln n n1(2)例 10.求证:111ln( n1) 111 23n12n分析 : 提示 : ln( n1)ln n1n2lnn1ln n1ln 2 n n 11n n函数结构形式 :ln x x, ln x1 1x放缩法技巧全总结计划自然本 的 明 能够运用 分放如 , 取函数 f (x)1 ,x第一 : SABCFn1 , 进而 , 1 i n 1 nln n ln( ni )n i xn x ln x |n in i取 i 1有, 1 ln n ln( n ,n 1)所以有 1ln 2 , 1 ln 3 ln 2 , ⋯,1ln n ln( n 1) , 1ln( n 1)ln n, 相加后能够获得 :11 123 nn 12 3ln( n 1)n 1另一方面n1 , 进而有 1i n1 n ln nln( ni)SABDEixni x ln x |n inn i取 i1有, 11 ln n ln( n 1) ,n所以有1) 11 , 所以 上有 1 11ln( n 1)11ln( n 1n23n11n22例 11.求 :1 1(1 1 ) 和 1 )(1 1 )(11 ).(1)(1)n! e (1 e2!3!9 8132 n分析 : 结构函数后即可 明例12.求 :(11 2) (12 3)[1 n(n 1)]e 2n3分析 :ln[ n(n1) 1] 23, 叠加以后就能够获得答案n( n 1)1函数结构形式 :31 ln(1 x)3( 加 命 )ln( x 1) 2( x 0)( x 0 )x 1xx 1例 13. 明 : ln 2 ln 3 ln 4ln n n (n 1) (n N *, n 1)34 5n 1 4 分析 : 结构函数 f (x ) ln( x 1) ( x 1) 1( x1) ,求 , 能够获得 :f ' ( x) 1 2 x , 令 f'( x) 0 有 1x 2 , 令 f '(x )0 有 x2,x 111x所以f ( x) f ( 2) 0 , 所以 ln( x 1) x 2 , 令x n 2 1 有 , ln n 2 n 2 1所以ln n n 1 , 所以 ln 2 ln3 ln 4 ln n n(n 1) N *, n 1)n 1 23 4 5 n 1 4 (n例 14. 已知1,a n 1 (11)a n 1 明 ae 2 .a 12n .nnn2分析 :1111,a n1 (1n (n 1) )a n 2 n (1 n(n 1)2 n) a n而后两 取自然 数, 能够获得1 1ln a n 1 ln(1 n(n1) 2n )ln a n而后运用 ln(1 x) x 和裂 能够获得答案 )放 思路: 1 1 11a n 1(1 n 2 n 2n )a nln a n 1 ln( 1 n 2 n 2 n )ln a nln a n11 。
数列型不等式放缩技巧九法-专升本高数重点总结
数列型不等式的放缩技巧九法证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下九种:一 利用重要不等式放缩1. 均值不等式法例1 设.)1(3221+++⋅+⋅=n n S n 求证.2)1(2)1(2+<<+n S n n n解析 此数列的通项为.,,2,1,)1(n k k k a k =+=2121)1(+=++<+<k k k k k k ,)21(11∑∑==+<<∴nk n nk k S k , 即.2)1(22)1(2)1(2+<++<<+n n n n S n n n注:①应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式2b a ab +≤,若放成1)1(+<+k k k 则得2)1(2)3)(1()1(21+>++=+<∑=n n n k S n k n ,就放过“度”了!②根据所证不等式的结构特征来选取所需要的重要不等式,这里na a n a a a a a a nn nnn n22111111++≤++≤≤++其中,3,2=n 等的各式及其变式公式均可供选用。
例2 已知函数bxa x f 211)(⋅+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121)()2()1(1-+>++++n n n f f f (02年全国联赛山东预赛题)简析 )2211()()1()0(22114111414)(⨯->++⇒≠∙->+-=+=n f f x x f xx x x .2121)21211(41)2211()2211(112-+=+++-=⨯-++⨯-++-n n n n n 例3 求证),1(221321N n n n C C C C n n nn n n ∈>⋅>++++- .简析 不等式左边=++++nn n n n C C C C 32112222112-++++=-n nn n n 122221-⋅⋅⋅⋅⋅> =212-⋅n n ,故原结论成立.2.利用有用结论例4 求证.12)1211()511)(311)(11(+>-++++n n 简析 本题可以利用的有用结论主要有:法1 利用假分数的一个性质)0,0(>>>++>m a b ma mb ab 可得>-⋅⋅122563412n n =+⋅⋅n n 212674523 )12(212654321+⋅-⋅⋅n nn ⇒12)122563412(2+>-⋅⋅n n n 即.12)1211()511)(311)(11(+>-++++n n法2 利用贝努利不等式)0,1,2,(1)1(≠->≥∈+>+*x x n N n nx x n 的一个特例12121)1211(2-⋅+>-+k k (此处121,2-==k x n )得=-+∏⇒-+>-+=)1211(121212111k k k k n k .1212121+=-+∏=n k k n k 注:例4是1985年上海高考试题,以此题为主干添“枝”加“叶”而编拟成1998年全国高考文科试题;进行升维处理并加参数而成理科姊妹题。
数列型不等式的放缩技巧九法
数列型不等式的放缩技巧九法证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下九种:一 利用重要不等式放缩1. 均值不等式法例1 设.)1(3221+++⋅+⋅=n n S n 求证.2)1(2)1(2+<<+n S n n n例2已知函数bxa x f 211)(⋅+=,若54)1(=f ,且)(x f 在[]1,0上的最小值为21,求证:.2121)()2()1(1-+>++++n n n f f f例3 求证),1(221321N n n n C C C C n nn n n n ∈>⋅>++++- .2.利用有用结论例4 求证.12)1211()511)(311)(11(+>-++++n n(变式)证明.13)2311()711)(411)(11(3+>-++++n n例5 已知函数.2,,10,)1(321lg )(≥∈≤<⋅+-++++=*n N n a n n a n x f xx x x 给定求证:)0)((2)2(≠>x x f x f 对任意*∈N n 且2≥n 恒成立。
例6 已知112111,(1).2n n na a a n n +==+++ (1)用数学归纳法证明2(2)n a n ≥≥; (2)对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828e ≈)例7 已知不等式].[log 2,],[log 211312122n n N n n n >∈>+++* 表示不超过n 2log 的最大整数。
设正数数列}{n a 满足:.2,),0(111≥+≤>=--n a n na a b b a n n n求证.3,][log 222≥+<n n b b a n例8 设nn na )11(+=,求证:数列}{n a 单调递增且.4<n a二 部分放缩例9 设++=a n a 211.2,131≥++a n a a求证:.2<n a例10 设数列{}n a 满足()++∈+-=N n na a a n n n 121,当31≥a 时证明对所有,1≥n 有2)(+≥n a i n ;21111111)(21≤++++++n a a a ii三 添减项放缩上述例4之法2就是利用二项展开式进行减项放缩的例子。
放缩法证明数列型不等式的注意问题以及解题策略
放缩法证明数列型不等式的注意问题以及解题策略纵观近几年高考数学卷,压轴题很多是数列型不等式,其中通常需要证明数列型不等式,它不但可以考查证明不等式和数列的各种方法,而且还可以综合考查其它多种数学思想方法,充分体现了能力立意的高考命题原则。
处理数列型不等式最重要要的方法为放缩法。
放缩法的本质是基于最初等的四则运算,利用不等式的传递性,其优点是能迅速地化繁为简,化难为易,达到事半功倍的效果;其难点是变形灵活,技巧性强,放缩尺度很难把握。
对大部分学生来说,在面对这类考题时,往往无从下笔.本文以数列型不等式压轴题的证明为例,探究放缩法在其中的应用,希望能抛砖引玉,给在黑暗是摸索的娃带来一盏明灯。
1、明确放缩的方向:即是放大还是缩小,看证明的结论,是小于某项,则放大,是大于某个项,则缩小。
2、放缩的项数:有时从第一项开始,有时从第三项,有时第三项,等等,即不一定是对全部项进行放缩。
3、放缩法的常见技巧及常见的放缩式:(1)根式的放缩:<<(2)在分式中放大或缩小分子或分母:2111(2)(1)(1)k k k k k k <<≥+-;真分数分子分母同时减一个正数,则变大;,11n n n n -<+; 假分数分子分母同时减一个正数,则变小,如212221n nn n +>-; (3)应用基本不等式放缩:222n n n n ++>+; (4)二项式定理放缩:如2121(3)nn n -≥+≥;(5)舍掉(或加进)一些项,如:121321||||||||(2)n n n a a a a a a a a n --≤-+-++-≥。
4、把握放缩的尺度:如何确定放缩的尺度,不能过当,是应用放缩法证明中最关键、最难把握的问题。
这需要勤于观察和思考,抓住欲证命题的特点,只有这样,才能使问题迎刃而解。
一、常用的放缩法在数列型不等式证明中的应用1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式问题。
谈谈证明数列不等式的三种方法
解题宝典数列不等式证明具有较强的综合性,且难度较大.此类问题往往综合考查了等差、等比数列的通项公式、前n 项和公式、性质、不等式的可加性、可乘性、传递性等,对同学们的逻辑推理和分析能力有较高的要求.本文主要介绍三种证明数列不等式的方法.一、裂项放缩法若数列的通项公式为分式,且可裂为或通过放缩后化为两项之差的形式,则可采用裂项放缩法求解.首先将数列的各项拆分,在求和时绝对值相等、符号相反的项便会相互抵消,再将所得的结果进行适当的放缩,便可证明数列不等式.例1.若数列{}a n ,{}b n 的通项公式分别为a n =n (n +1),b n =()n +12,试证明1a 1+b 1+1a 2+b 2+⋯+1a n +b n<512.证明:当n =1时,1a 1+b 1=16<512,当n ≥2时,a n +b n =()n +1()2n +1>2()n +1n ,1a n +b n =1()n +1()2n +1<12n ()n +1=12æèöø1n -1n +1,∴1a 1+b 1+1a 2+b 2+⋯+1a n +b n ùûú<16+12éëêæèöø12-13+⋯+æèöø1n -1n +1,∵12éëêùûúæèöø12-13+⋯+æèöø1n -1n +1=12æèöø12-1n +1<14,∴1a 1+b 1+1a 2+b 2+⋯+1a n +b n <16+14=512∴1a 1+b 1+1a 2+b 2+⋯+1a n +b n <512成立.{}1a n +b n的通项公式为分式,且可通过放缩、裂项将其转化为两项之差:12æèöø1n -1n +1,于是采用裂项放缩法求证.运用裂项放缩法证明不等式时,需根据数列通项公式的特点或和的特点进行适当的放缩,同时要把握放缩的“度”,不可“放”得过大,也不可“缩”得过小.二、构造函数法数列是一种特殊的函数.在解答数列不等式证明题时,可根据目标不等式的特点构造出函数模型,此时需将n ∈N *看作函数的自变量,将目标式看作关于n 的函数式,利用函数的单调性、有界性来求得函数式的最值,从而证明不等式成立.例2.已知数列{}a n 的通项公式为a n =3n -1,且该数列的每一项均大于零.若数列{}b n 的前n 项和为T n ,且a n ()2b n-1=1,证明:3T n -1>log 2()a n +3.证明:∵a n()2b n-1=1,a n=3n -1,∴b n =log 2æèçöø÷1+1a n =log 23n 3n -1,∴T n =b 1+b 2+⋯+b n =log 2æèöø32∙65∙⋯∙3n 3n -1,∴3T n -1-log 2()a n +3=log 2æèöø32⋅65⋅⋯⋅3n 3n -13∙23n +2,设f ()n =æèöø32∙65∙⋯∙3n 3n -13∙23n +2,∴f ()n +1f ()n =3n +23n +5∙æèöø3n +33n +23=()3n +32()3n +5()3n +22,∵()3n +33-()3n +5()3n +22=9n +7>0,∴f ()n +1>f ()n ,∴f ()n 单调递增,∴f ()n ≥f ()1=2720>1,∴3T n -1-log 2()a n +3=log 2f ()n >0,∴3T n -1>log 2()a n +3成立.解答本题,需先求得b n 、T n ,并将目标式化简,然后根据目标不等式的特点构造函数f ()n ,通过比较f ()n +1、f ()n 的大小,判断出函数的单调性,进而根据函数的单调性证明不等式成立.一般地,在判断数列或函数的单调性时,可采用作差或作商法来比较数列的前后两项a n +1、a n 的大小,若a n +1>a n ,则函数或数列单调递增;若a n +1<a n ,则函数或数列单调递减.三、数学归纳法数学归纳法主要用于证明与自然数N 有关的命题.运用数学归纳法证明数列不等式,需先根据题意证明当n =1时不等式成立;然后假设当n =k 时不等式成立,再根据题意,通过运算、推理证明当n =k +1时不等式也成立,这样便可证明对任意n ∈N *不等式恒成立.42下下下下下下下下下下下下下下下下下方法集锦例3.已知数列{a n }的通项公式为a n =2éëêùûú()2-1n+1,若数列{b n }中b 1=2,b n +1=3b n +42b n +3,试证明:2<b n ≤a 4n -3.证明:当n =1时,2<2,b 1=a 1=2,∴2<b 1≤a 1,不等式成立,假设当n =k 时,不等式成立,∴2<b k ≤a 4k -3,即0<b k -2≤a 4k -3-2,当n =k +1时,b k +1-2=3b k +42b k +3-2=()3-22b k+()4-322b k +3=()3-22()b k -22b k +3>0,∵2<b k ,∴12b k +3<2+33-22,b k +1-2=()3-22()b k-22b k +3<()3-222()b k-2≤()2-14()a 4k -3-2=a 4k +1-2.∴当n =k +1时,不等式成立,即2<b n ≤a 4n -3成立.解答本题主要采用了数学归纳法,分两步完成,首先证明当n =1时不等式成立,然后假设当n =k 时不等式成立,并将其作为已知条件,证明2<b k ,进而证明当n =k +1时,不等式也成立.相比较而言,构造函数法的适用范围较广,裂项放缩法和数学归纳法的适用范围较窄,且裂项放缩法较为灵活,运用数学归纳法证明不等式过程中的运算量较大.因此在证明数列不等式时,可首先采用构造函数法,然后再根据不等式的特点和解题需求运用裂项放缩法或数学归纳法求证.(作者单位:湖北省恩施土家族苗族自治州高级中学)圆锥曲线的离心率是反映圆锥曲线几何特征的一个基本量.圆锥曲线的离心率主要是指椭圆与双曲线的离心率,可用e =ca来表示.求圆锥曲线的离心率问题是一类常考的题目.下面谈一谈求圆锥曲线离心率的三种途径.一、根据圆锥曲线的定义圆锥曲线的定义是解答圆锥曲线问题的重要依据.我们知道,椭圆的焦半径长为c 、长半轴长为a ;双曲线的焦半径长为c 、实半轴长为a ,而圆锥曲线的离心率为e =ca.因此,只要根据圆锥曲线的定义确定a 、c的值,即可求得圆锥曲线的离心率.例1.已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点,如果双曲线上存在点P ,使∠F 1PF 2=90°,并且||PF 1=3||PF 2,求双曲线的离心率.解:因为||PF 1=3||PF 2,①由双曲线的定义得||PF 1-||PF 2=2a ,②由①②得||PF 1=3a ,||PF 2=a .且||F 1F 2=2c ,∠F1PF 2=90°,则|F 1F 2||2=PF 1||2+PF 2|2,即(2c )2a )2+a 2,解得5a =2c ,所以e =ca .题目中指出了两个焦半径||PF 1、||PF 2之间的关系,可将其与双曲线的定义:平面内与两个定点F 1、F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹关联起来,根据双曲线的定义建立关于两个焦半径的方程,通过解方程求得双曲线的离心率.二、利用几何图形的性质圆锥曲线的几何性质较多,如双曲线、椭圆的对称轴为坐标轴,对称中心为原点,双曲线的范围为x ≥a或x ≤-a .在求圆锥曲线的离心率时,要仔细研究几何图形,明确焦半径、实半轴长、虚半轴长与几何图形的位置关系,据此建立关于a 、b 、c 关系式,再通过解方43。
数列型不等式的放缩技巧九法
数列型不等式的放缩技巧九法1.上凸性法:如果数列满足$a_{n+1}-a_n>0$,则可放缩为$a_n>a_1+(n-1)d$或$a_n>a_1+n(n-1)d$,其中$d$为常数。
2.下凸性法:如果数列满足$a_{n+1}-a_n<0$,则可放缩为$a_n<a_1+(n-1)d$或$a_n<a_1+n(n-1)d$,其中$d$为常数。
3.奇偶性法:如果数列满足$a_{n+1}-a_n$的奇偶性与$n$的奇偶性相同,则可放缩为$a_n>a_1+(n-1)d$或$a_n<a_1+n(n-1)d$,其中$d$为常数。
4.整除性法:如果数列满足$a_{n+1}-a_n$能整除$n$,则可放缩为$a_n>a_1+(n-1)d$或$a_n<a_1+n(n-1)d$,其中$d$为常数。
5.线性递增法:如果数列满足$a_{n+1}-a_n$为常数$d$,则可放缩为$a_n>a_1+(n-1)d$或$a_n<a_1+n(n-1)d$,其中$d$为常数。
6.线性递减法:如果数列满足$a_{n+1}-a_n$为常数$d$,则可放缩为$a_n<a_1+(n-1)d$或$a_n<a_1+n(n-1)d$,其中$d$为常数。
7.最值法:如果数列满足$a_{n+1}-a_n$为一组有界变量,且$a_n$有最大或最小值,则可通过对最大或最小值进行放缩得到不等式。
8. 平均值大小法:如果数列满足$a_1,a_2,\ldots,a_n$的平均值满足一些条件,则可借助平均值大小的不等式进行放缩。
9.乘积法:如果数列满足相邻项的乘积满足一些条件,则可通过对乘积进行放缩得到不等式。
举个例子来说明这些放缩技巧的应用:问题:证明数列$a_n=\frac{1}{2n-1}$是递减的。
解答:我们可以使用上凸性法进行放缩。
由$a_{n+1}-a_n=\frac{1}{2(n+1)-1}-\frac{1}{2n-1}=\frac{1}{2n+1}-\frac{1}{2n-1}=\frac{2n-1-(2n+1)}{(2n+1)(2n-1)}=-\frac{2}{(2n+1)(2n-1)}<0$所以$a_n>a_{n+1}$,即数列$a_n$是递减的。
高考数学放缩法证明数列不等式之常数型与函数型(解析版)
放缩法证明数列不等式之常数型与函数型◆题型一:放缩法证明数列不等式之常数型方法解密:放缩法证明数列不等式属于数列大题中较有难度的一种题型.大部分是以证明某个数列和大于或小于一个常数类型,小部分是证明某个数列前n项和或者积大于或小于一个函数(下一专题详解).本专题我们来介绍最常见的常数类型.放缩的目的有两个:一是通过放缩使数列的和变换成比如裂项相消等可以简单求和的形式,这样可以方便比较大小.二是两者之间无法直接比较大小,这样我们需要通过寻找一个媒介,来间接比较大小.放缩的原则:放缩必然会导致数变大或者变小的情况,我们的原则是越精确越好.在证明过程中,为了使放缩更精确,往往会第一项不变,从第二项或者第三项开始放缩(例题会有讲解).放缩的方法:(1)当我们要证明多项式M<A时,我们无法直接证明两者的大小,这时我们可以将多项式M放大为N1,当我们能够证明N1<A,也间接证明了M<A.切不可将M缩小为N2,即使能够证明N2<A,M与A的关系无法得证.(2)当我们要证明多项式M>A时,这时我们可以将多项式M缩小为N1,当我们能够证明N1>A,也间接证明了M>A.需要放缩的多项式多以分式形式出现,要使得分式的值变大,就是将分母变小,常见是将分母减去一个正数,比如1.常见的放缩形式:(1)1n2<1n-1n=1n-1-1n n≥2;(2)1n2>1n n+1=1n-1n+1;(3)1n2=44n2<44n2-1=212n-1-12n+1;(5)1n =2n+n<2n-1+n=2-n-1+nn≥2;(6)1n =2n+n>2n+n+1=2-n+n+1;(7)1n =2n+n<2n-12+n+12=222n-1+2n+1=2-2n-1+2n+1;(8)2n2n-12=2n2n-12n-1<2n2n-12n-2=2n-12n-12n-1-1=12n-1-1-12n-1n≥2;(12)12n-1<2n-12n-1-12n-1=12n-1-1-12n-1n≥2.类型一:裂项放缩【经典例题1】求证112+122+132+.....+1n2<2【解析】因为1n2<1n2-n=1n n-1=1n-1-1n n≥2,所以112+122+132+.....+1n2<112+1 22-2+132-3+.....+1n2-n=1+1-12+12-13+.....+1n-1-1n=2-1n<2,所以原式得证.为什么第一项没有经过放缩,因为分母不能为0,所以只能从第二项进行放缩.总结:证明数列之和小于常数2,式子左侧我们进行放大处理,各个分式分母减去n ,可以变换成裂项相消的形式,同时又能作为媒介与2比较大小.同时要注意从第几项开始放缩的问题.【变式1】求证112+122+132+.....+1n 2<74【解析】因为1n 2<1n 2-1=1n +1 n -1=121n -1-1n +1 n ≥2,所以112+122+132+....+1n 2<112+122-1+132-1+....+1n 2-1=1+121-13+12-14+13-15....+1n -1-1n =1+121+12-1n -1n +1 <74,所以原式得证. 总结:证明数列之和小于常数2,式子左侧我们进行放大处理,各个分式分母减去n ,可以变换成裂项相消的形式,同时又能作为媒介与2比较大小.同时要注意从第几项开始放缩的问题.【变式2】求证112+122+132+.....+1n 2<53【解析】因为1n 2<1n 2-1=1n +1 n -1=121n -1-1n +1 n ≥2 ,所以112+122+132+....+1n 2<112+122+132-1+....+1n 2-1=1+122+1212-14+13-15+14-16+....+1n -1-1n =1+14+1212+13-1n -1n +1 =53-121n +1n +1 <53,注意这是保留前两项,从第三项开始放缩.总结:通过例1和变式题我们发现,我们对分式的进行放大,分母我们依次减去的数是n ,1.不难发现,这些数递减,所得的结果也是递减的.说明减去的数越小,所得的结果越精确.同时通过两道变试题我们也发现,保留前几项不动,这样放缩的精度也会高一些.有些模拟题中,经常出现保留前2项到3项不动的情况.那么作为学生如何判断从第几项开始放缩呢?这需要学生去尝试和试错,如果第一项不行,那就尝试第二项,第三项.【经典例题2】已知a n =n 2,b n =n 2,设c n =1a n +b n,求证:c 1+c 2+⋯+c n <43. 【解析】已知a n =n2,b n=n 2,因为c n =22n 2+n=2n (2n +1)=42n (2n +1)<4(2n -1)(2n +1)=212n -1-12n +1 所以c 1+c 2+⋯+c n <23+213-15+15-17+⋯+12n -1-12n +1 =23+23-22n +1<43,故不等式得证.【经典例题3】已知数列a n 满足a 1=1,a n -1=n -1na n (n ≥2,n ∈N *),(1)求a n ;(2)若数列b n 满足b 1=13,b n +1=b n +1a 2n(n ∈N *),求证:b n <2512.【答案】(1)a n =n ;(2)证明见解析.【详解】(1)由题意a n a n -1=nn -1(n ≥2),∴a n =a 1×a 2a 1×a 3a 2×⋯×a n a n -1=1×21×32×⋯×n n -1=n ,a 1=1也适合.所以a n =n (n ∈N *);(2)由已知b 1=13<2512,b 2=b 1+1=43<2512,b 3=b 2+122=43+14=1912<2512,当n ≥3时,b n +1-b n =1n2<1n (n -1)=1n -1-1n ,因此b n +1=b 3+(b 4-b 3)+(b 5-b 4)+⋯+(b n +1-b n )<1912+12-13 +13-14 +⋯+1n -1-1n=2512-1n <2512,则b n =b n +1-1n2<2512综上,b n <2512.类型二:等比放缩所谓等比放缩就是数列本身并非为标准的等比数列,我们将数列的通项经过一定的放缩使之成为一个等比数列,然后再求和,我们通过例题进行观察了解.【经典例题4】证明:121-1+122-1+123-1+...+12n -1<53【解析】令a n =12n -1,则a n +1a n =2n -12n +1-1<2n -12n +1-2=12⇒a n +1<12a n又因为a 1=1,a 2=13,由于不等式右边分母为3,因此从第三项开始放缩,得a 1+a 2+⋯+a n <a 1+a 2+12a 2+⋯+12 n -2a 2=1+131-12n -1 1-12<53故不等式得证.【经典例题5】已知数列a n 满足:a 1=2,a n +1=2a n +2n +1,n ∈N *.(1)求证a n2n 是等差数列并求a n ;(2)求数列a n 的前n 项和S n ;(3)求证:1a 2-a 1+1a 3-a 2+1a 4-a 3+⋅⋅⋅+1a n +1-a n <12.【答案】(1)证明见解析,a n =n ⋅2n ;(2)S n =(n -1)2n +1+2;(3)证明见解析.【详解】(1)证明:a n +12n +1-a n 2n =2a n +2n +12n +1-a n 2n =2a n 2n +1+1-a n2n=1,∴a n 2n 是首项为a 121=1,公差为1的等差数列,∴a n 2n =1+(n -1)1=n ,∴a n =n ⋅2n .(2)∵S n =1×21+2×22+3×23+⋅⋅⋅⋅⋅⋅n ⋅2n ,∴2S n =1×22+2×23+3×24+⋅⋅⋅⋅⋅⋅n ⋅2n +1,两式相减得:-S n =21+22+23+⋅⋅⋅⋅⋅⋅2n -n ⋅2n +1,-S n =21-2n1-2-n ⋅2n +1,∴S n =(n -1)2n +1+2.(3)证明:∵a n =n ⋅2n ,∴a n +1=(n +1)⋅2n +1,∴a n +1-a n =(n +2)⋅2n ,当n ∈N *时,n +2>2,∴(n +2)⋅2n >2n +1,∴1(n +2)⋅2n <12n +1,∴1a 2-a 1+1a 3-a 2+1a 4-a 3+⋅⋅⋅⋅⋅⋅1a n +1-a n <122+123+124+⋅⋅⋅⋅⋅⋅12n +1=141-12 n 1-12=121-12 n <12.【练习1】已知数列{a n }中,a 1=1,其前n 项的和为S n ,且当n ≥2时,满足a n =S 2nS n -1.(1)求证:数列1S n 是等差数列;(2)证明:S 21+S 22+⋯+S 2n <74.【答案】(1)证明见解析;(2)证明见解析【解析】(1)当n ≥2时,S n -S n -1=S 2nS n -1,S n -1-S n =S n S n -1,即1S n -1S n -1=1从而1S n 构成以1为首项,1为公差的等差数列.(2)由(1)可知,1S n =1S 1+n -1 ×1=n ,∴S n =1n .则当n ≥2时S 2n =1n 2<1n 2-1=121n -1-1n +1 .故当n ≥2时S 21+S 22+⋯+S 2n <1+121-13 +1212-14 +⋯+121n -1-1n +1=1+121+12-1n -1n +1 <1+12⋅32=74又当n =1时,S 21=1<74满足题意,故S 21+S 22+⋯+S 2n <74.法二:则当n ≥2时S 2n =1n 2<1n 2-n=1n -1-1n ,那么S 21+S 22+⋯+S 2n <1+14+12-13 +13-14 +⋯1n -1-1n =74-1n <74又当n =1时,S 21=1<74,当时,S 21=1<74满足题意.【练习2】已知数列a n 的前n 项和为S n ,且S n =12na n+a n -1.(1)求数列a n 的通项公式;(2)若数列2a 2n的前n 项和为T n ,证明:T n <32.【答案】(1)a n =n +1n ∈N * .(2)见解析【解析】(1)当n =1时,S 1=12a 1+a 1-1,即a 1=2,当n ≥2时,S n =12na n +a n -1①,S n -1=12n -1 a n -1+a n -1-1②,①-②,得:2a n =na n -n -1 a n -1+2a n -2a n -1,即na n =n +1 a n -1,∴a n n +1=a n -1n ,且a 12=1,∴数列a n n +1 是以每一项均为1的常数列,则a nn +1=1,即a n =n +1n ∈N * ;(2)由(1)得a n =n +1,∴2a 2n =2n +12<2n n +2 =1n -1n +2,∴T n <1-13+12-14+13-15+⋯+1n -1n +2=1+12-1n +1-1n +2<32.【练习3】已知函数f (x )=x 3-2x ,数列a n 中,若a n +1=f (a n ),且a 1=14.(1)求证:数列1a n-1是等比数列;(2)设数列a n 的前n 项和为S n ,求证:S n <12.【答案】(1)见解析;(2)见解析【解析】(1)由函数f (x )=x3-2x ,在数列a n 中,若a n +1=f (a n ),得:a n +1=a n 3-2a n,上式两边都倒过来,可得:1a n +1=3-2a n a n =3a n-2,∴1a n +1-1=3a n -2-1=3a n -3=31a n -1 .∵1a 1-1=3.∴数列1a n -1 是以3为首项,3为公比的等比数列.(2)由(1),可知:1a n -1=3n ,∴a n =13n +1,n ∈N *.∵当n ∈N *时,不等式13n +1<13n 成立.∴S n =a 1+a 2+⋯+a n =131+1+132+1+...+13n +1<131+132+...+13n =13⋅1-13n 1-13=12-12•13n <12.∴S n <12.【练习4】已知函数f (x )=x 2-2x ,数列a n 的前n 项和为S n ,点P n n ,S n 均在函数y =f x 的图象上.若b n=12a n +3 (1)当n ≥2时,试比较b n +1与2b n的大小;(2)记c n =1b n n ∈N *试证c 1+c 2+⋯+c 400<39.【答案】(1)b n +1<2bn ;(2)证明见解析.【详解】(1)∴f (x )=x 2-2x ,故S n =n 2-2n ,当n ≥2时,a n =S n -S n -1=2n -3,当n =1时,a 1=S 1=-1适合上式,因此a n =2n -3n ∈N * .从而b n =n ,b n +1=n +1,2b n=2n ,当n ≥2时,2n =1+1 n =C n 0+C n 1+⋯>n +1故b n +1<2b n=2n(2)c n =1b n =1n,c 1=1,1n =2n +n <2n +n -1=2(n -n -1)n ∈N *,n ≥2 c 1+c 2+...+c 400<1+22-1 +23-2 +...+2400-399 =2400-1=39.◆题型二:放缩法证明数列不等式之函数型方法解密:数列放缩较难的的两类便是形如数列的前n 项和与函数f (n )的不等关系,即a 1+a 2+⋯+a n <f (n )或者数列前n 项积与函数f (n )的不等关系,即a 1⋅a 2⋅⋯⋅a n <f (n )的问题,其中,这里的前n 项和与前n 项积难求或者是根本无法求.面对这类题时,首先,我们可以将f (n )看成某个数列的和或者积,然后通过比较通项的大小来解决;其次,我们也可以对a n 进行变形,使之能求和或者求积.往往第二种方法难以把握,对学生综合素质要求较高.而第一种方法相对简单易行,所以本专题以“拆项”为主线详细讲解.【经典例题1】已知数列a 1=32,a n +1=3a n -1,n ∈N *(1)若数列b n 满足b n =a n -12,求证:数列b n 是等比数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列型不等式的放缩方法与技巧雅安市田家炳中学 张有全证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩。
以下简要谈谈其方法和技巧:一 利用重要不等式放缩1. 均值不等式法例1 设.)1(3221+++⋅+⋅=n n S n 求证.2)1(2)1(2+<<+n S n n n解析 此数列的通项为.,,2,1,)1(n k k k a k =+=2121)1(+=++<+<k k k k k k ,)21(11∑∑==+<<∴nk n nk k S k , 即.2)1(22)1(2)1(2+<++<<+n n n n S n n n注:①应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式2b a ab +≤,若放成1)1(+<+k k k 则得2)1(2)3)(1()1(21+>++=+<∑=n n n k S n k n ,就放过“度”了!②根据所证不等式的结构特征来选取所需要的重要不等式,这里na a na a a a a a n n n nn n22111111++≤++≤≤++ 其中,3,2=n 等的各式及其变式公式均可供选用。
例 2 已知函数bxa x f 211)(⋅+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121)()2()1(1-+>++++n n n f f f (02年全国联赛山东预赛题)简析 )2211()()1()0(22114111414)(⨯->++⇒≠•->+-=+=n f f x x f xx x x .2121)21211(41)2211()2211(112-+=+++-=⨯-++⨯-++-n n n n n 例3 求证),1(221321N n n n C C C C n n nnnn∈>⋅>++++- .简析 不等式左边=++++nn n n n C C C C 32112222112-++++=-n nnn n 122221-⋅⋅⋅⋅⋅> =212-⋅n n ,故原结论成立.2.利用有用结论例4 求证.12)1211()511)(311)(11(+>-++++n n简析 本题可以利用的有用结论主要有:法1 利用假分数的一个性质)0,0(>>>++>m a b ma mb a b 可得>-⋅⋅122563412n n =+⋅⋅n n 212674523 )12(212654321+⋅-⋅⋅n nn ⇒12)122563412(2+>-⋅⋅n n n 即.12)1211()511)(311)(11(+>-++++n n法2 利用贝努利不等式)0,1,2,(1)1(≠->≥∈+>+*x x n N n nx x n 的一个特例12121)1211(2-⋅+>-+k k (此处121,2-==k x n )得 =-+∏⇒-+>-+=)1211(121212111k k k k n k .1212121+=-+∏=n k k n k注:例4是1985年上海高考试题,以此题为主干添“枝”加“叶”而编拟成1998年全国高考文科试题;进行升维处理并加参数而成理科姊妹题。
如理科题的主干是:证明.13)2311()711)(411)(11(3+>-++++n n (可考虑用贝努利不等式3=n 的特例)例5 已知函数.2,,10,)1(321lg )(≥∈≤<⋅+-++++=*n N n a nn a n x f xx x x 给定求证:)0)((2)2(≠>x x f x f 对任意*∈N n 且2≥n 恒成立。
(90年全国卷压轴题)简析 本题可用数学归纳法证明,详参高考评分标准;这里给出运用柯西(Cauchy )不等式∑∑∑===≤ni i ni in i i i b ab a 121221])([的简捷证法: ⇔>)(2)2(x f x f >⋅+-++++n n a n x x x x 2222)1(321lg nn a n x x x x ⋅+-++++)1(321lg2 2])1(321[x x x x n a n ⋅+-++++⇔ ])1(321[2222x x x x n a n n ⋅+-++++•<而由Cauchy 不等式得2))1(1312111(x x x x n a n ⋅+-⋅++⋅+⋅+⋅•++<)11(22 ])1(321[22222x x x x n a n ⋅+-++++ (0=x 时取等号)≤])1(321[2222x x x xn a n n ⋅+-++++• (10≤<a ),得证!例 6 已知112111,(1).2n n na a a n n +==+++)(I 用数学归纳法证明2(2)n a n ≥≥;)(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828e ≈)(05年辽宁卷第22题) 解析 )(II 结合第)(I 问结论及所给题设条件ln(1)x x +<(0x >)的结构特征,可得放缩思路:⇒+++≤+n n n a n n a )2111(21⇒++++≤+n nn a n n a ln )2111ln(ln 21 n n n n a 211ln 2+++≤。
于是n n n n n a a 211ln ln 21++≤-+,.22112211)21(111ln ln )211()ln (ln 11211111<--=--+-≤-⇒++≤---=+-=∑∑n n n i n i i i n i n n a a i i a a 即.2ln ln 21e a a a n n <⇒<-注:题目所给条件ln(1)x x +<(0x >)为一有用结论,可以起到提醒思路与探索放缩方向的作用;当然,本题还可用结论)2)(1(2≥->n n n n 来放缩:⇒-+-+≤+)1(1))1(11(1n n a n n a n n ⇒+-+≤++)1)()1(11(11n n a n n a.)1(1))1(11ln()1ln()1ln(1-<-+≤+-++n n n n a a n n111)1ln()1ln()1(1)]1ln()1ln([212112<-<+-+⇒-<+-+⇒∑∑-=+-=na a i i a a n n i i i n i , 即.133ln 1)1ln(2e e a a n n <-<⇒+<+例7 已知不等式].[log 2,],[log 211312122n n N n n n >∈>+++* 表示不超过n 2log 的最大整数。
设正数数列}{n a 满足:.2,),0(111≥+≤>=--n a n na a b b a n n n求证.3,][log 222≥+<n n b ba n (05年湖北卷第(22)题)简析 当2≥n 时n a a a n a a n na a n n n n n n n 11111111+=+≥⇒+≤-----,即 na a n n 1111≥--.1)11(212ka a nk k k n k ∑∑=-=≥-⇒于是当3≥n 时有⇒>-][log 211121n a a n .][log 222n b ba n +<注:①本题涉及的和式n13121+++ 为调和级数,是发散的,不能求和;但是可以利用所给题设结论][log 21131212n n >+++ 来进行有效地放缩; ②引入有用结论在解题中即时应用,是近年来高考创新型试题的一个显著特点,有利于培养学生的学习能力与创新意识。
例8 设nn na )11(+=,求证:数列}{n a 单调递增且.4<n a 解析 引入一个结论:若0>>a b 则)()1(11a b b n ab n n n -+<-++(证略) 整理上式得].)1[(1nb a n b an n -+>+(⊗),以nb n a 11,111+=++=代入(⊗)式得>+++1)111(n n .)11(n n+即}{n a 单调递增。
以nb a 211,1+==代入(⊗)式得.4)211(21)211(12<+⇒⋅+>n n n n此式对一切正整数n 都成立,即对一切偶数有4)11(<+n n,又因为数列}{n a 单调递增,所以对一切正整数n 有4)11(<+n n 。
注:①上述不等式可加强为.3)11(2<+≤n n简证如下:利用二项展开式进行部分放缩:.1111)11(221n n n n n n n nC n C n C n a ++⋅+⋅+=+= 只取前两项有.2111=⋅+≥nC a n n 对通项作如下放缩: .212211!111!111-=⋅≤<+-⋅-⋅⋅=k k k n k n k n n n n n k nC 故有.32/11)2/1(121221212111112<--⋅+=+++++<--n n n a②上述数列}{n a 的极限存在,为无理数e ;同时是下述试题的背景:已知n m i ,, 是正整数,且.1n m i <≤<(1)证明in i i m i A m A n <;(2)证明.)1()1(mnn m +>+(01年全国卷理科第20题)简析 对第(2)问:用n /1代替n 得数列nn n n b b 1)1(:}{+=是递减数列;借鉴此结论可有如下简捷证法:数列})1{(1nn +递减,且,1n m i <≤<故,)1()1(11nm n m +>+即mnn m )1()1(+>+。
当然,本题每小题的证明方法都有10多种,如使用上述例4所提供的假分数性质、贝努力不等式、甚至构造“分房问题”概率模型、构造函数等都可以给出非常漂亮的解决!详见文[1]。
二 部分放缩例9 设++=a n a 211.2,131≥++a n a a求证:.2<n a 解析 ++=a n a 211.131211131222n n a a ++++≤++ 又2),1(2≥->⋅=k k k k k k (只将其中一个k 变成1-k ,进行部分放缩),k k k k k111)1(112--=-<∴,于是)111()3121()211(1131211222n n n a n --++-+-+<++++≤ .212<-=n例10 设数列{}n a 满足()++∈+-=N n na a a n n n 121,当31≥a 时证明对所有,1≥n 有2)(+≥n a i n ;21111111)(21≤++++++n a a a ii (02年全国高考题) 解析 )(i 用数学归纳法:当1=n 时显然成立,假设当k n ≥时成立即2+≥k a k ,则当1+=k n 时312)2(1)2(1)(1+>+⋅+≥+-+≥+-=+k k k k a k a a a k k k k ,成立。