2018年成都中考数学探索真题总结

合集下载

2018年成都市中考数学试题解析

2018年成都市中考数学试题解析

2018年成都市中考数学试卷参考答案与试题解析A卷一、选择题(每小题3分,共30分)1.(3分)实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d【考点】数轴、数的大小比较。

【入题】根据实数的大小比较解答即可。

【解答】解:由数轴可得:a<b<c<d,故选:D。

2.(3分)2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A.4×104 B.4×105 C.4×106 D.0.4×106【考点】科学记数法,幂的定义。

【入题】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数。

1万=10000=104。

【解答】40万=。

故选:B。

3.(3分)(2018•成都)如图所示的正六棱柱的主视图是()A.B.C.D.【考点】三视图,正视图观察方法及图像判定。

【入题】根据主视图是从正面看到的图象判定则可.【解答】正视图是3个高度一样的矩形水平拼接而成的矩形。

故选:A。

4.(3分)在平面直角坐标系中,点P关于原点对称的点的坐标是()A. B. C.D.【考点】中心对称,坐标的特征及变化。

【入题】根据关于原点对称的点的坐标特点,横、纵坐标的绝对值不变,符号全改变。

【解答】点P关于原点对称的点的坐标是。

故选:C。

5.(3分)下列计算正确的是()A.+= B.= C.=D.•=【考点】同类项合并,乘法公式,幂的运算。

【入题】根据各类运算法则依次计算,并判断正误。

【解答】+=,A错误;=,B错误;=,C错误;=,D正确。

故选:D。

6.(3分)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC【考点】三角形全等的判定。

2018年四川省成都市中考数学试卷含答案解析(Word版)

2018年四川省成都市中考数学试卷含答案解析(Word版)

四川省成都市2018年中考数学试卷(解析版)
一、选择题(A卷)
1.实数在数轴上对应的点的位置如图所示,这四个数中最大的是()
“ b c d
-3 —J -I 0 1 2 3
A. B. C. D .
【答案】D
【考点】数轴及有理数在数轴上的表示,有理数大小比较
【解析】【解答】解:根据数轴可知a v b v O v c v d.••这四个数中最大的数是d
故答案为:D
【分析】根据数轴上右边的数总比左边的数大,即可得出结果。

2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()
A. B. - - 1『 C. D. 0^4 X Id®
【答案】B
【考点】科学记数法一表示绝对值较大的数
【解析】【解答】解:40万=4X105故答案为:B
【分析】根据科学计数法的表示形式为:axi0n。

其中K |a V10,此题是绝对值较大的数,
因此门=整数数位-1,即可求解。

A.
C.--------------- --------------
【答案】A
【考点】简单几何体的三视图
【解析】【解答】解::•从正面看是左右
相邻的
3个矩形,中间的矩形面积较大,两边的矩
3•如图所示的正六棱柱的主视图是(。

2018年四川省成都市中考数学试卷及解析

2018年四川省成都市中考数学试卷及解析

2018年四川省成都市中考数学试卷一、选择题(每小题3分,共30分)1.(3分)实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d2.(3分)2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A.4×104B.4×105C.4×106D.×1063.(3分)如图所示的正六棱柱的主视图是()A. B. C. D.4.(3分)在平面直角坐标系中,点P(﹣3,﹣5)关于原点对称的点的坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5)D.(﹣3,﹣5)5.(3分)下列计算正确的是()A.x2+x2=x4B.(x﹣y)2=x2﹣y2C.(x2y)3=x6y D.(﹣x)2•x3=x56.(3分)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBCC.AC=DB D.AB=DC7.(3分)如图是成都市某周内最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()第7题第9题A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃8.(3分)分式方程=1的解是()A.x=1 B.x=﹣1 C.x=3 D.x=﹣39.(3分)如图,在▱ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π10.(3分)关于二次函数y=2x2+4x﹣1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1) B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小 D.y的最小值为﹣3二、填空题(每小题4分,共16分)11.(4分)等腰三角形的一个底角为50°,则它的顶角的度数为.12.(4分)在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色乒乓球的个数是.13.(4分)已知==,且a+b﹣2c=6,则a的值为.14.(4分)如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=2,CE=3,则矩形的对角线AC的长为.三、解答题(本大题共6个小题,共54分)15.(12分)(1)22+﹣2sin60°+|﹣|(2)化简:(1﹣)÷16.(6分)若关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,求a的取值范围.17.(8分)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.满意度学生数(名)百分比非常满意1210%满意54m比较满意n40%不满意65%根据图表信息,解答下列问题:(1)本次调查的总人数为,表中m的值;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.18.(8分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上实验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈,cos70°≈,tan70°≈2,75,sin37°≈,cos37°≈,tan37°≈)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=x+b的图象经过点A(﹣2,0),与反比例函数y=(x>0)的图象交于B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数y=(x>0)的图象于点N,若A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.20.(10分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sinB=,求DG的长,四、填空题(每小题4分,共20分)21.(4分)已知x+y=,x+3y=1,则代数式x2+4xy+4y2的值为.22.(4分)汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.第22题第24题第25题23.(4分)已知a>0,S1=,S2=﹣S1﹣1,S3=,S4=﹣S3﹣1,S5=,…(即当n为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018= .24.(4分)如图,在菱形ABCD中,tanA=,M,N分别在边AD,BC上,将四边形AMNB沿MN翻折,使AB的对应线段EF经过顶点D,当EF⊥AD时,的值为.25.(4分)设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为.五、解答题(本大题共3小题,共30分)26.(8分)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少最少总费用为多少元\27.(10分)在Rt△ABC中,∠ACB=90°,AB=,AC=2,过点B作直线m∥AC,将△ABC 绕点C顺时针旋转得到△A′B′C′(点A,B的对应点分别为A',B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA'B′Q 的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.28.(12分)如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.2018年四川省成都市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)【考点】2A:实数大小比较;29:实数与数轴.【分析】根据实数的大小比较解答即可.【解答】解:由数轴可得:a<b<c<d,故选:D.【点评】此题考查实数大小比较,关键是根据实数的大小比较解答.2.(3分)【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.万=10000=104.【解答】解:40万=4×105,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)【考点】U1:简单几何体的三视图.【分析】根据主视图是从正面看到的图象判定则可.【解答】解:从正面看是左右相邻的3个矩形,中间的矩形的面积较大,两边相同.故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(3分)【考点】R6:关于原点对称的点的坐标.【分析】根据关于原点对称的点的坐标特点解答.【解答】解:点P(﹣3,﹣5)关于原点对称的点的坐标是(3,5),故选:C.【点评】本题考查的是关于原点的对称的点的坐标,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.5.(3分)【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法;4C:完全平方公式.【分析】根据合并同类项法则、完全平方公式、积的乘方法则、同底数幂的乘法法则计算,判断即可.【解答】解:x2+x2=2x2,A错误;(x﹣y)2=x2﹣2xy+y2,B错误;(x2y)3=x6y3,C错误;(﹣x)2•x3=x2•x3=x5,D正确;故选:D.【点评】本题考查的是合并同类项、完全平方公式、积的乘方、同底数幂的乘法,掌握它们的运算法则是解题的关键.6.(3分)【考点】KD:全等三角形的判定与性质.【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;故选:C.【点评】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定方法有SAS,ASA,AAS,SSS.7.(3分)【考点】VD:折线统计图;W1:算术平均数;W4:中位数;W5:众数;W6:极差.【分析】根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题.【解答】解:由图可得,极差是:30﹣20=10℃,故选项A错误,众数是28℃,故选项B正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C 错误,平均数是:=℃,故选项D错误,故选:B.【点评】本题考查折线统计图、极差、众数、中位数、平均数,解答本题的关键是明确题意,能够判断各个选项中结论是否正确.8.(3分)【考点】B3:解分式方程.【分析】观察可得最简公分母是x(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:=1,去分母,方程两边同时乘以x(x﹣2)得:(x+1)(x﹣2)+x=x(x﹣2),x2﹣x﹣2+x=x2﹣2x,x=1,经检验,x=1是原分式方程的解,故选:A.【点评】考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.9.(3分)【考点】MO:扇形面积的计算;L5:平行四边形的性质.【分析】根据平行四边形的性质可以求得∠C的度数,然后根据扇形面积公式即可求得阴影部分的面积.【解答】解:∵在▱ABCD中,∠B=60°,⊙C的半径为3,∴∠C=120°,∴图中阴影部分的面积是:=3π,故选:C.【点评】本题考查扇形面积的计算、平行四边形的性质,解答本题的关键是明确题意,利用扇形面积的计算公式解答.10.(3分)【考点】H3:二次函数的性质;H7:二次函数的最值.【分析】根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.【解答】解:∵y=2x2+4x﹣1=2(x+1)2﹣3,∴当x=0时,y=﹣1,故选项A错误,该函数的对称轴是直线x=﹣1,故选项B错误,当x<﹣1时,y随x的增大而减小,故选项C错误,当x=﹣1时,y取得最小值,此时y=﹣3,故选项D正确,故选:D.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题(每小题4分,共16分)11.(4分)【考点】KH:等腰三角形的性质;K7:三角形内角和定理.【分析】本题给出了一个底角为50°,利用等腰三角形的性质得另一底角的大小,然后利用三角形内角和可求顶角的大小.【解答】解:∵等腰三角形底角相等,∴180°﹣50°×2=80°,∴顶角为80°.故填80°.【点评】本题考查等腰三角形的性质,即等边对等角.找出角之间的关系利用三角形内角和求角度是解答本题的关键.12.(4分)【考点】X4:概率公式.【分析】直接利用摸到黄色乒乓球的概率为,利用总数乘以概率即可得出该盒子中装有黄色乒乓球的个数.【解答】解:∵装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,∴该盒子中装有黄色乒乓球的个数是:16×=6.故答案为:6.【点评】此题主要考查了概率公式,正确利用摸到黄色乒乓球的概率求出黄球个数是解题关键.13.(4分)【考点】S1:比例的性质.【分析】直接利用已知比例式假设出a,b,c的值,进而利用a+b﹣2c=6,得出答案.【解答】解:∵==,∴设a=6x,b=5x,c=4x,∵a+b﹣2c=6,∴6x+5x﹣8x=6,解得:x=2,故a=12.故答案为:12.【点评】此题主要考查了比例的性质,正确表示出各数是解题关键.14.(4分)【考点】N2:作图—基本作图;KG:线段垂直平分线的性质;LB:矩形的性质.【分析】连接AE,如图,利用基本作图得到MN垂直平分AC,则EA=EC=3,然后利用勾股定理先计算出AD,再计算出AC.【解答】解:连接AE,如图,由作法得MN垂直平分AC,∴EA=EC=3,在Rt△ADE中,AD==,在Rt△ADC中,AC==.故答案为.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).三、解答题(本大题共6个小题,共54分)15.(12分)【考点】6C:分式的混合运算;2C:实数的运算;T5:特殊角的三角函数值.【分析】(1)根据立方根的意义,特殊角锐角三角函数,绝对值的意义即可求出答案.(2)根据分式的运算法则即可求出答案.【解答】解:(1)原式=4+2﹣2×+=6(2)原式=×=×=x﹣1【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16.(6分)【考点】AA:根的判别式.【分析】根据方程的系数结合根的判别式△>0,即可得出关于a的一元一次不等式,解之即可得出a的取值范围.【解答】解:∵关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,∴△=[﹣(2a+1)]2﹣4a2=4a+1>0,解得:a>﹣.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.17.(8分)【考点】VC:条形统计图;V5:用样本估计总体;W2:加权平均数.【分析】(1)利用12÷10%=120,即可得到m的值;用120×40%即可得到n的值.(2)根据n的值即可补全条形统计图;(3)根据用样本估计总体,3600××100%,即可答.【解答】解:(1)12÷10%=120,故m=120,n=120×40%=48,m==45%.故答案为%.(2)根据n=48,画出条形图:(3)3600××100%=1980(人),答:估计该景区服务工作平均每天得到1980名游客的肯定.【点评】本题考查了条形统计图、扇形统计图等知识,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.18.(8分)【考点】TB:解直角三角形的应用﹣方向角问题.【分析】根据题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,由三角函数得出CD=海里,在直角三角形BCD中,得出BD,即可得出答案.【解答】解:由题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,CD=AC•cos∠ACD=海里,在直角三角形BCD中,BD=CD•tan∠BCD=海里.答:还需航行的距离BD的长为海里.【点评】此题考查了解直角三角形的应用﹣方向角问题,三角函数的应用;求出CD的长度是解决问题的关键.19.(10分)【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)根据一次函数y=x+b的图象经过点A(﹣2,0),可以求得b的值,从而可以解答本题;(2)根据平行四边形的性质和题意,可以求得点M的坐标,注意点M的横坐标大于0.【解答】解:(1)∵一次函数y=x+b的图象经过点A(﹣2,0),∴0=﹣2+b,得b=2,∴一次函数的解析式为y=x+2,∵一次函数的解析式为y=x+2与反比例函数y=(x>0)的图象交于B(a,4),∴4=a+2,得a=2,∴4=,得k=8,即反比例函数解析式为:y=(x>0);(2)∵点A(﹣2,0),∴OA=2,设点M(m﹣2,m),点N(,m),当MN∥AO且MN=AO时,四边形AOMN是平行四边形,||=2,解得,m=2或m=+2,∴点M的坐标为(﹣2,)或(,2+2).【点评】本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.20.(10分)【考点】MR:圆的综合题.【分析】(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可.【解答】(1)证明:如图,连接OD,∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∴BC为圆O的切线;(2)解:连接DF,由(1)知BC为圆O的切线,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴=,即AD2=AB•AF=xy,则AD=;(3)解:连接EF,在Rt△BOD中,sinB==,设圆的半径为r,可得=,解得:r=5,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF==,∴AF=AE•sin∠AEF=10×=,∵AF∥OD,∴===,即DG=AD,∴AD===,则DG=×=.【点评】此题属于圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题。

四川省成都市2018年中考数学试题(解析版)

四川省成都市2018年中考数学试题(解析版)

四川省二0一八高中阶段教育学校统一招生考试(含成都市初三毕业会考)A卷(共100分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 实数在数轴上对应的点的位置如图所示,这四个数中最大的是()A. B. C. D.【答案】D【解析】分析:根据实数的大小比较解答即可.详解:由数轴可得:a<b<c<d,故选D.点睛:此题考查实数大小比较,关键是根据实数的大小比较解答.2. 2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A. B. C. D.【答案】B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.1万=10000=104.详解:40万=4×105,故选B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3. 如图所示的正六棱柱的主视图是()B.C.D.【答案】A【解析】分析:根据主视图是从正面看到的图象判定则可.详解:从正面看是左右相邻的3个矩形,中间的矩形的面积较大,两边相同.故选A.点睛:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4. 在平面直角坐标系中,点关于原点对称的点的坐标是()A. B. C. D.【答案】C【解析】分析:根据关于原点对称的点的坐标特点解答.详解:点P(-3,-5)关于原点对称的点的坐标是(3,5),故选C.点睛:本题考查的是关于原点的对称的点的坐标,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数.5. 下列计算正确的是()A. B.C. D.【答案】D【解析】分析:根据合并同类项法则、完全平方公式、积的乘方法则、同底数幂的乘方法则计算,判断即可.详解:x2+x2=2x2,A错误;(x-y)2=x2-2xy+y2,B错误;(x2y)3=x6y3,C错误;(-x)2•x3=x2•x3=x5,D正确;故选D.点睛:本题考查的是合并同类项、完全平方公式、积的乘方、同底数幂的乘法,掌握它们的运算法则是解题的关键.6. 如图,已知,添加以下条件,不能判定的是()A. B. C. D.【答案】C【解析】分析:全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.详解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS定理,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA定理,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS定理,即能推出△ABC≌△DCB,故本选项错误;故选C.点睛:本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.7. 如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A. 极差是8℃B. 众数是28℃C. 中位数是24℃D. 平均数是26℃【答案】B【解析】分析:根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题.详解:由图可得,极差是:30-20=10℃,故选项A错误,众数是28℃,故选项B正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C错误,平均数是:℃,故选项D错误,故选B.点睛:本题考查折线统计图、极差、众数、中位数、平均数,解答本题的关键是明确题意,能够判断各个选项中结论是否正确.8. 分式方程的解是()A. B. C. D.【答案】A【解析】分析:观察可得最简公分母是x(x-2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.详解:,去分母,方程两边同时乘以x(x-2)得:(x+1)(x-2)+x=x(x-2),x2-x-2+x=x2-2x,x=1,经检验,x=1是原分式方程的解,故选A.点睛:考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.9. 如图,在中,,的半径为3,则图中阴影部分的面积是()A. B. C. D.【答案】C【解析】分析:根据平行四边形的性质可以求得∠C的度数,然后根据扇形面积公式即可求得阴影部分的面积.详解:∵在▱ABCD中,∠B=60°,⊙C的半径为3,∴∠C=120°,∴图中阴影部分的面积是:=3π,故选C.点睛:本题考查扇形面积的计算、平行四边形的性质,解答本题的关键是明确题意,利用扇形面积的计算公式解答.10. 关于二次函数,下列说法正确的是()A. 图像与轴的交点坐标为B. 图像的对称轴在轴的右侧C. 当时,的值随值的增大而减小D. 的最小值为-3【答案】D【解析】分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.详解:∵y=2x2+4x-1=2(x+1)2-3,∴当x=0时,y=-1,故选项A错误,该函数的对称轴是直线x=-1,故选项B错误,当x<-1时,y随x的增大而减小,故选项C错误,当x=-1时,y取得最小值,此时y=-3,故选项D正确,故选D.点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题(每题4分,满分16分,将答案填在答题纸上)11. 等腰三角形的一个底角为,则它的顶角的度数为__________.【答案】【解析】分析:本题给出了一个底角为50°,利用等腰三角形的性质得另一底角的大小,然后利用三角形内角和可求顶角的大小.详解:∵等腰三角形底角相等,∴180°-50°×2=80°,∴顶角为80°.故答案为:80°.点睛:本题考查等腰三角形的性质,即等边对等角.找出角之间的关系利用三角形内角和求角度是解答本题的关键.12. 在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色兵乓球的个数是__________.【答案】6【解析】分析:直接利用摸到黄色乒乓球的概率为,利用总数乘以概率即可得出该盒子中装有黄色乒乓球的个数.详解:∵装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,∴该盒子中装有黄色乒乓球的个数是:16×=6.故答案为:6.点睛:此题主要考查了概率公式,正确利用摸到黄色乒乓球的概率求出黄球个数是解题关键.13. 已知,且,则的值为__________.【答案】12【解析】分析:直接利用已知比例式假设出a,b,c的值,进而利用a+b-2c=6,得出答案.详解:∵,∴设a=6x,b=5x,c=4x,∵a+b-2c=6,∴6x+5x-8x=6,解得:x=2,故a=12.故答案为:12.点睛:此题主要考查了比例的性质,正确表示出各数是解题关键.14. 如图,在矩形中,按以下步骤作图:①分别以点和为圆心,以大于的长为半径作弧,两弧相交于点和;②作直线交于点.若,,则矩形的对角线的长为__________.【答案】【解析】分析:连接AE,如图,利用基本作图得到MN垂直平分AC,则EA=EC=3,然后利用勾股定理先计算出AD,再计算出AC.详解:连接AE,如图,由作法得MN垂直平分AC,∴EA=EC=3,在Rt△ADE中,AD=,在Rt△ADC中,AC=.故答案为.点睛:本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).三、解答题(本大题共6小题,共54分.解答应写出文字说明、证明过程或演算步骤.)15. (1).(2)化简.【答案】(1);(2)x-1.【解析】分析:(1)利用有理数的乘方、立方根、锐角三角函数和绝对值的意义进行化简后再进行加减运算即可求出结果;(2)先将括号内的进行通分,再把除法转化为乘法,约分化简即可得解.详解:(1)原式=;(2)解:原式.点睛:本题考查实数运算与分式运算,运算过程不算复杂,属于基础题型.16. 若关于的一元二次方程有两个不相等的实数根,求的取值范围.【答案】【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于a的一元一次不等式,解之即可得出a的取值范围.详解:∵关于x的一元二次方程x2-(2a+1)x+a2=0有两个不相等的实数根,∴△=[-(2a+1)]2-4a2=4a+1>0,解得:a>-.点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.17. 为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.根据图表信息,解答下列问题:(1)本次调查的总人数为,表中的值为;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.【答案】(1)120,45%;(2)补图见解析;(3)1980人.【解析】分析:(1)利用12÷10%=120,即可得到m的值;用120×40%即可得到n的值.(2)根据n的值即可补全条形统计图;(3)根据用样本估计总体,3600××100%,即可答.详解:(1)12÷10%=120,故m=120,n=120×40%=48,m==45%.(2)根据n=48,画出条形图:(3)3600××100%=1980(人),答:估计该景区服务工作平均每天得到1980人游客的肯定.点睛:本题考查了条形统计图、扇形统计图等知识,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.18. 由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达处时,测得小岛位于它的北偏东方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛位于它的北偏东方向.如果航母继续航行至小岛的正南方向的处,求还需航行的距离的长.(参考数据:,,,,,)【答案】还需要航行的距离的长为20.4海里.【解析】分析:根据题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,由三角函数得出CD=27.2海里,在直角三角形BCD中,得出BD,即可得出答案.详解:由题知:,,.在中,,,(海里).在中,,,(海里).答:还需要航行的距离的长为20.4海里.点睛:此题考查了解直角三角形的应用-方向角问题,三角函数的应用;求出CD的长度是解决问题的关键.19. 如图,在平面直角坐标系中,一次函数的图象经过点,与反比例函数的图象交于.(1)求一次函数和反比例函数的表达式;(2)设是直线上一点,过作轴,交反比例函数的图象于点,若为顶点的四边形为平行四边形,求点的坐标.【答案】(1).;(2)的坐标为或.【解析】分析:(1)根据一次函数y=x+b的图象经过点A(-2,0),可以求得b的值,从而可以解答本题;(2)根据平行四边形的性质和题意,可以求得点M的坐标,注意点M的横坐标大于0.详解:(1)一次函数的图象经过点,,,.一次函数与反比例函数交于.,,,.(2)设,.当且时,以A,O,M,N为顶点的四边形为平行四边形.即:且,解得:或(负值已舍),的坐标为或.点睛:本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.20. 如图,在中,,平分交于点,为上一点,经过点,的分别交,于点,,连接交于点.(1)求证:是的切线;(2)设,,试用含的代数式表示线段的长;(3)若,,求的长.【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.【解析】分析:(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出DG的长即可.详解:(1)证明:如图,连接OD,∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∴BC为圆O的切线;(2)连接DF,由(1)知BC为圆O的切线,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴,即AD2=AB•AF=xy,则AD=(3)连接EF,在Rt△BOD中,sinB=,设圆的半径为r,可得,解得:r=5,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF=,∴AF=AE•sin∠AEF=10×,∵AF∥OD,∴,即DG=AD,∵AD=,则DG=×=.点睛:此题属于圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.B卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)21. 已知,,则代数式的值为__________.【答案】0.36【解析】分析:原式分解因式后,将已知等式代入计算即可求出值.详解:∵x+y=0.2,x+3y=1,∴2x+4y=1.2,即x+2y=0.6,则原式=(x+2y)2=0.36.故答案为:0.36点睛:此题考查了因式分解-运用公式法,熟练掌握因式分解的方法是解本题的关键.22. 汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为__________.【答案】【解析】分析:设勾为2k,则股为3k,弦为k,由此求出大正方形面积和阴影区域面积,由此能求出针尖落在阴影区域的概率.详解:设勾为2k,则股为3k,弦为k,∴大正方形面积S=k×k=13k2,中间小正方形的面积S′=(3−2)k•(3−2)k=k2,故阴影部分的面积为:13 k2-k2=12 k2∴针尖落在阴影区域的概率为:.故答案为:.点睛:此题主要考查了几何概率问题,用到的知识点为:概率=相应的面积与总面积之比.学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...学_科_网...【答案】【解析】分析:根据S n数的变化找出S n的值每6个一循环,结合2018=336×6+2,即可得出S2018=S2,此题得解.详解:S1=,S2=-S1-1=--1=-,S3=,S4=-S3-1=-1=-,S5=,S6=-S5-1=(a+1)-1=a,S7=,…,∴S n的值每6个一循环.∵2018=336×6+2,∴S2018=S2=-.故答案为:-.点睛:本题考查了规律型中数字的变化类,根据数值的变化找出S n的值每6个一循环是解题的关键.24. 如图,在菱形中,,分别在边上,将四边形沿翻折,使的对应线段经过顶点,当时,的值为__________.【答案】【解析】分析:首先延长NF与DC交于点H,进而利用翻折变换的性质得出NH⊥DC,再利用边角关系得出BN,CN的长进而得出答案.详解:延长NF与DC交于点H,∵∠ADF=90°,∴∠A+∠FDH=90°,∵∠DFN+∠DFH=180°,∠A+∠B=180°,∠B=∠DFN,∴∠A=∠DFH,∴∠FDH+∠DFH=90°,∴NH⊥DC,设DM=4k,DE=3k,EM=5k,∴AD=9k=DC,DF=6k,∵tanA=tan∠DFH=,则sin∠DFH=,∴DH=DF=k,∴CH=9k-k=k,∵cosC=cosA=,∴CN=CH=7k,∴BN=2k,∴.故答案为:.点睛:此题主要考查了翻折变换的性质以及解直角三角形,正确表示出CN的长是解题关键.25. 设双曲线与直线交于,两点(点在第三象限),将双曲线在第一象限的一支沿射线的方向平移,使其经过点,将双曲线在第三象限的一支沿射线的方向平移,使其经过点,平移后的两条曲线相交于点,两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,为双曲线的“眸径”.当双曲线的眸径为6时,的值为__________.【答案】【解析】分析:以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,联立直线AB及双曲线解析式成方程组,通过解方程组可求出点A、B的坐标,由PQ的长度可得出点P的坐标(点P在直线y=-x上找出点P的坐标),由图形的对称性结合点A、B和P的坐标可得出点P′的坐标,再利用反比例函数图象上点的坐标特征即可得出关于k的一元一次方程,解之即可得出结论.详解:以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,如图所示.联立直线AB及双曲线解析式成方程组,,解得:,,∴点A的坐标为(-,-),点B的坐标为(,).∵PQ=6,∴OP=3,点P的坐标为(-,).根据图形的对称性可知:AB=OO′=PP′,∴点P′的坐标为(-+2,+2).又∵点P′在双曲线y=上,∴(-+2)•(+2)=k,解得:k=.故答案为:.点睛:本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、矩形的性质以及解一元一次方程,利用矩形的性质结合函数图象找出点P′的坐标是解题的关键.二、解答题(本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.)26. 为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用(元)与种植面积之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当和时,与的函数关系式;(2)广场上甲、乙两种花卉的种植面积共,若甲种花卉的种植面积不少于,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?【答案】(1);(2)应分配甲种花卉种植面积为,乙种花卉种植面积为,才能使种植总费用最少,最少总费用为119000元.【解析】分析:(1)由图可知y与x的函数关系式是分段函数,待定系数法求解析式即可.(2)设甲种花卉种植为a m2,则乙种花卉种植(12000-a)m2,根据实际意义可以确定a的范围,结合种植费用y(元)与种植面积x(m2)之间的函数关系可以分类讨论最少费用为多少.详解:(1)(2)设甲种花卉种植面积为,则乙种花卉种植面积为..当时,.当时,元.当时,.当时,元.,当时,总费用最低,最低为119000元.此时乙种花卉种植面积为.答:应分配甲种花卉种植面积为,乙种花卉种植面积为,才能使种植总费用最少,最少总费用为119000元.点睛:本题是看图写函数解析式并利用解析式解决问题的题目,考查分段函数的表达和分类讨论的数学思想.27. 在中,,,,过点作直线,将绕点顺时针得到(点,的对应点分别为,),射线,分别交直线于点,.(1)如图1,当与重合时,求的度数;(2)如图2,设与的交点为,当为的中点时,求线段的长;(3)在旋转过程时,当点分别在,的延长线上时,试探究四边形的面积是否存在最小值.若存在,求出四边形的最小面积;若不存在,请说明理由.【答案】(1)60°;(2);(3)【解析】分析:(1)由旋转可得:AC=A'C=2,进而得到BC=,依据∠A'BC=90°,可得cos∠A'CB=,即可得到∠A'CB=30°,∠ACA'=60°;(2)根据M为A'B'的中点,即可得出∠A=∠A'CM,进而得到PB=BC=,依据tan∠Q=tan∠A=,即可得到BQ=BC×=2,进而得出PQ=PB+BQ=;详解:(1)由旋转可得:AC=A'C=2,∵∠ACB=90°,AB=,AC=2,∴BC=,∵∠ACB=90°,m∥AC,∴∠A'BC=90°,∴cos∠A'CB=,∴∠A'CB=30°,∴∠ACA'=60°;(2)∵M为A'B'的中点,∴∠A'CM=∠MA'C,由旋转可得,∠MA'C=∠A,∴∠A=∠A'CM,∴tan∠PCB=tan∠A=,∴PB=BC=,∵tan∠Q=tan∠A=,∴BQ=BC×=2,∴PQ=PB+BQ=;(3)∵S四边形PA'B′Q=S△PCQ-S△A'CB'=S△PCQ-,∴S四边形PA'B′Q最小,即S△PCQ最小,∴S△PCQ=PQ×BC=PQ,取PQ的中点G,则∠PCQ=90°,∴CG=PQ,即PQ=2CG,当CG最小时,PQ最小,∴CG⊥PQ,即CG与CB重合时,CG最小,∴CG min=,PQ min=2,∴S△PCQ的最小值=3,S四边形PA'B′Q=3-.点睛:本题属于四边形综合题,主要考查了旋转的性质,解直角三角形以及直角三角形的性质的综合运用,解题时注意:旋转变换中,对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.28. 如图,在平面直角坐标系中,以直线为对称轴的抛物线与直线交于,两点,与轴交于,直线与轴交于点.(1)求抛物线的函数表达式;(2)设直线与抛物线的对称轴的交点为,是抛物线上位于对称轴右侧的一点,若,且与的面积相等,求点的坐标;(3)若在轴上有且只有一点,使,求的值.【答案】(1).;(2)点坐标为;.(3). 【解析】分析:(1)根据已知列出方程组求解即可;(2)作AM⊥x轴,BN⊥x轴,垂足分别为M,N,求出直线l的解析式,再分两种情况分别求出G点坐标即可;(3)根据题意分析得出以AB为直径的圆与x轴只有一个交点,且P为切点,P为MN的中点,运用三角形相似建立等量关系列出方程求解即可.详解:(1)由题可得:解得,,.二次函数解析式为:.(2)作轴,轴,垂足分别为,则.,,,,解得,,.同理,.,①(在下方),,,即,.,,.②在上方时,直线与关于对称.,,.,,.综上所述,点坐标为;.(3)由题意可得:.,,,即.,,.设的中点为,点有且只有一个,以为直径的圆与轴只有一个交点,且为切点.轴,为的中点,.,,,,即,.,.点睛:此题主要考查二次函数的综合问题,会灵活根据题意求抛物线解析式,会分析题中的基本关系列方程解决问题,会分类讨论各种情况是解题的关键.。

(完整版)2018年成都市中考数学试题解析

(完整版)2018年成都市中考数学试题解析

2018年成都市中考数学试卷参考答案与试题解析A卷一、选择题(每小题3分,共30分)1.(3分)实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d【考点】数轴、数的大小比较。

【入题】根据实数的大小比较解答即可。

【解答】解:由数轴可得:a<b<c<d,故选:D。

2.(3分)2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A.4×104 B.4×105 C.4×106 D.0.4×106【考点】科学记数法,幂的定义。

【入题】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数。

1万=10000=104。

【解答】40万=40×104=4×105。

故选:B。

3.(3分)(2018•成都)如图所示的正六棱柱的主视图是()A.B.C.D.【考点】三视图,正视图观察方法及图像判定。

【入题】根据主视图是从正面看到的图象判定则可.【解答】正视图是3个高度一样的矩形水平拼接而成的矩形。

故选:A。

4.(3分)在平面直角坐标系中,点P(−3,−5)关于原点对称的点的坐标是()A.(3,−5) B.(−3,5) C.(3,5)D.(−3,−5)【考点】中心对称,坐标的特征及变化。

【入题】根据关于原点对称的点的坐标特点,横、纵坐标的绝对值不变,符号全改变。

【解答】点P(−3,−5)关于原点对称的点的坐标是P’(3,5)。

故选:C。

5.(3分)下列计算正确的是()A.x2+x2=x4 B.(x−y)2=x2−y2 C.(x2 y)3=x6y D.(−x)2•x3=x5【考点】同类项合并,乘法公式,幂的运算。

【入题】根据各类运算法则依次计算,并判断正误。

【解答】x2+x2=2x2,A错误;(x−y)2=x2−2xy+y2,B错误;(x2 y)3=x6y3,C错误;(−x)2∙x3=x2∙x3=x5,D正确。

四川省成都市2018年中考数学试题(含答案)-精品

四川省成都市2018年中考数学试题(含答案)-精品

四川省二0一八高中阶段教育学校统一招生考试(含成都市初三毕业会考)A 卷(共100分)第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.实数,,,a b c d 在数轴上对应的点的位置如图所示,这四个数中最大的是( )A .aB .bC .cD .d2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为( )A .60.410⨯B .5410⨯C .6410⨯D .60.410⨯3.如图所示的正六棱柱的主视图是( )A .B .C .D .4.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5- C.()3,5 D .()3,5--5.下列计算正确的是( )A .224x x x +=B .()222x y x y -=- C.()326x y x y = D .()235x x x -∙=6.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆∆≌的是( )A .A D ∠=∠B .ACB DBC ∠=∠ C.AC DB =D .AB DC =7.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃ C.中位数是24℃ D .平均数是26℃8.分式方程1112x x x ++=-的解是( ) A .y B .1x =- C.3x = D .3x =-9.如图,在ABCD 中,60B ∠=︒,C ⊙的半径为3,则图中阴影部分的面积是( )A .πB .2π C.3π D .6π10.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C.当0x <时,y 的值随x 值的增大而减小 D .y 的最小值为-3 第Ⅱ卷(共70分)二、填空题(每题4分,满分16分,将答案填在答题纸上)11.等腰三角形的一个底角为50︒,则它的顶角的度数为 .12.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色兵乓球的个数是 . 13.已知54a b c b ==,且26a b c +-=,则a 的值为 . 14.如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .若2DE =,3CE =,则矩形的对角线AC 的长为 .三、解答题 (本大题共6小题,共54分.解答应写出文字说明、证明过程或演算步骤.)15. (1)222sin 60︒+.(2)化简21111x x x ⎛⎫-÷ ⎪+-⎝⎭. 16. 若关于x 的一元二次方程()22210x a x a -++=有两个不相等的实数根,求a 的取值范围.17.为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.根据图标信息,解答下列问题:(1)本次调查的总人数为 ,表中m 的值 ;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.18. 由我国完全自主设计、自主建造的首舰国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A 处时,测得小岛C 位于它的北偏东70︒方向,且于航母相距80海里,再航行一段时间后到达处,测得小岛C 位于它的北偏东37︒方向.如果航母继续航行至小岛C 的正南方向的D 处,求还需航行的距离BD 的长.(参考数据:sin700.94︒≈,cos700.34︒≈,tan70 2.75︒≈,sin370.6︒≈,cos370.80︒≈,tan370.75︒≈)19. 如图,在平面直角坐标系xOy 中,一次函数y x b =+的图象经过点()2,0A -,与反比例函数()0k y x x=>的图象交于(),4B a . (1)求一次函数和反比例函数的表达式;(2)设M 是直线AB 上一点,过M 作//MN x 轴,交反比例函数()0k y x x=>的图象于点N ,若,,,A O M N 为顶点的四边形为平行四边形,求点M 的坐标.20.如图,在Rt ABC ∆中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,O 为AB 上一点,经过点A ,D 的O ⊙分别交AB ,AC 于点E ,F ,连接OF 交AD 于点G .(1)求证:BC 是O ⊙的切线;(2)设AB x =,AF y =,试用含,x y 的代数式表示线段AD 的长;(3)若8BE =,5sin 13B =,求DG 的长. B 卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)21.已知0.2x y +=,31x y +=,则代数式2244x xy y ++的值为 .22.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.23.已知0a >,11S a =,211S S =--,321S S =,431S S =--,541S S =,…(即当n 为大于1的奇数时,11n n S S -=;当n 为大于1的偶数时,11n n S S -=--),按此规律,2018S = .24.如图,在菱形ABCD 中,4tan 3A =,,M N 分别在边,AD BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当E F A D ⊥时,BN CN 的值为.25.设双曲线()0k y k x=>与直线y x =交于A ,B 两点(点A 在第三象限),将双曲线在第一象限的一支沿射线BA 的方向平移,使其经过点A ,将双曲线在第三象限的一支沿射线AB 的方向平移,使其经过点B ,平移后的两条曲线相交于点P ,Q 两点,此时我称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ 为双曲线的“眸径”当双曲线()0k y k x=>的眸径为6时,k 的值为 .二、解答题 (本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.)26.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积()2x m 之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0300x ≤≤和300x >时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共21200m ,若甲种花卉的种植面积不少于2200m ,且不超过乙种花卉种植面积的2倍,那么应该怎忙分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?27.在Rt ABC ∆中,90ABC ∠=︒,AB =2AC =,过点B 作直线//m AC ,将ABC ∆绕点C 顺时针得到A B C ∆′′(点A ,B 的对应点分别为A ′,B ′)射线CA ′,CB ′分别交直线m 于点P ,Q .(1)如图1,当P 与A ′重合时,求ACA ∠′的度数; (2)如图2,设A B ′′与BC 的交点为M ,当M 为A B ′′的中点时,求线段PQ 的长; (3)在旋转过程时,当点,P Q 分别在CA ′,CB ′的延长线上时,试探究四边形PA B Q ′′的面积是否存在最小值.若存在,求出四边形PA B Q ′′的最小面积;若不存在,请说明理由.28.如图,在平面直角坐标系xOy 中,以直线512x =为对称轴的抛物线2y ax bx c =++与直线():0l y kx m k =+>交于()1,1A ,B 两点,与y 轴交于()0,5C ,直线l 与y 轴交于D 点.(1)求抛物线的函数表达式;(2)设直线l 与抛物线的对称轴的交点为F 、G 是抛物线上位于对称轴右侧的一点,若34AF FB =,且BCG ∆与BCD ∆面积相等,求点G 的坐标; (3)若在x 轴上有且仅有一点P ,使90APB ∠=︒,求k 的值.试卷答案A 卷一、选择题1-5:DBACD 6-10:CBACD二、填空题11.80︒三、解答题15.(1)解:原式1224=+-124=+94(2)解:原式()()11111x x x x x+-+-=⨯+ ()()111x x x x x+-=⨯+ 1x =- 16.解:由题知:()2222214441441a a a a a a ∆=+-=++-=+.原方程有两个不相等的实数根,410a +>∴,14a >-∴. 17.解:(1)120,45%;(2)比较满意;12040%=48⨯(人)图略;(3)12+543600=1980120⨯(人). 答:该景区服务工作平均每天得到1980人的肯定.18.解:由题知:70ACD ∠=︒,37BCD ∠=︒,80AC =.在Rt ACD ∆中,cos CD ACD AC ∠=,0.3480CD =∴,27.2CD =∴(海里).在Rt BCD ∆中,tan BD BCD CD ∠=,0.7527.2BD =∴,20.4BD =∴(海里). 答:还需要航行的距离BD 的长为20.4海里.19.解:(1)一次函数的图象经过点()2,0A -,20b -+=∴,2b =∴,1y x =+∴. 一次函数与反比例函数()0k y x x=>交于(),4B a . 24a +=∴,2a =∴,()2,4B ∴,()80y x x =>∴. (2)设()2,M m m -,8,N m m ⎛⎫ ⎪⎝⎭. 当//MN AO 且MN AO =时,四边形AOMN 是平行四边形.即:()822m m--=且0m >,解得:m =或2m =,M ∴的坐标为(2,或()2.20.解:(1)如图,连接.为的角平分线,,,.又,,,是的切线.(2)连接.由(1)可知,为切线.,,.又,,,,,.(3)连接.在中,.设圆的半径为,,,,.是直径,,而.,,,.,,.,.B 卷21.0.36 22.121323.1a a+- 24.2725.32 26.解:(1)()()130,03008015000.300x x y x x ≤≤⎧⎪=⎨+>⎪⎩(2)设甲种花卉种植为2am ,则乙种花卉种植()21200a m -. ()200,21200a a a ≥⎧⎪⎨≤-⎪⎩∴200800a ≤≤∴. 当200300a ≤<时,()1130100120030120000W a a a =+-=+.当200a =时,min 126000W =元.当300800a ≤≤时,()2801500010020013500020W a a a =++-=-.当800a =时,min 119000W =元.119000126000<,∴当800a =时,总费用最低,最低为119000元.此时乙种花卉种植面积为21200800400m -=.答:应分配甲种花卉种植面积为2800m ,乙种花卉种植面积为2400m ,才能使种植总费用最少,最少总费用为119000元.27.解:(1)由旋转的性质得:'2AC A C ==.90ACB ∠=︒,//m AC ,'90A BC ∠=︒∴,cos ''BC A CB A C ∠==∴'30A CB ∠=︒∴,'60ACA ∠=︒∴.(2)M 为''A B 的中点,''A CM MA C ∠=∴.由旋转的性质得:'MA C A ∠=∠,'A A CM ∠=∠∴.tan tan PCB A ∠=∠=∴,32PB BC ==∴. tan tan 2Q PCA ∠=∠=,2BQ BC ===∴,72PQ PB BQ =+=∴. (3)''''PA B Q PCQ A CB PCQ S S S S ∆∆∆=-=''PA B Q S ∴最小,PCQ S ∆即最小,122PCQ S PQ BC PQ ∆=⨯=∴. 法一:(几何法)取PQ 中点G ,则90PCQ ∠=︒.12CG PQ =∴. 当CG 最小时,PQ 最小,CG PQ ⊥∴,即CG 与CB 重合时,CG 最小. min CG =∴min PQ =,()min 3PCQ S ∆=∴,''3PA B Q S =法二:(代数法)设PB x =,BQ y =.由射影定理得:3xy =,∴当PQ 最小,即x y +最小,()22222262612x y x y xy x y xy +=++=++≥+=∴.当x y ==“=”成立,PQ ==∴28.解:(1)由题可得:5,225, 1.b a c a b c ⎧-=⎪⎪=⎨⎪++=⎪⎩解得1a =,5b =-,5c =.∴二次函数解析式为:255y x x =-+.(2)作AM x ⊥轴,BN x ⊥轴,垂足分别为,M N ,则34AF MQ FB QN ==. 32MQ =,2NQ =∴,911,24B ⎛⎫ ⎪⎝⎭, 1,91,24k m k m +=⎧⎪⎨+=⎪⎩∴,解得1,21,2k m ⎧=⎪⎪⎨⎪=⎪⎩,1122t y x =+∴,102D ⎛⎫ ⎪⎝⎭,. 同理,152BC y x =-+. BCD BCG S S ∆∆=,∴①//DG BC (G 在BC 下方),1122DG y x =-+, 2115522x x x -+=-+∴,即22990x x -+=,123,32x x ==∴. 52x >,3x =∴,()3,1G -∴. ②G 在BC 上方时,直线23G G 与1DG 关于BC 对称.1211922G G y x =-+∴,21195522x x x -+=-+∴,22990x x --=∴. 52x >,x =∴G ⎝⎭∴. 综上所述,点G 坐标为()13,1G -;2G ⎝⎭. (3)由题意可得:1k m +=.1m k =-∴,11y kx k =+-∴,2155kx k x x +-=-+∴,即()2540x k x k -+++=. 11x =∴,24x k =+,()24,31B k k k +++∴.设AB 的中点为'O , P 点有且只有一个,∴以AB 为直径的圆与x 轴只有一个交点,且P 为切点.OP x ⊥∴轴,P ∴为MN 的中点,5,02k P +⎛⎫ ⎪⎝⎭∴.AMP PNB ∆∆∽,AM PN PM BN=∴,AM BN PN PM ∙=∙∴, ()255314122k k k k k ++⎛⎫⎛⎫⨯++=+-- ⎪⎪⎝⎭⎝⎭∴1,即23650k k +-=,960∆=>.0k >,1k ==-+∴。

2018年成都市中考数学试题及答案详解

2018年成都市中考数学试题及答案详解

四川省成都市2018年中考数学试卷(解析版)一、选择题(A卷)1.实数在数轴上对应的点的位置如图所示,这四个数中最大的是()A. B. C. D.【答案】D【考点】数轴及有理数在数轴上的表示,有理数大小比较【解析】【解答】解:根据数轴可知a<b<0<c<d∴这四个数中最大的数是d故答案为:D【分析】根据数轴上右边的数总比左边的数大,即可得出结果。

2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A. B. C. D.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:40万=4×105故答案为:B【分析】根据科学计数法的表示形式为:a×10n。

其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1,即可求解。

3.如图所示的正六棱柱的主视图是()A. B.C. D.【答案】A【考点】简单几何体的三视图【解析】【解答】解:∵从正面看是左右相邻的3个矩形,中间的矩形面积较大,两边的矩形面积相同,∴答案A符合题意故答案为:A【分析】根据主视图是从正面看到的平面图形,即可求解。

4.在平面直角坐标系中,点关于原点对称的点的坐标是()A.B.C.D.【答案】C【考点】关于原点对称的坐标特征【解析】【解答】解:点关于原点对称的点的坐标为(3,5)故答案为:C【分析】根据关于原点对称点的坐标特点是横纵坐标都互为相反数,就可得出答案。

5.下列计算正确的是()A. B. C. D.【答案】D【考点】同底数幂的乘法,完全平方公式及运用,合并同类项法则及应用,积的乘方【解析】【解答】解:A、x2+x2=2x2,因此A不符合题意;B、(x-y)2=x2-2xy+y2,因此B不符合题意;C、(x2y)3=x6y3,因此C不符合题意;D、,因此D符合题意;故答案为:D【分析】根据合并同类项的法则,可对A作出判断;根据完全平方公式,可对B作出判断;根据积的乘方运算法则及同底数幂的乘法,可对C、D作出判断;即可得出答案。

四川成都市2018年中考数学试卷及解析汇报

四川成都市2018年中考数学试卷及解析汇报

2018年四川省成都市初中学业考试数学试卷(A卷)一、选择题(每小题3分,共30分)1. (3分)实数a,b,c,d在数轴上上对应的点的位置如图所示,这四个数中最大的是()I 7 ____________ L_________ i-3 -2 -1 0 1 2 3A. aB. bC. cD. d2. (3分)2018年5月2l日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A. 4X 104B. 4X 105C. 4X 106D. 0.4 X 106A.3. (3分)如图所示的正六棱柱的主视图是()4. (3分)在平面直角坐标系中,点P (- 3,- 5)关于原点对称的点的坐标是()A. (3,- 5)B. (- 3,5)C. (3,5)D. (- 3,- 5)5. (3分)下列计算正确的是()2 2 4 2 2 2 2、36 23 5A. x +x =x B .(x - y)=x —y C .(x y)=x y D •(—x)? x =x6. (3分)如图,已知/ ABC2 DCB添加以下条件,不能判定△ ABC^A DCB的是()A.Z A=Z D B ./ ACB2 DBC C . AC=DB D . AB=DC 7. (3分)如图是成都市某周内最高气温的折线统计图,关于这 7天的日最高气 温的说法正确的是()A 最高气温3C10 . (3分)关于二次函数y=2x 2+4x - 1,下列说法正确的是()A.图象与y 轴的交点坐标为(0, 1)A.极差是8CD .平均数是26 C9. (3分)3nDB .图象的对称轴在y轴的右侧C. 当x V 0时,y的值随x值的增大而减小D. y的最小值为-3二、填空题(每小题4分,共16分)11. __________________________________________________________ (4分)等腰三角形的一个底角为50°,则它的顶角的度数为__________________ .12. (4分)在一个不透明的盒子中,装有除颜色外完全个相同的乒乓球共16个, 从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为_,则该盒子中装有黄色8乒乓球的个数是_______ .13. (4分)已知"==,且a+b-2c=6,则a的值为6 5 414. (4分)如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于I AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若2DE=2 CE=3则矩形的对角线AC的长为________ .三、解答题(本大题共6个小题,共54分)15. (12分)(1)22+:;g- 2sin60 ° +| -(2)化简:(1- 「)宁一^灶 1 ?-116. (6分)若关于x的一元二次方程x2-(2a+1)x+a2=0有两个不相等的实数根,求a的取值范围.17. (8分)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.满意度学生数(名)百分比根据图表信息,解答下列问题:(1) ________________________ 本次调查的总人数为 ,表中m 的值 ; (2) 请补全条形统计图;(3) 据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意” 作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.18. (8分)由我国完全自主设计、自主建造的首艘国产航母于 2018年5月成功完成第一次海上实验任务•如图,航母由西向东航行,到达 A 处时,测得小岛C 位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B 处, 测得小岛C 位于它的北偏东37°方向.如果航母继续航行至小岛 C 的正南方向 的D 处,求还需航行的距离BD 的长.(参考数据:sin70 °~ 0.94,cos70°~ 0.34,tan70 °~ 2, 75, sin37 °~ 0.6,19. (10分)如图,在平面直角坐标系 xOy 中,一次函数y=x+b 的图象经过点A (-2,0),与反比例函数y=± (x >0)的图象交于B (a ,4).x (1) 求一次函数和反比例函数的表达式;(2) 设M 是直线AB 上一点,过M 作MN/ x 轴,交反比例函数y 」(x >0)的图x 象于点N,若A ,O, M, N 为顶点的四边形为平行四边形,求点 M 的坐标.60 544S 42 36 30 24 18 12 60 性数t _ 14 ________- --- ----16r~r非良冠急•両意两意■不〕皓慧;殆旦滾20. (10分)如图,在Rt△ ABC中,/ C=90 , AD平分/ BAC交BC于点D, O为AB上一点,经过点A, D的。

四川省成都市2018年中考数学试题(含答案)【真题卷】

四川省成都市2018年中考数学试题(含答案)【真题卷】

四川省二0一八高中阶段教育学校统一招生考试(含成都市初三毕业会考)A 卷(共100分) 第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.实数,,,a b c d 在数轴上对应的点的位置如图所示,这四个数中最大的是( )A .aB .bC .cD .d2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为( )A .60.410⨯ B .5410⨯ C .6410⨯ D .60.410⨯ 3.如图所示的正六棱柱的主视图是( )A .B .C .D .4.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( ) A .()3,5- B .()3,5- C.()3,5 D .()3,5--5.下列计算正确的是( )A .224x x x += B .()222x y x y -=-C.()326x yx y = D .()235x x x -•=6.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆∆≌的是( )A .A D ∠=∠B .ACB DBC ∠=∠ C.AC DB =D .AB DC = 7.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃ C.中位数是24℃ D .平均数是26℃ 8.分式方程1112x x x ++=-的解是( ) A .y B .1x =- C.3x = D .3x =-9.如图,在ABCD Y 中,60B ∠=︒,C ⊙的半径为3,则图中阴影部分的面积是( )A .πB .2π C.3π D .6π 10.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧 C.当0x <时,y 的值随x 值的增大而减小 D .y 的最小值为-3第Ⅱ卷(共70分)二、填空题(每题4分,满分16分,将答案填在答题纸上)11.等腰三角形的一个底角为50︒,则它的顶角的度数为 .12.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色兵乓球的个数是 . 13.已知54a b cb ==,且26a bc +-=,则a 的值为 . 14.如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .若2DE =,3CE =,则矩形的对角线AC 的长为 .三、解答题 (本大题共6小题,共54分.解答应写出文字说明、证明过程或演算步骤.)15. (1)23282sin 603+-︒+-. (2)化简21111xx x ⎛⎫-÷ ⎪+-⎝⎭. 16. 若关于x 的一元二次方程()22210x a x a -++=有两个不相等的实数根,求a 的取值范围.17.为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.根据图标信息,解答下列问题:(1)本次调查的总人数为 ,表中m 的值 ; (2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定. 18. 由我国完全自主设计、自主建造的首舰国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A 处时,测得小岛C 位于它的北偏东70︒方向,且于航母相距80海里,再航行一段时间后到达处,测得小岛C 位于它的北偏东37︒方向.如果航母继续航行至小岛C 的正南方向的D 处,求还需航行的距离BD 的长. (参考数据:sin700.94︒≈,cos700.34︒≈,tan70 2.75︒≈,sin370.6︒≈,cos370.80︒≈,tan370.75︒≈)19. 如图,在平面直角坐标系xOy 中,一次函数y x b =+的图象经过点()2,0A -,与反比例函数()0ky x x=>的图象交于(),4B a . (1)求一次函数和反比例函数的表达式;(2)设M 是直线AB 上一点,过M 作//MN x 轴,交反比例函数()0ky x x=>的图象于点N ,若,,,A O M N 为顶点的四边形为平行四边形,求点M 的坐标.20.如图,在Rt ABC ∆中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,O 为AB 上一点,经过点A ,D 的O ⊙分别交AB ,AC 于点E ,F ,连接OF 交AD 于点G .(1)求证:BC 是O ⊙的切线;(2)设AB x =,AF y =,试用含,x y 的代数式表示线段AD 的长; (3)若8BE =,5sin 13B =,求DG 的长. B 卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)21.已知0.2x y +=,31x y +=,则代数式2244x xy y ++的值为 .22.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为 .23.已知0a >,11S a=,211S S =--,321S S =,431S S =--,541S S =,…(即当n 为大于1的奇数时,11n n S S -=;当n 为大于1的偶数时,11n n S S -=--),按此规律,2018S = .24.如图,在菱形ABCD 中,4tan 3A =,,M N 分别在边,AD BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF AD ⊥时,BNCN的值为 .25.设双曲线()0ky k x=>与直线y x =交于A ,B 两点(点A 在第三象限),将双曲线在第一象限的一支沿射线BA 的方向平移,使其经过点A ,将双曲线在第三象限的一支沿射线AB 的方向平移,使其经过点B ,平移后的两条曲线相交于点P ,Q 两点,此时我称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ 为双曲线的“眸径”当双曲线()0ky k x=>的眸径为6时,k 的值为 .二、解答题 (本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.)26.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积()2x m 之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0300x ≤≤和300x >时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共21200m ,若甲种花卉的种植面积不少于2200m ,且不超过乙种花卉种植面积的2倍,那么应该怎忙分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?27.在Rt ABC ∆中,90ABC ∠=︒,7AB =,2AC =,过点B 作直线//m AC ,将ABC∆绕点C 顺时针得到A B C ∆′′(点A ,B 的对应点分别为A ′,B ′)射线CA ′,CB ′分别交直线m 于点P ,Q .(1)如图1,当P 与A ′重合时,求ACA ∠′的度数; (2)如图2,设A B ′′与BC 的交点为M ,当M 为A B ′′的中点时,求线段PQ 的长; (3)在旋转过程时,当点,P Q 分别在CA ′,CB ′的延长线上时,试探究四边形PA B Q ′′的面积是否存在最小值.若存在,求出四边形PA B Q ′′的最小面积;若不存在,请说明理由.28.如图,在平面直角坐标系xOy 中,以直线512x =为对称轴的抛物线2y ax bx c =++与直线():0l y kx m k =+>交于()1,1A ,B 两点,与y 轴交于()0,5C ,直线l 与y 轴交于D 点.(1)求抛物线的函数表达式;(2)设直线l 与抛物线的对称轴的交点为F 、G 是抛物线上位于对称轴右侧的一点,若34AF FB =,且BCG ∆与BCD ∆面积相等,求点G 的坐标; (3)若在x 轴上有且仅有一点P ,使90APB ∠=︒,求k 的值.试卷答案 A 卷一、选择题1-5:DBACD 6-10:CBACD二、填空题11.80︒三、解答题15.(1)解:原式12242=+-⨯+124=+94(2)解:原式()()11111x x x x x+-+-=⨯+ ()()111x x xx x+-=⨯+ 1x =-16.解:由题知:()2222214441441a a a a a a ∆=+-=++-=+.Q 原方程有两个不相等的实数根,410a +>∴,14a >-∴.17.解:(1)120,45%;(2)比较满意;12040%=48⨯(人)图略; (3)12+543600=1980120⨯(人). 答:该景区服务工作平均每天得到1980人的肯定.18.解:由题知:70ACD ∠=︒,37BCD ∠=︒,80AC =.在Rt ACD ∆中,cos CD ACD AC ∠=,0.3480CD=∴,27.2CD =∴(海里). 在Rt BCD ∆中,tan BD BCD CD ∠=,0.7527.2BD=∴,20.4BD =∴(海里).答:还需要航行的距离BD 的长为20.4海里. 19.解:(1)Q 一次函数的图象经过点()2,0A -,20b -+=∴,2b =∴,1y x =+∴.Q 一次函数与反比例函数()0ky x x=>交于(),4B a . 24a +=∴,2a =∴,()2,4B ∴,()80y x x=>∴.(2)设()2,M m m -,8,N m m ⎛⎫⎪⎝⎭. 当//MN AO 且MN AO =时,四边形AOMN 是平行四边形.即:()822m m--=且0m >,解得:m =2m =,M ∴的坐标为(2,或()2.20.解:(1)如图,连接. 为的角平分线,,,. 又,,,是的切线. (2)连接.由(1)可知,为切线. ,,. 又,,,,,. (3)连接. 在中,.设圆的半径为,,,,. 是直径,,而. ,,, . ,,. ,.B 卷21.0.36 22.121323.1a a +-24.2725.3226.解:(1)()()130,03008015000.300x x y x x ≤≤⎧⎪=⎨+>⎪⎩(2)设甲种花卉种植为2am ,则乙种花卉种植()21200a m -. ()200,21200a a a ≥⎧⎪⎨≤-⎪⎩∴200800a ≤≤∴. 当200300a ≤<时,()1130100120030120000W a a a =+-=+.当200a =时,min 126000W =元.当300800a ≤≤时,()2801500010020013500020W a a a =++-=-.当800a =时,min 119000W =元.119000126000<Q ,∴当800a =时,总费用最低,最低为119000元.此时乙种花卉种植面积为21200800400m -=.答:应分配甲种花卉种植面积为2800m ,乙种花卉种植面积为2400m ,才能使种植总费用最少,最少总费用为119000元.27.解:(1)由旋转的性质得:'2AC A C ==.90ACB ∠=︒Q ,//m AC ,'90A BC ∠=︒∴,cos ''2BC A CB A C ∠==∴'30A CB ∠=︒∴,'60ACA ∠=︒∴.(2)M Q 为''A B 的中点,''A CM MA C ∠=∴.由旋转的性质得:'MA C A ∠=∠,'A A CM ∠=∠∴. tan tan PCB A ∠=∠=∴,32PB ==∴. tan tan 2Q PCA ∠=∠=Q,2BQ BC ===∴,72PQ PB BQ =+=∴. (3)''''PA B Q PCQ A CB PCQ S S S S ∆∆∆=-=Q ''PA B Q S ∴最小,PCQ S ∆即最小,12PCQ S PQ BC PQ ∆=⨯=∴. 法一:(几何法)取PQ 中点G ,则90PCQ ∠=︒.12CG PQ =∴. 当CG 最小时,PQ 最小,CG PQ ⊥∴,即CG 与CB 重合时,CG 最小. min CG =∴min PQ =,()min 3PCQ S ∆=∴,''3PA B Q S =. 法二:(代数法)设PB x =,BQ y =.由射影定理得:3xy =,∴当PQ 最小,即x y +最小,()22222262612x y x y xy x y xy +=++=++≥+=∴.当x y ==“=”成立,PQ ==∴28.解:(1)由题可得:5,225, 1.b a c a b c ⎧-=⎪⎪=⎨⎪++=⎪⎩解得1a =,5b =-,5c =.∴二次函数解析式为:255y x x =-+.(2)作AM x ⊥轴,BN x ⊥轴,垂足分别为,M N ,则34AF MQ FB QN ==. 32MQ =Q ,2NQ =∴,911,24B ⎛⎫ ⎪⎝⎭, 1,91,24k m k m +=⎧⎪⎨+=⎪⎩∴,解得1,21,2k m ⎧=⎪⎪⎨⎪=⎪⎩,1122t y x =+∴,102D ⎛⎫ ⎪⎝⎭,. 同理,152BC y x =-+. BCD BCG S S ∆∆=Q ,∴①//DG BC (G 在BC 下方),1122DG y x =-+, 2115522x x x -+=-+∴,即22990x x -+=,123,32x x ==∴. 52x >Q ,3x =∴,()3,1G -∴. ②G 在BC 上方时,直线23G G 与1DG 关于BC 对称.1211922G G y x =-+∴,21195522x x x -+=-+∴,22990x x --=∴. 52x >Q,x =∴,967,48G ⎛⎫+- ⎪ ⎪⎝⎭∴. 综上所述,点G 坐标为()13,1G -;296744G ⎛⎫+-⎪ ⎪⎝⎭. (3)由题意可得:1k m +=. 1m k =-∴,11y kx k =+-∴,2155kx k x x +-=-+∴,即()2540x k x k -+++=. 11x =∴,24x k =+,()24,31B k k k +++∴.设AB 的中点为'O , P Q 点有且只有一个,∴以AB 为直径的圆与x 轴只有一个交点,且P 为切点.OP x ⊥∴轴,P ∴为MN 的中点,5,02k P +⎛⎫ ⎪⎝⎭∴. AMP PNB ∆∆Q ∽,AM PN PM BN=∴,AM BN PN PM •=•∴,()255314122k k k k k ++⎛⎫⎛⎫⨯++=+-- ⎪⎪⎝⎭⎝⎭∴1,即23650k k +-=,960∆=>. 0k >Q ,64626163k -+==-+∴.。

四川成都市2018年中考数学试卷及解析(完整资料).doc

四川成都市2018年中考数学试卷及解析(完整资料).doc

【最新整理,下载后即可编辑】2018年四川省成都市初中学业考试数学试卷(A卷)一、选择题(每小题3分,共30分)1.(3分)实数a,b,c,d在数轴上上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d2.(3分)2018年5月2l日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A.4×104B.4×105C.4×106D.0.4×1063.(3分)如图所示的正六棱柱的主视图是()A.B.C.D.4.(3分)在平面直角坐标系中,点P(﹣3,﹣5)关于原点对称的点的坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5)D.(﹣3,﹣5)5.(3分)下列计算正确的是()A.x2+x2=x4B.(x﹣y)2=x2﹣y2C.(x2y)3=x6y D.(﹣x)2•x3=x56.(3分)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC7.(3分)如图是成都市某周内最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃8.(3分)分式方程=1的解是()A.x=1 B.x=﹣1 C.x=3 D.x=﹣39.(3分)如图,在▱ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π10.(3分)关于二次函数y=2x2+4x﹣1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为﹣3二、填空题(每小题4分,共16分)11.(4分)等腰三角形的一个底角为50°,则它的顶角的度数为.12.(4分)在一个不透明的盒子中,装有除颜色外完全个相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色乒乓球的个数是.13.(4分)已知==,且a+b﹣2c=6,则a的值为.14.(4分)如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C 为圆心,以大于AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=2,CE=3,则矩形的对角线AC的长为.三、解答题(本大题共6个小题,共54分)15.(12分)(1)22+﹣2sin60°+|﹣|(2)化简:(1﹣)÷16.(6分)若关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,求a的取值范围.17.(8分)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.满意度学生数(名)百分比非常满意12 10%满意54 m比较满意n 40%不满意 6 5%根据图表信息,解答下列问题:(1)本次调查的总人数为,表中m的值;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.18.(8分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上实验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C 位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2,75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75)19.(10分)如图,在平面直角坐标系xOy中,一次函数y=x+b 的图象经过点A(﹣2,0),与反比例函数y=(x>0)的图象交于B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数y=(x>0)的图象于点N,若A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.20.(10分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC 交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sinB=,求DG的长,(B 卷)一、填空题(每小题4分,共20分)21.(4分)已知x+y=0.2,x+3y=1,则代数式x 2+4xy+4y 2的值为 .22.(4分)汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为 .23.(4分)已知a >0,S 1=,S 2=﹣S 1﹣1,S 3=,S 4=﹣S 3﹣1,S 5=,…(即当n 为大于1的奇数时,S n =;当n 为大于1的偶数时,S n =﹣S n ﹣1﹣1),按此规律,S 2018= .24.(4分)如图,在菱形ABCD 中,tanA=,M ,N 分别在边AD ,BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF ⊥AD 时,的值为 .25.(4分)设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为.二、解答题(本大题共3小题,共30分)26.(8分)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?27.(10分)在Rt△ABC中,∠ABC=90°,AB=,AC=2,过点B作直线m∥AC,将△ABC绕点C顺时针旋转得到△A′B′C′(点A,B的对应点分别为A',B′),射线CA′,C B′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA'B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.28.(12分)如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.2018年四川省成都市中考数学试卷参考答案与试题解析(A卷)一、选择题(每小题3分,共30分)1.(3分)实数a,b,c,d在数轴上上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d【分析】根据实数的大小比较解答即可.【解答】解:由数轴可得:a<b<c<d,故选:D.【点评】此题考查实数大小比较,关键是根据实数的大小比较解答.2.(3分)2018年5月2l日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A.4×104B.4×105C.4×106D.0.4×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.万=10000=104.【解答】解:40万=4×105,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)如图所示的正六棱柱的主视图是()A.B.C.D.【分析】根据主视图是从正面看到的图象判定则可.【解答】解:从正面看是左右相邻的3个矩形,中间的矩形的面积较大,两边相同.故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(3分)在平面直角坐标系中,点P(﹣3,﹣5)关于原点对称的点的坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5)D.(﹣3,﹣5)【分析】根据关于原点对称的点的坐标特点解答.【解答】解:点P(﹣3,﹣5)关于原点对称的点的坐标是(3,5),故选:C.【点评】本题考查的是关于原点的对称的点的坐标,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.5.(3分)下列计算正确的是()A.x2+x2=x4 B.(x﹣y)2=x2﹣y2C.(x2y)3=x6y D.(﹣x)2•x3=x5【分析】根据合并同类项法则、完全平方公式、积的乘方法则、同底数幂的乘方法则计算,判断即可.【解答】解:x2+x2=2x2,A错误;(x﹣y)2=x2﹣2xy+y2,B错误;(x2y)3=x6y3,C错误;(﹣x)2•x3=x2•x3=x5,D正确;故选:D.【点评】本题考查的是合并同类项、完全平方公式、积的乘方、同底数幂的乘法,掌握它们的运算法则是解题的关键.6.(3分)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC 【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS 定理,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA定理,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS定理,即能推出△ABC≌△DCB,故本选项错误;故选:C.【点评】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.7.(3分)如图是成都市某周内最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃ C.中位数是24℃D.平均数是26℃【分析】根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题.【解答】解:由图可得,极差是:30﹣20=10℃,故选项A错误,众数是28℃,故选项B正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C错误,平均数是:=℃,故选项D错误,故选:B.【点评】本题考查折线统计图、极差、众数、中位数、平均数,解答本题的关键是明确题意,能够判断各个选项中结论是否正确.8.(3分)分式方程=1的解是()A.x=1 B.x=﹣1 C.x=3 D.x=﹣3【分析】观察可得最简公分母是x(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:=1,去分母,方程两边同时乘以x(x﹣2)得:(x+1)(x﹣2)+x=x(x﹣2),x2﹣x﹣2+x=x2﹣2x,x=1,经检验,x=1是原分式方程的解,故选:A.【点评】考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.9.(3分)如图,在▱ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2π C.3π D.6π【分析】根据平行四边形的性质可以求得∠C的度数,然后根据扇形面积公式即可求得阴影部分的面积.【解答】解:∵在▱ABCD中,∠B=60°,⊙C的半径为3,∴∠C=120°,∴图中阴影部分的面积是:=3π,故选:C.【点评】本题考查扇形面积的计算、平行四边形的性质,解答本题的关键是明确题意,利用扇形面积的计算公式解答.10.(3分)关于二次函数y=2x2+4x﹣1,下列说法正确的是()A.图象与y轴的交点坐标为(0,1)B.图象的对称轴在y轴的右侧C.当x<0时,y的值随x值的增大而减小D.y的最小值为﹣3【分析】根据题目中的函数解析式可以判断各个选项中的结论是否在成立,从而可以解答本题.【解答】解:∵y=2x2+4x﹣1=2(x+1)2﹣3,∴当x=0时,y=﹣1,故选项A错误,该函数的对称轴是直线x=﹣1,故选项B错误,当x<﹣1时,y随x的增大而减小,故选项C错误,当x=﹣1时,y取得最小值,此时y=﹣3,故选项D正确,故选:D.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题(每小题4分,共16分)11.(4分)等腰三角形的一个底角为50°,则它的顶角的度数为80 .【分析】本题给出了一个底角为50°,利用等腰三角形的性质得另一底角的大小,然后利用三角形内角和可求顶角的大小.【解答】解:∵等腰三角形底角相等,∴180°﹣50°×2=80°,∴顶角为80°.故填80.【点评】本题考查等腰三角形的性质,即等边对等角.找出角之间的关系利用三角形内角和求角度是解答本题的关键.12.(4分)在一个不透明的盒子中,装有除颜色外完全个相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,则该盒子中装有黄色乒乓球的个数是 6 .【分析】直接利用摸到黄色乒乓球的概率为,利用总数乘以概率即可得出该盒子中装有黄色乒乓球的个数.【解答】解:∵装有除颜色外完全个相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为,∴该盒子中装有黄色乒乓球的个数是:16×=6.故答案为:6.【点评】此题主要考查了概率公式,正确利用摸到黄色乒乓球的概率求出黄球个数是解题关键.13.(4分)已知==,且a+b﹣2c=6,则a的值为12 .【分析】直接利用已知比例式假设出a,b,c的值,进而利用a+b ﹣2c=6,得出答案.【解答】解:∵==,∴设a=6x,b=5x,c=4x,∵a+b﹣2c=6,∴6x+5x﹣8x=6,解得:x=2,故a=12.故答案为:12.【点评】此题主要考查了比例的性质,正确表示出各数是解题关键.14.(4分)如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆心,以大于AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若DE=2,CE=3,则矩形的对角线AC的长为.【分析】连接AE,如图,利用基本作图得到MN垂直平分AC,则EA=EC=3,然后利用勾股定理先计算出AD,再计算出AC.【解答】解:连接AE,如图,由作法得MN垂直平分AC,∴EA=EC=3,在Rt△ADE中,AD==,在Rt△ADC中,AC==.故答案为.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).三、解答题(本大题共6个小题,共54分)15.(12分)(1)22+﹣2sin60°+|﹣|(2)化简:(1﹣)÷【分析】(1)根据立方根的意义,特殊角锐角三角函数,绝对值的意义即可求出答案.(2)根据分式的运算法则即可求出答案.【解答】解:(1)原式=4+2﹣2×+=6(2)原式=×=×=x﹣1【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16.(6分)若关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,求a的取值范围.【分析】根据方程的系数结合根的判别式△>0,即可得出关于a的一元一次不等式,解之即可得出a的取值范围.【解答】解:∵关于x的一元二次方程x2﹣(2a+1)x+a2=0有两个不相等的实数根,∴△=[﹣(2a+1)]2﹣4a2=4a+1>0,解得:a >﹣.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.17.(8分)为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.满意度学生数(名)百分比非常满意12 10%满意54 m 比较满n 40%意不满意 6 5%根据图表信息,解答下列问题:(1)本次调查的总人数为120 ,表中m的值45% ;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.【分析】(1)利用12÷10%=120,即可得到m的值;用120×40%即可得到n的值.(2)根据n的值即可补全条形统计图;(3)根据用样本估计总体,3600××100%,即可答.【解答】解:(1)12÷10%=120,故m=120,n=120×40%=48,m==45%.故答案为120.45%.(2)根据n=48,画出条形图:(3)3600××100%=1980(人),答:估计该景区服务工作平均每天得到1980人游客的肯定.【点评】本题考查了条形统计图、扇形统计图等知识,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.18.(8分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上实验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C 位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2,75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75)【分析】根据题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,由三角函数得出CD=27.2海里,在直角三角形BCD中,得出BD,即可得出答案.【解答】解:由题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,CD=AC•cos∠ACD=27.2海里,在直角三角形BCD中,BD=CD•tan∠BCD=20.4海里.答:还需航行的距离BD的长为20.4海里.【点评】此题考查了解直角三角形的应用﹣方向角问题,三角函数的应用;求出CD的长度是解决问题的关键.19.(10分)如图,在平面直角坐标系xOy中,一次函数y=x+b 的图象经过点A(﹣2,0),与反比例函数y=(x>0)的图象交于B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数y=(x>0)的图象于点N,若A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.【分析】(1)根据一次函数y=x+b的图象经过点A(﹣2,0),可以求得b的值,从而可以解答本题;(2)根据平行四边形的性质和题意,可以求得点M的坐标,注意点M的横坐标大于0.【解答】解:(1)∵一次函数y=x+b的图象经过点A(﹣2,0),∴0=﹣2+b,得b=2,∴一次函数的解析式为y=x+2,∵一次函数的解析式为y=x+2与反比例函数y=(x>0)的图象交于B(a,4),∴4=a+2,得a=2,∴4=,得k=8,即反比例函数解析式为:y=(x>0);(2)∵点A(﹣2,0),∴OA=2,设点M(m﹣2,m),点N(,m),当MN∥AO且MN=AO时,四边形AOMN是平行四边形,||=2,解得,m=2或m=+2,∴点M的坐标为(﹣2,)或(,2+2).【点评】本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.20.(10分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC 交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sinB=,求DG的长,【分析】(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;(2)连接DF,由(1)得到BC为圆O的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD与三角形ADF相似,由相似得比例,即可表示出AD;(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC 平行,得到sin∠AEF=sinB,进而求出DG的长即可.【解答】(1)证明:如图,连接OD,∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∴BC为圆O的切线;(2)解:连接DF,由(1)知BC为圆O的切线,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴=,即AD2=AB•AF=xy,则AD=;(3)解:连接EF,在Rt△BOD中,sinB==,设圆的半径为r,可得=,解得:r=5,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF==,∴AF=AE•sin∠AEF=10×=,∵AF∥OD,∴===,即DG=AD,∴AD===,则DG=×=.【点评】此题属于圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.(B卷)一、填空题(每小题4分,共20分)21.(4分)已知x+y=0.2,x+3y=1,则代数式x2+4xy+4y2的值为0.36 .【分析】原式分解因式后,将已知等式代入计算即可求出值.【解答】解:∵x+y=0.2,x+3y=1,∴2x+4y=1.2,即x+2y=0.6,则原式=(x+2y)2=0.36.故答案为:0.36【点评】此题考查了因式分解﹣运用公式法,熟练掌握因式分解的方法是解本题的关键.22.(4分)汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3.现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.【分析】针尖落在阴影区域的概率就是四个直角三角形的面积之和与大正方形面积的比.【解答】解:设两直角边分别是2x ,3x ,则斜边即大正方形的边长为x ,小正方形边长为x ,所以S 大正方形=13x 2,S 小正方形=x 2,S 阴影=12x 2, 则针尖落在阴影区域的概率为=. 故答案为:. 【点评】此题主要考查了几何概率问题,用到的知识点为:概率=相应的面积与总面积之比.23.(4分)已知a >0,S 1=,S 2=﹣S 1﹣1,S 3=,S 4=﹣S 3﹣1,S 5=,…(即当n 为大于1的奇数时,S n =;当n 为大于1的偶数时,S n =﹣S n ﹣1﹣1),按此规律,S 2018= ﹣ . 【分析】根据S n 数的变化找出S n 的值每6个一循环,结合2018=336×6+2,即可得出S 2018=S 2,此题得解.【解答】解:S 1=,S 2=﹣S 1﹣1=﹣﹣1=﹣,S 3==﹣,S 4=﹣S 3﹣1=﹣1=﹣,S 5==﹣(a+1),S 6=﹣S 5﹣1=(a+1)﹣1=a ,S 7==,…, ∴S n 的值每6个一循环.∵2018=336×6+2,∴S 2018=S 2=﹣. 故答案为:﹣.【点评】本题考查了规律型中数字的变化类,根据数值的变化找出S n 的值每6个一循环是解题的关键.24.(4分)如图,在菱形ABCD 中,tanA=,M ,N 分别在边AD ,BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF ⊥AD 时,的值为 .【分析】首先延长NF 与DC 交于点H ,进而利用翻折变换的性质得出NH ⊥DC ,再利用边角关系得出BN ,CN 的长进而得出答案.【解答】解:延长NF 与DC 交于点H ,∵∠ADF=90°,∴∠A+∠FDH=90°,∵∠DFN+∠DFH=180°,∠A+∠B=180°,∠B=∠DFN,∴∠A=∠DFH,∴∠FDH+∠DFH=90°,∴NH⊥DC,设DM=4k,DE=3k,EM=5k,∴AD=9k=DC,DF=6k,∵tanA=tan∠DFH=,则sin∠DFH=,∴DH=DF=k,∴CH=9k﹣k=k,∵cosC=cosA==,∴CN=CH=7k,∴BN=2k,∴=.【点评】此题主要考查了翻折变换的性质以及解直角三角形,正确表示出CN的长是解题关键.25.(4分)设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为.【分析】以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,联立直线AB及双曲线解析式成方程组,通过解方程组可求出点A、B的坐标,由PQ的长度可得出点P的坐标(点P在直线y=﹣x上找出点P的坐标),由图形的对称性结合点A、B和P的坐标可得出点P′的坐标,再利用反比例函数图象上点的坐标特征即可得出关于k的一元一次方程,解之即可得出结论.【解答】解:以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,如图所示.联立直线AB及双曲线解析式成方程组,,解得:,,∴点A的坐标为(﹣,﹣),点B的坐标为(,).∵PQ=6,∴OP=3,点P的坐标为(﹣,).根据图形的对称性可知:AB=OO′=PP′,∴点P′的坐标为(﹣+2,+2).又∵点P′在双曲线y=上,∴(﹣+2)•(+2)=k,解得:k=.故答案为:.【点评】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、矩形的性质以及解一元一次方程,利用矩形的性质结合函数图象找出点P′的坐标是解题的关键.二、解答题(本大题共3小题,共30分)26.(8分)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?【分析】(1)由图可知y与x的函数关系式是分段函数,待定系数法求解析式即可.(2)设甲种花卉种植为a m2,则乙种花卉种植(12000﹣a)m2,根据实际意义可以确定a的范围,结合种植费用y(元)与种植面积x(m2)之间的函数关系可以分类讨论最少费用为多少.【解答】解:(1)y=(2)设甲种花卉种植为a m2,则乙种花卉种植(12000﹣a)m2.∴,∴200≤a≤800=130a+100(1200﹣a)=30a+12000.当200≤a<300时,W1=126000 元当a=200 时.Wmin当300≤a≤800时,W=80a+15000+100(1200﹣a)=135000﹣20a.2=119000 元当a=800时,Wmin∵119000<126000∴当a=800时,总费用最少,最少总费用为119000元.此时乙种花卉种植面积为1200﹣800=400m2.答:应该分配甲、乙两种花卉的种植面积分别是800m2和400m2,才能使种植总费用最少,最少总费用为119000元.【点评】本题是看图写函数解析式并利用解析式的题目,考查分段函数的表达和分类讨论的数学思想.27.(10分)在Rt△ABC中,∠ABC=90°,AB=,AC=2,过点B作直线m∥AC,将△ABC绕点C顺时针旋转得到△A′B′C′(点A,B的对应点分别为A',B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA'B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.【分析】(1)由旋转可得:AC=A'C=2,进而得到BC=,依据∠A'BC=90°,可得cos∠A'CB==,即可得到∠A'CB=30°,∠ACA'=60°;(2)根据M为A'B'的中点,即可得出∠A=∠A'CM,进而得到PB=BC=,依据tan∠Q=tan∠A=,即可得到BQ=BC×=2,进而得出PQ=PB+BQ=;(3)依据S四边形PA'B′Q =S△PCQ﹣S△A'CB'=S△PCQ﹣,即可得到S四边形PA'B′Q 最小,即S△PCQ最小,而S△PCQ=PQ×BC=PQ,利用几何法或代数法即可得到S△PCQ 的最小值=3,S四边形PA'B′Q=3﹣.【解答】解:(1)由旋转可得:AC=A'C=2,∵∠ACB=90°,AB=,AC=2,∴BC=,∵∠ACB=90°,m∥AC,∴∠A'BC=90°,∴cos∠A'CB==,∴∠A'CB=30°,∴∠ACA'=60°;(2)∵M为A'B'的中点,∴∠A'CM=∠MA'C,由旋转可得,∠MA'C=∠A,∴∠A=∠A'CM,∴tan∠PCB=tan∠A=,∴PB=BC=,∵tan∠Q=tan∠A=,∴B Q=BC×=2,∴PQ=PB+BQ=;(3)∵S四边形PA'B′Q =S△PCQ﹣S△A'CB'=S△PCQ﹣,∴S四边形PA'B′Q 最小,即S△PCQ最小,∴S△PCQ=PQ×BC=PQ,法一:(几何法)取PQ的中点G,则∠PCQ=90°,∴CG=PQ,即PQ=2CG,当CG最小时,PQ最小,∴CG ⊥PQ ,即CG 与CB 重合时,CG 最小,∴CG min =,PQ min =2,∴S △PCQ 的最小值=3,S 四边形PA'B′Q =3﹣; 法二(代数法)设PB=x ,BQ=y ,由射影定理得:xy=3,∴当PQ 最小时,x+y 最小,∴(x+y )2=x 2+2xy+y 2=x 2+6+y 2≥2xy+6=12,当x=y=时,“=”成立, ∴PQ=+=2,∴S △PCQ 的最小值=3,S 四边形PA'B′Q =3﹣.【点评】本题属于四边形综合题,主要考查了旋转的性质,解直角三角形以及直角三角形的性质的综合运用,解题时注意:旋转变换中,对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.28.(12分)如图,在平面直角坐标系xOy 中,以直线x=对称轴的抛物线y=ax 2+bx+c 与直线l :y=kx+m (k >0)交于A (1,1),B 两点,与y 轴交于C (0,5),直线与y 轴交于点D .。

四川省成都市2018年中考数学试题(含答案)-精编

四川省成都市2018年中考数学试题(含答案)-精编

四川省二0一八高中阶段教育学校统一招生考试(含成都市初三毕业会考)A 卷(共100分) 第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.实数,,,a b c d 在数轴上对应的点的位置如图所示,这四个数中最大的是( )A .aB .bC .cD .d2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为( )A .60.410⨯ B .5410⨯ C .6410⨯ D .60.410⨯ 3.如图所示的正六棱柱的主视图是( )A .B .C .D .4.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( ) A .()3,5- B .()3,5- C.()3,5 D .()3,5--5.下列计算正确的是( )A .224x x x += B .()222x y x y -=-C.()326x yx y = D .()235x x x -∙=6.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆∆≌的是( )A .A D ∠=∠B .ACB DBC ∠=∠ C.AC DB =D .AB DC = 7.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃ C.中位数是24℃ D .平均数是26℃ 8.分式方程1112x x x ++=-的解是( ) A .y B .1x =- C.3x = D .3x =-9.如图,在ABCD 中,60B ∠=︒,C ⊙的半径为3,则图中阴影部分的面积是( )A .πB .2π C.3π D .6π 10.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧 C.当0x <时,y 的值随x 值的增大而减小 D .y 的最小值为-3第Ⅱ卷(共70分)二、填空题(每题4分,满分16分,将答案填在答题纸上)11.等腰三角形的一个底角为50︒,则它的顶角的度数为 .12.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色兵乓球的个数是 . 13.已知54a b cb ==,且26a bc +-=,则a 的值为 . 14.如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .若2DE =,3CE =,则矩形的对角线AC 的长为 .三、解答题 (本大题共6小题,共54分.解答应写出文字说明、证明过程或演算步骤.)15. (1)222sin 60︒+. (2)化简21111xx x ⎛⎫-÷ ⎪+-⎝⎭. 16. 若关于x 的一元二次方程()22210x a x a -++=有两个不相等的实数根,求a 的取值范围.17.为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.根据图标信息,解答下列问题:(1)本次调查的总人数为 ,表中m 的值 ; (2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定. 18. 由我国完全自主设计、自主建造的首舰国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A 处时,测得小岛C 位于它的北偏东70︒方向,且于航母相距80海里,再航行一段时间后到达处,测得小岛C 位于它的北偏东37︒方向.如果航母继续航行至小岛C 的正南方向的D 处,求还需航行的距离BD 的长. (参考数据:sin700.94︒≈,cos700.34︒≈,tan70 2.75︒≈,sin370.6︒≈,cos370.80︒≈,tan370.75︒≈)19. 如图,在平面直角坐标系xOy 中,一次函数y x b =+的图象经过点()2,0A -,与反比例函数()0ky x x=>的图象交于(),4B a . (1)求一次函数和反比例函数的表达式;(2)设M 是直线AB 上一点,过M 作//MN x 轴,交反比例函数()0ky x x=>的图象于点N ,若,,,A O M N 为顶点的四边形为平行四边形,求点M 的坐标.20.如图,在Rt ABC ∆中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,O 为AB 上一点,经过点A ,D 的O ⊙分别交AB ,AC 于点E ,F ,连接OF 交AD 于点G .(1)求证:BC 是O ⊙的切线;(2)设AB x =,AF y =,试用含,x y 的代数式表示线段AD 的长; (3)若8BE =,5sin 13B =,求DG 的长. B 卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)21.已知0.2x y +=,31x y +=,则代数式2244x xy y ++的值为 .22.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.23.已知0a >,11S a=,211S S =--,321S S =,431S S =--,541S S =,…(即当n 为大于1的奇数时,11n n S S -=;当n 为大于1的偶数时,11n n S S -=--),按此规律,2018S = .24.如图,在菱形ABCD 中,4tan 3A =,,M N 分别在边,AD BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF AD ⊥时,BNCN的值为.25.设双曲线()0ky k x=>与直线y x =交于A ,B 两点(点A 在第三象限),将双曲线在第一象限的一支沿射线BA 的方向平移,使其经过点A ,将双曲线在第三象限的一支沿射线AB 的方向平移,使其经过点B ,平移后的两条曲线相交于点P ,Q 两点,此时我称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ 为双曲线的“眸径”当双曲线()0ky k x=>的眸径为6时,k 的值为 .二、解答题 (本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.)26.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积()2x m 之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0300x ≤≤和300x >时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共21200m ,若甲种花卉的种植面积不少于2200m ,且不超过乙种花卉种植面积的2倍,那么应该怎忙分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?27.在Rt ABC ∆中,90ABC ∠=︒,AB =,2AC =,过点B 作直线//m AC ,将ABC∆绕点C 顺时针得到A B C ∆′′(点A ,B 的对应点分别为A ′,B ′)射线CA ′,CB ′分别交直线m 于点P ,Q .(1)如图1,当P 与A ′重合时,求ACA ∠′的度数; (2)如图2,设A B ′′与BC 的交点为M ,当M 为A B ′′的中点时,求线段PQ 的长; (3)在旋转过程时,当点,P Q 分别在CA ′,CB ′的延长线上时,试探究四边形PA B Q ′′的面积是否存在最小值.若存在,求出四边形PA B Q ′′的最小面积;若不存在,请说明理由.28.如图,在平面直角坐标系xOy 中,以直线512x =为对称轴的抛物线2y ax bx c =++与直线():0l y kx m k =+>交于()1,1A ,B 两点,与y 轴交于()0,5C ,直线l 与y 轴交于D 点.(1)求抛物线的函数表达式;(2)设直线l 与抛物线的对称轴的交点为F 、G 是抛物线上位于对称轴右侧的一点,若34AF FB =,且BCG ∆与BCD ∆面积相等,求点G 的坐标; (3)若在x 轴上有且仅有一点P ,使90APB ∠=︒,求k 的值.试卷答案 A 卷一、选择题1-5:DBACD 6-10:CBACD二、填空题11.80︒三、解答题15.(1)解:原式12242=+-⨯+124=+94(2)解:原式()()11111x x x x x+-+-=⨯+ ()()111x x xx x+-=⨯+ 1x =-16.解:由题知:()2222214441441a a a a a a ∆=+-=++-=+. 原方程有两个不相等的实数根,410a +>∴,14a >-∴. 17.解:(1)120,45%;(2)比较满意;12040%=48⨯(人)图略; (3)12+543600=1980120⨯(人). 答:该景区服务工作平均每天得到1980人的肯定.18.解:由题知:70ACD ∠=︒,37BCD ∠=︒,80AC =. 在Rt ACD ∆中,cos CD ACD AC ∠=,0.3480CD=∴,27.2CD =∴(海里). 在Rt BCD ∆中,tan BD BCD CD ∠=,0.7527.2BD=∴,20.4BD =∴(海里). 答:还需要航行的距离BD 的长为20.4海里. 19.解:(1)一次函数的图象经过点()2,0A -,20b -+=∴,2b =∴,1y x =+∴.一次函数与反比例函数()0ky x x=>交于(),4B a . 24a +=∴,2a =∴,()2,4B ∴,()80y x x=>∴.(2)设()2,M m m -,8,N m m ⎛⎫⎪⎝⎭. 当//MN AO 且MN AO =时,四边形AOMN 是平行四边形. 即:()822m m--=且0m >,解得:m =2m =, M ∴的坐标为(2,或()2.20.解:(1)如图,连接. 为的角平分线,,,. 又,,,是的切线. (2)连接.由(1)可知,为切线. ,,. 又,,,,,. (3)连接. 在中,.设圆的半径为,,,,. 是直径,,而. ,,, . ,,. ,.B 卷21.0.36 22.1213 23.1a a+- 24.27 25.3226.解:(1)()()130,03008015000.300x x y x x ≤≤⎧⎪=⎨+>⎪⎩(2)设甲种花卉种植为2am ,则乙种花卉种植()21200a m -. ()200,21200a a a ≥⎧⎪⎨≤-⎪⎩∴200800a ≤≤∴. 当200300a ≤<时,()1130100120030120000W a a a =+-=+.当200a =时,min 126000W =元.当300800a ≤≤时,()2801500010020013500020W a a a =++-=-.当800a =时,min 119000W =元.119000126000<,∴当800a =时,总费用最低,最低为119000元.此时乙种花卉种植面积为21200800400m -=.答:应分配甲种花卉种植面积为2800m ,乙种花卉种植面积为2400m ,才能使种植总费用最少,最少总费用为119000元.27.解:(1)由旋转的性质得:'2AC A C ==.90ACB ∠=︒,//m AC ,'90A BC ∠=︒∴,cos ''2BC A CB A C ∠==∴'30A CB ∠=︒∴,'60ACA ∠=︒∴.(2)M 为''A B 的中点,''A CM MA C ∠=∴.由旋转的性质得:'MA C A ∠=∠,'A A CM ∠=∠∴.tan tan 2PCB A ∠=∠=∴,322PB BC ==∴. tan tan 2Q PCA ∠=∠=,2BQ BC ===∴,72PQ PB BQ =+=∴. (3)''''PA B Q PCQ A CB PCQ S S S S ∆∆∆=-=''PA B Q S ∴最小,PCQ S ∆即最小,122PCQ S PQ BC PQ ∆=⨯=∴. 法一:(几何法)取PQ 中点G ,则90PCQ ∠=︒.12CG PQ =∴. 当CG 最小时,PQ 最小,CG PQ ⊥∴,即CG 与CB 重合时,CG 最小. min CG =∴min PQ =,()min 3PCQ S ∆=∴,''3PA B Q S =. 法二:(代数法)设PB x =,BQ y =.由射影定理得:3xy =,∴当PQ 最小,即x y +最小,()22222262612x y x y xy x y xy +=++=++≥+=∴.当x y ==“=”成立,PQ ==∴28.解:(1)由题可得:5,225, 1.b a c a b c ⎧-=⎪⎪=⎨⎪++=⎪⎩解得1a =,5b =-,5c =.∴二次函数解析式为:255y x x =-+.(2)作AM x ⊥轴,BN x ⊥轴,垂足分别为,M N ,则34AF MQ FB QN ==. 32MQ =,2NQ =∴,911,24B ⎛⎫ ⎪⎝⎭,1,91,24k m k m +=⎧⎪⎨+=⎪⎩∴,解得1,21,2k m ⎧=⎪⎪⎨⎪=⎪⎩,1122t y x =+∴,102D ⎛⎫ ⎪⎝⎭,. 同理,152BC y x =-+. BCD BCG S S ∆∆=,∴①//DG BC (G 在BC 下方),1122DG y x =-+, 2115522x x x -+=-+∴,即22990x x -+=,123,32x x ==∴. 52x >,3x =∴,()3,1G -∴. ②G 在BC 上方时,直线23G G 与1DG 关于BC 对称.1211922G G y x =-+∴,21195522x x x -+=-+∴,22990x x --=∴. 52x >,94x +=∴,967,48G ⎛⎫+- ⎪ ⎪⎝⎭∴. 综上所述,点G 坐标为()13,1G -;296744G ⎛⎫+-⎪ ⎪⎝⎭. (3)由题意可得:1k m +=. 1m k =-∴,11y kx k =+-∴,2155kx k x x +-=-+∴,即()2540x k x k -+++=. 11x =∴,24x k =+,()24,31B k k k +++∴.设AB 的中点为'O , P 点有且只有一个,∴以AB 为直径的圆与x 轴只有一个交点,且P 为切点.OP x ⊥∴轴,P ∴为MN 的中点,5,02k P +⎛⎫ ⎪⎝⎭∴. AMP PNB ∆∆∽,AM PN PM BN=∴,AM BN PN PM ∙=∙∴, ()255314122k k k k k ++⎛⎫⎛⎫⨯++=+-- ⎪⎪⎝⎭⎝⎭∴1,即23650k k +-=,960∆=>. 0k >,6163k -+==-+∴.。

【2018中考数学真题】四川成都市试题(含答案)【2018数学中考真题解析系列】

【2018中考数学真题】四川成都市试题(含答案)【2018数学中考真题解析系列】

四川省成都市2018年中考数学真题试题(含答案)A 卷(共100分)第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.实数,,,a b c d 在数轴上对应的点的位置如图所示,这四个数中最大的是( )A .aB .bC .cD .d2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为( )A .60.410⨯B .5410⨯C .6410⨯D .60.410⨯3.如图所示的正六棱柱的主视图是( )A .B .C .D .4.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5- C.()3,5 D .()3,5--5.下列计算正确的是( )A .224x x x +=B .()222x y x y -=- C.()326x y x y = D .()235x x x -∙=6.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆∆≌的是( )A .A D ∠=∠B .ACB DBC ∠=∠ C.AC DB =D .AB DC =7.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃ C.中位数是24℃ D .平均数是26℃8.分式方程1112x x x ++=-的解是( ) A .y B .1x =- C.3x = D .3x =-9.如图,在ABCD 中,60B ∠=︒,C ⊙的半径为3,则图中阴影部分的面积是( )A .πB .2π C.3π D .6π10.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C.当0x <时,y 的值随x 值的增大而减小 D .y 的最小值为-3第Ⅱ卷(共70分)二、填空题(每题4分,满分16分,将答案填在答题纸上)11.等腰三角形的一个底角为50︒,则它的顶角的度数为 .12.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色兵乓球的个数是 . 13.已知54a b c b ==,且26a b c +-=,则a 的值为 . 14.如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .若2DE =,3CE =,则矩形的对角线AC 的长为 .三、解答题 (本大题共6小题,共54分.解答应写出文字说明、证明过程或演算步骤.)15. (1)222sin 60︒+.(2)化简21111x x x ⎛⎫-÷ ⎪+-⎝⎭. 16. 若关于x 的一元二次方程()22210x a x a -++=有两个不相等的实数根,求a 的取值范围.17.为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.根据图标信息,解答下列问题:(1)本次调查的总人数为 ,表中m 的值 ;(2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.18. 由我国完全自主设计、自主建造的首舰国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A 处时,测得小岛C 位于它的北偏东70︒方向,且于航母相距80海里,再航行一段时间后到达处,测得小岛C 位于它的北偏东37︒方向.如果航母继续航行至小岛C 的正南方向的D 处,求还需航行的距离BD 的长.(参考数据:sin700.94︒≈,cos700.34︒≈,tan70 2.75︒≈,sin370.6︒≈,cos370.80︒≈,tan370.75︒≈)19. 如图,在平面直角坐标系xOy 中,一次函数y x b =+的图象经过点()2,0A -,与反比例函数()0k y x x=>的图象交于(),4B a . (1)求一次函数和反比例函数的表达式; (2)设M 是直线AB 上一点,过M 作//MN x 轴,交反比例函数()0k y x x =>的图象于点N ,若,,,A O M N 为顶点的四边形为平行四边形,求点M 的坐标.20.如图,在Rt ABC ∆中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,O 为AB 上一点,经过点A ,D 的O ⊙分别交AB ,AC 于点E ,F ,连接OF 交AD 于点G .(1)求证:BC 是O ⊙的切线;(2)设AB x =,AF y =,试用含,x y 的代数式表示线段AD 的长;(3)若8BE =,5sin 13B =,求DG 的长. B 卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)21.已知0.2x y +=,31x y +=,则代数式2244x xy y ++的值为 .22.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.23.已知0a >,11S a=,211S S =--,321S S =,431S S =--,541S S =,…(即当n 为大于1的奇数时,11n n S S -=;当n 为大于1的偶数时,11n n S S -=--),按此规律,2018S = .24.如图,在菱形ABCD 中,4tan 3A =,,M N 分别在边,AD BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当EF AD ⊥时,BN CN的值为.25.设双曲线()0k y k x=>与直线y x =交于A ,B 两点(点A 在第三象限),将双曲线在第一象限的一支沿射线BA 的方向平移,使其经过点A ,将双曲线在第三象限的一支沿射线AB 的方向平移,使其经过点B ,平移后的两条曲线相交于点P ,Q 两点,此时我称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ 为双曲线的“眸径”当双曲线()0k y k x=>的眸径为6时,k 的值为 .二、解答题 (本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.)26.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积()2x m 之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0300x ≤≤和300x >时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共21200m ,若甲种花卉的种植面积不少于2200m ,且不超过乙种花卉种植面积的2倍,那么应该怎忙分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?27.在Rt ABC ∆中,90ABC ∠=︒,AB =2AC =,过点B 作直线//m AC ,将ABC∆绕点C 顺时针得到A B C ∆′′(点A ,B 的对应点分别为A ′,B ′)射线CA ′,CB ′分别交直线m 于点P ,Q .(1)如图1,当P 与A ′重合时,求ACA ∠′的度数; (2)如图2,设A B ′′与BC 的交点为M ,当M 为A B ′′的中点时,求线段PQ 的长; (3)在旋转过程时,当点,P Q 分别在CA ′,CB ′的延长线上时,试探究四边形PA B Q ′′的面积是否存在最小值.若存在,求出四边形PA B Q ′′的最小面积;若不存在,请说明理由.28.如图,在平面直角坐标系xOy 中,以直线512x =为对称轴的抛物线2y ax bx c =++与直线():0l y kx m k =+>交于()1,1A ,B 两点,与y 轴交于()0,5C ,直线l 与y 轴交于D 点.(1)求抛物线的函数表达式;(2)设直线l 与抛物线的对称轴的交点为F 、G 是抛物线上位于对称轴右侧的一点,若34AF FB =,且BCG ∆与BCD ∆面积相等,求点G 的坐标; (3)若在x 轴上有且仅有一点P ,使90APB ∠=︒,求k 的值.试卷答案A 卷一、选择题1-5:DBACD 6-10:CBACD二、填空题11.80︒三、解答题15.(1)解:原式1224=+-+124=+94(2)解:原式()()11111x x x x x +-+-=⨯+()()111x x x x x +-=⨯+1x =-16.解:由题知:()2222214441441a a a a a a ∆=+-=++-=+. 原方程有两个不相等的实数根,410a +>∴,14a >-∴.17.解:(1)120,45%;(2)比较满意;12040%=48⨯(人)图略;(3)12+543600=1980120⨯(人).答:该景区服务工作平均每天得到1980人的肯定.18.解:由题知:70ACD ∠=︒,37BCD ∠=︒,80AC =.在Rt ACD ∆中,cos CDACD AC ∠=,0.3480CD=∴,27.2CD =∴(海里).在Rt BCD ∆中,tan BD BCD CD ∠=,0.7527.2BD=∴,20.4BD =∴(海里).答:还需要航行的距离BD 的长为20.4海里.19.解:(1)一次函数的图象经过点()2,0A -,20b -+=∴,2b =∴,1y x =+∴.一次函数与反比例函数()0k y x x=>交于(),4B a . 24a +=∴,2a =∴,()2,4B ∴,()80y x x =>∴. (2)设()2,M m m -,8,N m m ⎛⎫ ⎪⎝⎭. 当//MN AO 且MN AO =时,四边形AOMN 是平行四边形.即:()822m m--=且0m >,解得:m =2m =,M ∴的坐标为(2,或()2.20.B 卷21.0.36 22.1213 23.1a a +- 24.27 25.3226.解:(1)()()130,03008015000.300x x y x x ≤≤⎧⎪=⎨+>⎪⎩(2)设甲种花卉种植为2am ,则乙种花卉种植()21200a m -.()200,21200a a a ≥⎧⎪⎨≤-⎪⎩∴200800a≤≤∴.当200300a ≤<时,()1130100120030120000W a a a =+-=+.当200a =时,min 126000W =元.当300800a ≤≤时,()2801500010020013500020W a a a =++-=-.当800a =时,min 119000W =元.119000126000<,∴当800a =时,总费用最低,最低为119000元.此时乙种花卉种植面积为21200800400m -=.答:应分配甲种花卉种植面积为2800m ,乙种花卉种植面积为2400m ,才能使种植总费用最少,最少总费用为119000元.27.解:(1)由旋转的性质得:'2AC A C ==.90ACB ∠=︒,//m AC ,'90A BC ∠=︒∴,cos ''2BC A CB A C ∠==∴'30A CB ∠=︒∴,'60ACA ∠=︒∴.(2)M 为''A B 的中点,''A CM MA C ∠=∴.由旋转的性质得:'MA C A ∠=∠,'A A CM ∠=∠∴.tan tan PCB A ∠=∠=∴,32PB ==∴.tan tanQ PCA ∠=∠=2BQ BC ===∴,72PQ PB BQ =+=∴.(3)''''PA B Q PCQ A CB PCQ S S S S ∆∆∆=-=''PA B Q S ∴最小,PCQ S ∆即最小,12PCQ S PQ BC PQ ∆=⨯=∴. 法一:(几何法)取PQ 中点G ,则90PCQ ∠=︒.12CG PQ =∴. 当CG 最小时,PQ 最小,CG PQ ⊥∴,即CG 与CB 重合时,CG 最小.min CG =∴min PQ =,()min 3PCQ S ∆=∴,''3PA B Q S =.法二:(代数法)设PB x =,BQ y =.由射影定理得:3xy =,∴当PQ 最小,即x y +最小,()22222262612x y x y xy x y xy +=++=++≥+=∴.当x y ==“=”成立,PQ ==∴28.解:(1)由题可得:5,225, 1.b a c a b c ⎧-=⎪⎪=⎨⎪++=⎪⎩解得1a =,5b =-,5c =.∴二次函数解析式为:255y x x =-+.(2)作AM x ⊥轴,BN x ⊥轴,垂足分别为,M N ,则34AF MQ FB QN ==. 32MQ =,2NQ =∴,911,24B ⎛⎫ ⎪⎝⎭, 1,91,24k m k m +=⎧⎪⎨+=⎪⎩∴,解得1,21,2k m ⎧=⎪⎪⎨⎪=⎪⎩,1122t y x =+∴,102D ⎛⎫ ⎪⎝⎭,. 同理,152BC y x =-+. BCD BCG S S ∆∆=,∴①//DG BC (G 在BC 下方),1122DG y x =-+, 2115522x x x -+=-+∴,即22990x x -+=,123,32x x ==∴. 52x >,3x =∴,()3,1G -∴. ②G 在BC 上方时,直线23G G 与1DG 关于BC 对称.1211922G G y x =-+∴,21195522x x x -+=-+∴,22990x x --=∴. 52x >,x =∴,G ⎝⎭∴. 综上所述,点G 坐标为()13,1G -;296744G ⎛⎫+- ⎪ ⎪⎝⎭. (3)由题意可得:1k m +=.1m k =-∴,11y kx k =+-∴,2155kx k x x +-=-+∴,即()2540x k x k -+++=.11x =∴,24x k =+,()24,31B k k k +++∴.设AB 的中点为'O , P 点有且只有一个,∴以AB 为直径的圆与x 轴只有一个交点,且P 为切点. OP x ⊥∴轴,P ∴为MN 的中点,5,02k P +⎛⎫ ⎪⎝⎭∴.AMP PNB ∆∆∽,AM PNPM BN =∴,AM BN PN PM ∙=∙∴,()255314122k k k k k ++⎛⎫⎛⎫⨯++=+-- ⎪⎪⎝⎭⎝⎭∴1,即23650k k +-=,960∆=>.0k >,1k ==-∴.。

四川省成都市2018年中考数学试题(含答案)(精品推荐)

四川省成都市2018年中考数学试题(含答案)(精品推荐)

四川省二0一八高中阶段教育学校统一招生考试(含成都市初三毕业会考)A 卷(共100分) 第Ⅰ卷(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.实数,,,a b c d 在数轴上对应的点的位置如图所示,这四个数中最大的是( )A .aB .bC .cD .d2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为( )A .60.410⨯ B .5410⨯ C .6410⨯ D .60.410⨯ 3.如图所示的正六棱柱的主视图是( )A .B .C .D .4.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( ) A .()3,5- B .()3,5- C.()3,5 D .()3,5--5.下列计算正确的是( )A .224x x x += B .()222x y x y -=-C.()326x yx y = D .()235x x x -∙=6.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆∆≌的是( )A .A D ∠=∠B .ACB DBC ∠=∠ C.AC DB =D .AB DC = 7.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃ C.中位数是24℃ D .平均数是26℃ 8.分式方程1112x x x ++=-的解是( ) A .y B .1x =- C.3x = D .3x =-9.如图,在ABCD 中,60B ∠=︒,C ⊙的半径为3,则图中阴影部分的面积是( )A .πB .2π C.3π D .6π 10.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧 C.当0x <时,y 的值随x 值的增大而减小 D .y 的最小值为-3第Ⅱ卷(共70分)二、填空题(每题4分,满分16分,将答案填在答题纸上)11.等腰三角形的一个底角为50︒,则它的顶角的度数为 .12.在一个不透明的盒子中,装有除颜色外完全相同的乒乓球共16个,从中随机摸出一个乒乓球,若摸到黄色乒乓球的概率为38,则该盒子中装有黄色兵乓球的个数是 . 13.已知54a b cb ==,且26a bc +-=,则a 的值为 . 14.如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .若2DE =,3CE =,则矩形的对角线AC 的长为 .三、解答题 (本大题共6小题,共54分.解答应写出文字说明、证明过程或演算步骤.)15. (1)222sin 60+︒+. (2)化简21111xx x ⎛⎫-÷ ⎪+-⎝⎭. 16. 若关于x 的一元二次方程()22210x a x a -++=有两个不相等的实数根,求a 的取值范围.17.为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.根据图标信息,解答下列问题:(1)本次调查的总人数为 ,表中m 的值 ; (2)请补全条形统计图;(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定. 18. 由我国完全自主设计、自主建造的首舰国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A 处时,测得小岛C 位于它的北偏东70︒方向,且于航母相距80海里,再航行一段时间后到达处,测得小岛C 位于它的北偏东37︒方向.如果航母继续航行至小岛C 的正南方向的D 处,求还需航行的距离BD 的长. (参考数据:sin700.94︒≈,cos700.34︒≈,tan70 2.75︒≈,sin370.6︒≈,cos370.80︒≈,tan370.75︒≈)19. 如图,在平面直角坐标系xOy 中,一次函数y x b =+的图象经过点()2,0A -,与反比例函数()0ky x x=>的图象交于(),4B a . (1)求一次函数和反比例函数的表达式;(2)设M 是直线AB 上一点,过M 作//MN x 轴,交反比例函数()0ky x x=>的图象于点N ,若,,,A O M N 为顶点的四边形为平行四边形,求点M 的坐标.20.如图,在Rt ABC ∆中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,O 为AB 上一点,经过点A ,D 的O ⊙分别交AB ,AC 于点E ,F ,连接OF 交AD 于点G .(1)求证:BC 是O ⊙的切线;(2)设AB x =,AF y =,试用含,x y 的代数式表示线段AD 的长; (3)若8BE =,5sin 13B =,求DG 的长. B 卷(共50分)一、填空题(每题4分,满分20分,将答案填在答题纸上)21.已知0.2x y +=,31x y +=,则代数式2244x xy y ++的值为 . 22.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝.如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边之比均为2:3,现随机向该图形内掷一枚小针,则针尖落在阴影区域的概率为.23.已知0a >,11S a=,211S S =--,321S S =,431S S =--,541S S =,…(即当n 为大于1的奇数时,11n n S S -=;当n 为大于1的偶数时,11n n S S -=--),按此规律,2018S = .24.如图,在菱形ABCD 中,4tan 3A =,,M N 分别在边,AD BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D ,当E F A D ⊥时,BNCN的值为.25.设双曲线()0ky k x=>与直线y x =交于A ,B 两点(点A 在第三象限),将双曲线在第一象限的一支沿射线BA 的方向平移,使其经过点A ,将双曲线在第三象限的一支沿射线AB 的方向平移,使其经过点B ,平移后的两条曲线相交于点P ,Q 两点,此时我称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ 为双曲线的“眸径”当双曲线()0ky k x=>的眸径为6时,k 的值为 .二、解答题 (本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤.)26.为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积()2x m 之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0300x ≤≤和300x >时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共21200m ,若甲种花卉的种植面积不少于2200m ,且不超过乙种花卉种植面积的2倍,那么应该怎忙分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?27.在Rt ABC ∆中,90ABC ∠=︒,AB =2AC =,过点B 作直线//m AC ,将ABC∆绕点C 顺时针得到A B C ∆′′(点A ,B 的对应点分别为A ′,B ′)射线CA ′,CB ′分别交直线m 于点P ,Q .(1)如图1,当P 与A ′重合时,求ACA ∠′的度数; (2)如图2,设A B ′′与BC 的交点为M ,当M 为A B ′′的中点时,求线段PQ 的长; (3)在旋转过程时,当点,P Q 分别在CA ′,CB ′的延长线上时,试探究四边形PA B Q ′′的面积是否存在最小值.若存在,求出四边形PA B Q ′′的最小面积;若不存在,请说明理由.28.如图,在平面直角坐标系xOy 中,以直线512x =为对称轴的抛物线2y ax bx c =++与直线():0l y kx m k =+>交于()1,1A ,B 两点,与y 轴交于()0,5C ,直线l 与y 轴交于D 点.(1)求抛物线的函数表达式;(2)设直线l 与抛物线的对称轴的交点为F 、G 是抛物线上位于对称轴右侧的一点,若34AF FB =,且BCG ∆与BCD ∆面积相等,求点G 的坐标; (3)若在x 轴上有且仅有一点P ,使90APB ∠=︒,求k 的值.试卷答案 A 卷一、选择题1-5:DBACD 6-10:CBACD二、填空题11.80︒三、解答题15.(1)解:原式12242=+-⨯+124=+-94(2)解:原式()()11111x x x x x+-+-=⨯+ ()()111x x xx x+-=⨯+ 1x =-16.解:由题知:()2222214441441a a a a a a ∆=+-=++-=+. 原方程有两个不相等的实数根,410a +>∴,14a >-∴. 17.解:(1)120,45%;(2)比较满意;12040%=48⨯(人)图略; (3)12+543600=1980120⨯(人). 答:该景区服务工作平均每天得到1980人的肯定.18.解:由题知:70ACD ∠=︒,37BCD ∠=︒,80AC =. 在Rt ACD ∆中,cos CD ACD AC ∠=,0.3480CD=∴,27.2CD =∴(海里). 在Rt BCD ∆中,tan BD BCD CD ∠=,0.7527.2BD=∴,20.4BD =∴(海里). 答:还需要航行的距离BD 的长为20.4海里. 19.解:(1)一次函数的图象经过点()2,0A -,20b -+=∴,2b =∴,1y x =+∴.一次函数与反比例函数()0ky x x=>交于(),4B a . 24a +=∴,2a =∴,()2,4B ∴,()80y x x=>∴.(2)设()2,M m m -,8,N m m ⎛⎫⎪⎝⎭. 当//MN AO 且MN AO =时,四边形AOMN 是平行四边形. 即:()822m m--=且0m >,解得:m =2m =, M ∴的坐标为(2,-或()2.20.解:(1)如图,连接. 为的角平分线,,,. 又,,,是的切线. (2)连接.由(1)可知,为切线. ,,. 又,,,,,. (3)连接. 在中,.设圆的半径为,,,,. 是直径,,而. ,,, . ,,. ,.B 卷21.0.36 22.1213 23.1a a+- 24.27 25.3226.解:(1)()()130,03008015000.300x x y x x ≤≤⎧⎪=⎨+>⎪⎩(2)设甲种花卉种植为2am ,则乙种花卉种植()21200a m -. ()200,21200a a a ≥⎧⎪⎨≤-⎪⎩∴200800a ≤≤∴. 当200300a ≤<时,()1130100120030120000W a a a =+-=+.当200a =时,min 126000W =元.当300800a ≤≤时,()2801500010020013500020W a a a =++-=-.当800a =时,min 119000W =元.119000126000<,∴当800a =时,总费用最低,最低为119000元.此时乙种花卉种植面积为21200800400m -=.答:应分配甲种花卉种植面积为2800m ,乙种花卉种植面积为2400m ,才能使种植总费用最少,最少总费用为119000元.27.解:(1)由旋转的性质得:'2AC A C ==.90ACB ∠=︒,//m AC ,'90A BC ∠=︒∴,cos ''2BC A CB A C ∠==∴,'30A CB ∠=︒∴,'60ACA ∠=︒∴.(2)M 为''A B 的中点,''A CM MA C ∠=∴.由旋转的性质得:'MA C A ∠=∠,'A A CM ∠=∠∴.tan tan 2PCB A ∠=∠=∴,322PB BC ==∴. tan tan 2Q PCA ∠=∠=,2BQ BC ===∴,72PQ PB BQ =+=∴. (3)''''PA B Q PCQ A CB PCQ S S S S ∆∆∆=-=''PA B Q S ∴最小,PCQ S ∆即最小,122PCQ S PQ BC PQ ∆=⨯=∴. 法一:(几何法)取PQ 中点G ,则90PCQ ∠=︒.12CG PQ =∴. 当CG 最小时,PQ 最小,CG PQ ⊥∴,即CG 与CB 重合时,CG 最小. min CG ∴,min PQ =,()min 3PCQ S ∆=∴,''3PA B Q S =. 法二:(代数法)设PB x =,BQ y =.由射影定理得:3xy =,∴当PQ 最小,即x y +最小,()22222262612x y x y xy x y xy +=++=++≥+=∴.当x y ==“=”成立,PQ ==∴28.解:(1)由题可得:5,225, 1.b a c a b c ⎧-=⎪⎪=⎨⎪++=⎪⎩解得1a =,5b =-,5c =.∴二次函数解析式为:255y x x =-+.(2)作AM x ⊥轴,BN x ⊥轴,垂足分别为,M N ,则34AF MQ FB QN ==. 32MQ =,2NQ =∴,911,24B ⎛⎫ ⎪⎝⎭,1,91,24k m k m +=⎧⎪⎨+=⎪⎩∴,解得1,21,2k m ⎧=⎪⎪⎨⎪=⎪⎩,1122t y x =+∴,102D ⎛⎫ ⎪⎝⎭,. 同理,152BC y x =-+. BCD BCG S S ∆∆=,∴①//DG BC (G 在BC 下方),1122DG y x =-+, 2115522x x x -+=-+∴,即22990x x -+=,123,32x x ==∴. 52x >,3x =∴,()3,1G -∴. ②G 在BC 上方时,直线23G G 与1DG 关于BC 对称.1211922G G y x =-+∴,21195522x x x -+=-+∴,22990x x --=∴. 52x >,94x +=∴,96748G ⎛+- ⎝⎭∴. 综上所述,点G 坐标为()13,1G -;296744G ⎛+-⎝⎭. (3)由题意可得:1k m +=. 1m k =-∴,11y kx k =+-∴,2155kx k x x +-=-+∴,即()2540x k x k -+++=. 11x =∴,24x k =+,()24,31B k k k +++∴.设AB 的中点为'O , P 点有且只有一个,∴以AB 为直径的圆与x 轴只有一个交点,且P 为切点.OP x ⊥∴轴,P ∴为MN 的中点,5,02k P +⎛⎫ ⎪⎝⎭∴. AMP PNB ∆∆∽,AM PN PM BN=∴,AM BN PN PM ∙=∙∴, ()255314122k k k k k ++⎛⎫⎛⎫⨯++=+-- ⎪⎪⎝⎭⎝⎭∴1,即23650k k +-=,960∆=>. 0k >,6163k -+==-+∴.。

2018年四川省成都市中考数学真题试卷及参考解析

2018年四川省成都市中考数学真题试卷及参考解析

四川省成都市二○一八年初中学业考试暨高中阶段统一招生考试数学试题注意事项:1.答题前,考生务必先核对条形码上的姓名、准考证号和座号,然后用0.5毫米黑色墨水签字笔将本人的姓名、准考证号和座号填写在答题卡相应位置。

2.答第Ⅰ卷时,必须使用2B铅笔填涂答题卡上相应题目的答案标号,如需改动,必须先用橡皮擦干净,再改涂其它答案。

3.答第Ⅱ卷时,必须使用0.5毫米黑色墨水签字笔在答题卡上书写。

务必在题号所指示的答题区域内作答。

4.考试结束后,将本试卷和答题卡一并交回。

一、选择题(A卷)1.实数在数轴上对应的点的位置如图所示,这四个数中最大的是()A. B. C.D.【答案】D【考点】数轴及有理数在数轴上的表示,有理数大小比较【解析】【解答】解:根据数轴可知a<b<0<c<d∴这四个数中最大的数是d故答案为:D【分析】根据数轴上右边的数总比左边的数大,即可得出结果。

2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为()A. B. C. D.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:40万=4×105故答案为:B【分析】根据科学计数法的表示形式为:a×10n。

其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1,即可求解。

3.如图所示的正六棱柱的主视图是()A. B.C. D.【答案】A【考点】简单几何体的三视图【解析】【解答】解:∵从正面看是左右相邻的3个矩形,中间的矩形面积较大,两边的矩形面积相同,∴答案A符合题意故答案为:A【分析】根据主视图是从正面看到的平面图形,即可求解。

4.在平面直角坐标系中,点关于原点对称的点的坐标是()A.B.C.D.【答案】C【考点】关于原点对称的坐标特征【解析】【解答】解:点关于原点对称的点的坐标为(3,5)故答案为:C【分析】根据关于原点对称点的坐标特点是横纵坐标都互为相反数,就可得出答案。

2018年成都市中考数学试题及答案(版-含详解)(最新整理)

2018年成都市中考数学试题及答案(版-含详解)(最新整理)
数 量 关 系 : 发 现 当 n 3 时 , p b c .请 继 续 探 究
b, c, p 三者的数量关系: 当 n 4 时, p _______;当 n 12 时, p _______. (参考数据: sin15o cos 75o 6 2 ,
4 cos15o sin 75o 6 2 )
A , B 两点,且 A 点在 y 轴左侧, P 点的坐标为 (0, 4) ,连接 PA, PB .有以下说法:
○1 PO2 PA PB ;○2 当 k 0 时, (PA AO)(PB BO) 的值随 k 的增大而增大;
○3 当 k 3 时, BP2 BO BA ;○4 PAB 面积的最小值为 4 6 . 3
(C) 23 =6
(D) (2013)0 =0
6.参加成都市今年初三毕业会考的学生约有 13 万人,将 13 万用科学计数法表 示应为( )
(A)1.3×105
(B)13× 10 4
(C)0.13×105
(D)0.13×106
7.如图,将矩形 ABCD 沿对角线 BD 折叠,使点 C 和点 C' 重合,若 AB=2,则 C' D
(1)表中的 x 的值为_______, y 的值为________
(2)将本次参赛作品获得 A 等级的学生一次用 A1 , A2 , A3 ,…表示,现该校 决定从本次参赛作品中获得 A 等级学生中,随机抽取两名学生谈谈他们的参赛体 会,请用树状图或列表法求恰好抽到学生 A1 和 A2 的概率.
19.(本小题满分 10 分)
······4 分
(2)由图可知, AC 2 ,
第 9 页 共 17 页
∴线段 AC 在旋转过程中所扫过的扇形的面积为:
S 90 22 . 360
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

探索性试题综合1.(2015年成都27)已知,AC EC 分别为四边形ABCD 和EFCG 的对角线,点E 在ABC ∆内,90CAE CBE ∠+∠=o 。

(1)如图①,当四边形ABCD 和EFCG 均为正方形时,连接BF 。

(1)求证:CAE ∆∽CBF ∆;2)若1,2BE AE ==,求CE 的长。

(2)如图②,当四边形ABCD 和EFCG 均为矩形,且AB EFk BC FC==时,若1,2,3BE AE CE ===,求k 的值;(3)如图③,当四边形ABCD 和EFCG 均为菱形,且45DAB GEF ∠=∠=o 时,设,,BE m AE n CE p ===,试探究,,m n p 三者之间满足的等量关系。

(直接写出结果,不必写出解答过程)2.(16年成都27)如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD.(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长;②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.3.(15年张家界)阅读下列材料,并解决相关的问题.按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为1a ,依次类推,排在第n 位的数称为第n 项,记为n a .一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0≠q ).如:数列1,3,9,27,…为等比数列,其中11=a ,公比为3=q .则:(1)等比数列3,6,12,…的公比q 为 ,第4项是 . (2)如果一个数列1a ,2a ,3a ,4a ,…是等比数列,且公比为q ,那么根据定义可得到:q a a =12,q a a =23,q a a=34,…… q a a n n =-1. 所以:q a a ⋅=12, ()21123q a q q a q a a ⋅=⋅⋅=⋅=,()312134q a q q a q a a ⋅=⋅⋅=⋅=,K K由此可得: =n a (用1a 和q 的代数式表示).4.(2015•湘潭)阅读材料:用配方法求最值.已知x,y为非负实数,∵x+y﹣2≥0∴x+y≥2,当且仅当“x=y”时,等号成立.示例:当x>0时,求y=x++4的最小值.解:+4=6,当x=,即x=1时,y的最小值为6.(1)尝试:当x>0时,求y=的最小值.(2)问题解决:随着人们生活水平的快速提高,小轿车已成为越来越多家庭的交通工具,假设某种小轿车的购车费用为10万元,每年应缴保险费等各类费用共计0.4万元,n年的保养、维护费用总和为万元.问这种小轿车使用多少年报废最合算(即:使用多少年的年平均费用最少,年平均费用=)?最少年平均费用为多少万元?5.(2015•咸宁)定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD 是对等四边形;(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD 的长.6.(2015•随州)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足关系时,仍有EF=BE+FD.【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据:=1.41,=1.73)7.(2015•岳阳)已知直线m∥n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P为线段CD的中点.(1)操作发现:直线l⊥m,l⊥n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PA与PB的数量关系:.(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA 与PB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得∠APB=90°(如图③所示),若两平行线m、n之间的距离为2k.求证:PA•PB=k•AB.8. (2015年丹东市)在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN中,∠MPN =90°.(1)如图1,若点P 与点O 重合且PM ⊥AD 、PN ⊥AB ,分别交AD 、AB 于点E 、F ,请直接写出PE 与PF 的数量关系;(2)将图1中的Rt △PMN 绕点O 顺时针旋转角度α(0°<α<45°).○1如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;○2如图2,在旋转过程中,当∠DOM =15°时,连接EF ,若正方形的边长为2,请直接写出线段EF 的长;○3如图3,旋转后,若Rt △PMN 的顶点P 在线段OB 上移动(不与点O 、B 重合),当BD =3BP 时,猜想此时PE 与PF 的数量关系,并给出证明;当BD =m ·BP 时,请直接写出PE 与PF 的数量关系.图1 图2 图3CDCD9. (15山东德州) (1)问题如图1,在四边形ABCD 中,点P 为AB 上一点, 90DPC A B ∠=∠=∠=︒. 求证:AD ·BC =AP ·BP . (2)探究如图2,在四边形ABCD 中,点P 为AB 上一点,当DPC A B θ∠=∠=∠=时,上述结论是否依然成立?说明理由. (3)应用请利用(1)(2)获得的经验解决问题:如图3,在△ABD 中,AB =6,AD =BD =5, 点P 以每秒1个单位长度的速度,由点A 出发,沿边AB 向点B 运动,且满足∠CPD =∠A .设点P 的运动时间为t (秒),当以D 为圆心,DC 为半径的圆与AB 相切时,求t 的值.图1图2 P ACD 图3PDACB第23题图10.(2015年浙江舟山)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD 中,添加一个条件,使得四边形ABCD 是“等邻边四边形”,请写出你添加的一个条件;(2)问题探究:①小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由;②如图2,小红画了一个Rt △ABC ,其中∠ABC =90°,AB =2,BC =1,并将Rt △ABC 沿∠B 的平分线'BB 方向平移得到'''A B C V ,连结''AA BC ,. 小红要使平移后的四边形''ABC A 是“等邻边四边形”,应平移多少距离(即线段'BB 的长)? (3)应用拓展:如图3,“等邻边四边形”ABCD 中,AB =AD ,∠BAD +∠BCD =90°,AC ,BD 为对角线,AC .试探究BC ,CD ,BD 的数量关系.11.(15年浙江台州)定义:如图1,点M,N把线段AB分割成线段AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB 的勾股分割点。

(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3,求的长;(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且EC>DE≥BD,连结AD,AE,分别交FG于点M,N。

求证:点M,N是线段FG的勾股分割点;(3)已知点C是线段AB上的一定点,其位置如图3所示,请在BC上画一点D,使C,D是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可);(4)如图4,已知点M,N是线段AB的勾股分割点,MN>AM≥BN,△AMC,△MND 和△NBE均为等边三角形,AE分别交CM,DM,DN于点F,G,H。

若H是DN 的中点,试探究S△AMF,S△BEN和S四边形MNHG的数量关系,并说明理由。

【作业】1.(15年湖北鄂州)问题背景:已知在△ABC中,AB边上的动点D由A向B运动(与A,B不重合),点E与点D同时出发,由点C沿BC的延长线方向运动(E不与C重合),连结DE交AC于点F,点H是线段AF上一点(1)初步尝试:如图1,若△ABC是等边三角形,DH⊥AC,且点D,E的运动速度相等,求证:HF=AH+CF小王同学发现可以由以下两种思路解决此问题:思路一:过点D作DG∥BC,交AC于点G,先证GH=AH,再证GF=CF,从而证得结论成立.思路二:过点E作EM⊥AC,交AC的延长线于点M,先证CM=AH,再证HF=MF,从而证得结论成立.请你任选一种思路,完整地书写本小题的证明过程(如用两种方法作答,则以第一种方法评分)(2)类比探究:如图2,若在△ABC中,∠ABC=90°,∠ADH=∠BAC=30°,且点D,E的运动速度之比是:1,求的值.(3)延伸拓展:如图3,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,记=m,且点D、E的运动速度相等,试用含m的代数式表示(直接写出结果,不必写解答过程).2. 我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF,BE是△ABC 的中线, AF ⊥BE , 垂足为P .像△ABC 这样的三角形均为“中垂三角形”.设BC =a ,ACb =,ABc =.特例探索(1)如图1,当∠ABE =45°,c =时,a = ,b = ; 如图2,当∠ABE =30°,c =4时, a = ,b = ;归纳证明(2)请你观察(1)中的计算结果,猜想,,a b c 222三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式;拓展应用(3)如图4,在□ABCD 中,点E ,F ,G 分别是AD ,BC ,CD 的中点,BE ⊥EG , AD=,AB =3.求AF 的长.图3图2图1CAB AEA3.(2016年山东烟台)(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明.如图1,矩形ABCD中,EF⊥GH,EF分别交AB,CD于点E,F,GH分别交AD,BC于点G,H.求证:=;【结论应用】(2)如图2,在满足(1)的条件下,又AM⊥BN,点M,N分别在边BC,CD上,若=,则的值为;【联系拓展】(3)如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M,N分别在边BC,AB上,求的值.4.(16年江苏淮安)问题背景:如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD.简单应用:(1)在图①中,若AC=,BC=2,则CD= .(2)如图③,AB是⊙O的直径,点C、D在⊙上,=,若AB=13,BC=12,求CD的长.拓展规律:(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是.。

相关文档
最新文档