柔性薄膜压力传感器规格书-DF9-16
DF16(方轴)A4(2007最新版本)[1]
上海浦东张江高科技园区祖冲之路 887 弄 88 号 邮编:201203 传真:(021)38958688 电话:(021)38953708 转 Web : Email:support@
6
新的软性连接器上须加适量的润滑油脂。 z 检查方轴长度是否与车型相匹配,更换轴长合适的 DF16 传感器。 7.3 信号输出状态始终为高或低,原因是光电模块损坏。处理方法是打开后盖,更换模块并重新测试。 7.4 通电后,发现过流或短路。原因是有超过正常供电电压输入,引起模块短路损坏,处理方法是,并更换模块并 重新测试。 7.5 14 芯插头损坏,原因是插头外部受力。处理方法:更换带内配线的 14 芯插头。 7.6 传感器外配线断,原因是机车运行过程中外部受力或疲劳损坏,处理方法是更换新的外配线。 7.7 速度忽高忽低,甚至突然为零。原因分析:传感器插头没有拧紧,或传感器插头受外力冲击而损坏,导致插头内 进水,从而引起接触不良。处理方法:清洁插座和插针接触面,拧紧导线插头,或更换插头。 7.8 掉速现象,即速度表显示速度比正常值要偏低,但误差不大。参照图 6 或者图 7,将传感器放在校验台上测试, 进行脉冲数测试,脉冲数低于正常值;或用示波器观察,脉冲有闪烁现象,此故障原因是传感器腔内有油或灰尘堵 住了光栅槽。处理方法:打开传感器,用干净的软布将腔体和光栅擦拭干净。
从理论上来说,传感器输出信号的占空比应和光栅盘光槽的机械占空比一样,但由于光栅槽不可能绝对均匀分 布在光栅轨道上,且安装光栅时不可能保证绝对的没有偏心,所以输出信号占空比是变化的,我们将输出信号占空 比控制在 50%±20%范围内。
4. 外形图及接线图
安装垫
(SS型机车) (DF型机车)
图 1: 非直接出线 DF16 外形图
机车安装面 安装板
《基于PDMS薄膜介电层电容式柔性压力传感器的研究》
《基于PDMS薄膜介电层电容式柔性压力传感器的研究》篇一一、引言随着物联网技术的飞速发展,柔性电子设备已成为研究的热点。
其中,柔性压力传感器作为一种重要的传感元件,广泛应用于人机交互、智能穿戴、健康监测等领域。
在众多压力传感器技术中,电容式柔性压力传感器以其高灵敏度、快速响应、低功耗等优点备受关注。
本文以PDMS(聚二甲基硅氧烷)薄膜作为介电层的电容式柔性压力传感器为研究对象,探讨其性能及优化方法。
二、PDMS薄膜介电层电容式柔性压力传感器PDMS薄膜因其优异的绝缘性、良好的柔韧性和化学稳定性,常被用作电容式压力传感器的介电层。
在电容式压力传感器中,当外界压力作用于传感器时,会导致介电层与电极之间的距离发生变化,从而改变电容值,实现压力的检测。
三、传感器的工作原理与性能分析本研究所采用的电容式柔性压力传感器,主要由上下两个电极和中间的PDMS薄膜介电层构成。
当外力作用于传感器时,PDMS薄膜会发生形变,导致上下电极之间的距离发生变化,从而引起电容的改变。
这种改变与外力之间呈现出良好的线性关系,使得传感器能够准确地检测压力变化。
在性能方面,该传感器具有高灵敏度、低检测限、快速响应等优点。
此外,PDMS薄膜的引入还提高了传感器的柔韧性和耐久性,使其能够适应各种复杂环境下的使用需求。
四、传感器的制备与优化为了进一步提高传感器的性能,我们通过优化制备工艺和材料选择来改善传感器的性能。
具体措施包括:1. 优化电极材料:选择导电性能良好、柔韧性高的材料作为电极,以提高传感器的灵敏度和响应速度。
2. 改进PDMS薄膜的制备工艺:通过控制薄膜的厚度、均匀性等参数,提高介电层的性能,从而提升传感器的整体性能。
3. 引入微结构:在PDMS薄膜表面制备微结构,如微金字塔、微孔等,增加传感器的有效面积和表面积,进一步提高灵敏度和响应速度。
4. 封装保护:对传感器进行封装保护,以提高其耐久性和稳定性,使其能够在各种复杂环境下长期稳定工作。
得捷电子 光感集成压力传感器信息手册说明书
Honeywell Integrated Pressure TransducerIPT User’s ManualADS-14152 Rev. 7/16Customer Service Email: ********************No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose, without the express written permission of Honeywell, Inc.Honeywell reserves the right to make changes to improve reliability, function or design. Honeywell does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.IPT User’s Manual Contents1 Introduction (4)1.1 Overview (4)2 Specifications (4)2.1 Block Diagram (4)2.2 Specifications/Performance (5)2.3 Outline/Dimensions (inches) (6)2.4 Electrical Connections (7)2.4.1 Connector (7)3 Operation (8)3.1 Commands and Format (8)3.1.1 Initialization (8)3.1.2 Normal Operation (Polling) (10)3.1.3 Other Modes (11)3.2 Correction Algorithms (12)3.2.1 Pressure (12)3.2.1.1 Algorithm #1 (12)3.2.1.1.1 Horner’s Method, Algorithm #1 (12)3.2.1.2 Algorithm #2 (13)3.2.1.2.1 Horner’s Method, Algorithm #2 (13)3.2.2 Pressure Sensor Temperature (14)3.2.2.1 Algorithm (14)3.2.2.1.1 Horner’s Method (14)3.3 EEPROM Storage (15)3.3.1 EEPROM Format (15)3.3.2 Contents (15)4 Installation Recommendations (19)4.1Installation Examples (19)4.1.1Flexible Tubing and Double-wire Hose Clamps (19)4.1.2Static Radial O-ring Seals (20)4.1.3Static Radial and Face O-ring Seals (20)5 Marking (20)6 Fletcher Checksum (21)6.1 Calculation (21)+ P.S.DINSCLKCS_ADC_P CS_EE GNDCS_ADC_T DOUT/RDY 1 Introduction1.1 OverviewThe Honeywell IPT provides high accuracy pressure data in an industry standard SPI digital format. The core of the IPT is a proven Honeywell silicon piezo-resistive pressure sensor with both pressure and temperature sensitive elements. The IPT is both small and lightweight and can be easily integrated into a wide variety of applications that require high performance in a small package.Applying coefficients stored in the on-board EEPROM to normalized IPT pressure and temperature output yields accurate pressure readings over a -40 to 85°C compensated temperature range.2 Specifications2.1 Block Diagram2.2 Specifications/Performance(1) Total Error is the sum of worst case linearity, repeatability, hysteresis, thermal effects, and calibration errors over the operating temperature range. Accuracy is only achieved after applying the correction coefficients and algorithm as shown in section 3.2. (FS = Full Scale) For total error calculations of differential units, “Full S cale” is the pressure difference between the minimum and maximum pressures. For example, full scale for a 1 psid PPT is 2 psi (-1 to +1 psi).(2) After applying the correction coefficients stored in EEPROM, the resultant pressure reading is expressed in PSI(pounds per square inch).(3) Not including any mounting hardware. Dimensions in section 2.3 do not include Humiseal 1A33 conformal coating which is typically applied to the PWB assembly at a thickness of 1-3 mils.(4) Operation with a digital interface > 3.3V can damage the IPT and cause shifts in the ADC output.(5) IPT electronics require protection from humidity.(6) IPT requires shielding from EMI.2.3 Outline/Dimensions (inches)2.4 Electrical Connections2.4.1 Connector2mm, 2x4 Low Profile Bottom & Top-Entry Connector, Samtec P/N CLT-104-02-L-D-A-K-TR Connector centered on circuit board and aligned with mounting holes.Compatible Samtec mating connectors: TMM, MMT, TW, TMMH, MTMM3 Operation3.1 Commands and Format3.1.1 InitializationThe IPT piezo-resistive pressure sensing die contains two bridge circuits; one for pressure, one fortemperature. The IPT provides two serial (SPI-compatible) Analog-to-Digital Converters (ADCs), one for each of these data channels. The pressure channel uses a 24-bit ADC from Analog Devices, P/N AD7799. The temperature channel uses a 16-bit ADC from Analog Devices, P/N AD7790. Afterapplying power to the IPT and before obtaining data, each data channel needs to be initialized.As per the manufacturer’s data sheets, the SPI serial clock for each ADC should be ≤ 5 MHz. During reads and writes to the ADC’s as detailed below, the appropriate chip-select line must be brought low (CS_P or CS_T).3.1.1.1 Pressure ChannelThe pressure channel ADC is controlled and configured via a number of on-chip registers. ALLcommunication to the pressure channel ADC starts with a write operation to the 8-bit write-onlycommunication register.Initializing the pressure channel ADC requires writing data to a sequence of four registers; theCommunication register, the Mode register, the Communication register, and the Configurationregister.3.1.1.1.1 Communication RegisterSending 0x10 to the Communication register tells the ADC the following write will be tothe 16-bit Configuration register.3.1.1.1.2 Configuration RegisterSending 0x1020to the Configuration register sets the ADC’s gain and buffering.3.1.1.1.3 Communication RegisterSending 0x08 to the Communication register tells the ADC the following write will be tothe 16-bit Mode register.3.1.1.1.4 Mode RegisterSending 0x3001 to the Mode register places the ADC into a single conversion modeand sets the update rate, f ADC to 470 Hz.From the AD7799 manufacturer’s datasheet:“When single-conversion mode is selected, the ADC powers up and performs a singleconversion. The oscillator requires 1 ms to power up and settle. The ADC then performsthe conversion, which takes a time of 2/f ADC[4.26 ms]. The conversion result is placed inthe data register, RDY goes low, and the ADC returns to power-down mode. Theconversion remains in the data register and RDY remains active (low) until the data isread or another conversion is performed.”3.1.1.1.5 ReadingNote: after initialization is complete, reading the Configuration and Mode Registers isrecommended to ensure they have been set as desired. See the AD7799 manufacturer’sdatasheet for information regarding reads of the Configuration and Mode registers.3.1.1.2 Temperature ChannelThe temperature channel ADC is controlled and configured via a number of on-chip registers.ALL communication to the temperature channel ADC starts with a write operation to the 8-bitwrite-only Communication register.Initializing the temperature channel ADC requires writing data to a sequence of four registers;the Communication register, the Mode register, the Communication register, and the Filterregister.3.1.1.2.1 Communication RegisterSending 0x20 to the communication register tells the ADC the following write will be tothe 8-bit Filter register.3.1.1.2.2 Filter RegisterSending 0x03to the Filter register sets the ADC’s update rate (f ADC) to 20 Hz.3.1.1.2.3 Communication RegisterSending 0x10 to the Communication register tells the ADC the following write will be tothe 8-bit Mode register.3.1.1.2.4 Mode RegisterSending 0x80 to the Mode register places the ADC into a single conversion mode.From the AD7790 manufacturer’s datasheet:“When single conversion mode is selected, the ADC powers up and performs a singleconversion, which occurs after a period 2/f ADC[100 ms]. The conversion result in placedin the data register, RDY goes low, and the ADC returns to power-down mode. Theconversion remains in the data register and RDY remains active (low) until the data isread or another conversion is performed.”3.1.1.2.5 ReadingNote: after initialization is complete, reading the Filter and Mode registers isrecommended to ensure they have been set as desired. See the AD7790 manufacturer’sdatasheet for information regarding reads of the Filter and Mode registers.3.1.2 Normal Operation (Polling)3.1.2.1 Pressure ChannelAfter initializing the Mode register per section 3.1.1.2, a new 24-bit pressure value will be available in ~5.26 ms (1 ms settle time + 4.26 ms conversion).The pressure conversion remains in the data register and DOUT/RDY remains active (low) until the data is read or another conversion is performed.The process of reading the conversion and reconfiguring the ADC for single conversion mode requires repeated cycling through the following steps:1. Wait > 5.26 ms for the conversion to complete, and/or monitor the status of theDOUT/RDY line.2. Send 0x58 to the Communications register to indicate a subsequent read of the 24-bitData register.3. Send 24 clock cycles to read the 24-bit Data register.4. Send 0x08 to the Communications register to indicate a subsequent write to the 16-bitMode register.5. Send 0x3001 to the Mode register to place the ADC into a single conversion mode andset the update rate to 470 Hz.6. Repeat3.1.2.1 Temperature ChannelAfter initializing the Mode register per section 3.1.1.1, a new 16-bit temperature value will be available in ~ 100 ms. (As temperature is generally a more slowly changing input than pressure, and has amodest impact on the pressure output, this conversion rate should be adequate for most applications.) The temperature conversion remains in the data register and DOUT/RDY remains active (low) until the data is read or another conversion is performed.The process of reading the conversion and reconfiguring the ADC for single conversion mode requires repeated cycling through the following steps:1. Wait 100 ms for the conversion to complete and/or monitor the status of theDOUT/RDY line.2. Send 0x38 to the Communications register to indicate a subsequent read of the 16-bitData register.3. Send 16 clock cycles to read the 16-bit Data register.4. Send 0x10 to the Communications register to indicate a subsequent write to the 8-bitMode register.5. Send 0x80 to the Mode register to place the ADC into a single conversion mode.6. Repeat3.1.3 Other ModesThe Honeywell IPT has been tested using the “Initialization” and “Normal Polling” as describ ed in sections 3.1.1 and 3.1.2. above.Both pressure and temperature channel ADCs may also be configured to operate in Continuous Conversion and Continuous Reads modes. Performance should be substantially the same in these alternate modes. However, they have not been thoroughly tested.3.2 Correction Algorithms3.2.1 PressureOne of 2 similar algorithms for converting IPT temperature and pressure channel ADC values intocorrected pressure readings is identified for each IPT. (Section 3.3.2.7 describes how the applicable algorithm identity is documented in the IPT EEPROM contents.)Coefficients (A, a1, a2, etc.) for the identified algorithm are stored in the IPT EEPROM. The algorithm result (Y) is a corrected pressure reading in pounds per square inch (PSI). ADC values from thetemperature channel (normalized) are used to correct the readings for thermal effects.3.2.1.1 Algorithm #1Y = A + (F1 × p) + (F2 × p2) + (F3 × p3) + (F4 × p4) + (F5 × p5) + (F6 × p6)Where:F1 = a1 + (b1 × t) + (c1 × t2) + (d1 × t3) + (e1 × t4) + (fa1 × t5)F2 = a2 + (b2 × t) + (c2 × t2) + (d2 × t3) + (e2 × t4) + (fa2 × t5)F3 = a3 + (b3 × t) + (c3 × t2) + (d3 × t3) + (e3 × t4) + (fa3 × t5)F4 = a4 + (b4 × t) + (c4 × t2) + (d4 × t3) + (e4 × t4) + (fa4 × t5)F5 = a5 + (b5 × t) + (c5 × t2) + (d5 × t3) + (e5 × t4) + (fa5 × t5)F6 = a6 + (b6 × t) + (c6 × t2) + (d6 × t3) + (e6 × t4) + (fa6 × t5)Output: Y = pressure value in PSIInputs: p = 24-bit pressure channel ADC value, normalized 0 – 1Normalized pressure channel ADC value = pressure channel ADC value / 16,777,215t = 16-bit temperature channel ADC value, normalized 0 - 1Normalized temperature channel ADC value = temperature channel ADC value / 65,5353.2.1.1.1 Horner’s Method, Algorithm #1Horner’s method is a suggested microcontroller-friendly alternative for evaluating the above equations: Y = A + p(F1 + p(F2 + p(F3 +p(F4 + p(F5 + p(F6)))))) (6 multiplies, 6 additions)F1 = a1 + t(b1 + t(c1 + t(d1 + t(e1 + t(fa1))))) (5 multiplies, 5 additions)F2 = a2 + t(b2 + t(c2 + t(d2 + t(e2 + t(fa2))))) (5 multiplies, 5 additions)F3 = a3 + t(b3 + t(c3 + t(d3 + t(e3 + t(fa3))))) (5 multiplies, 5 additions)F4 = a4 + t(b4 + t(c4 + t(d4 + t(e4 + t(fa4))))) (5 multiplies, 5 additions)F5 = a5 + t(b5 + t(c5 + t(d5 + t(e5 + t(fa5))))) (5 multiplies, 5 additions)F6 = a6 + t(b6 + t(c6 + t(d6 + t(e6 + t(fa6))))) (5 multiplies, 5 additions)Total: 36 multiplies, 36 additions3.2.1.2 Algorithm #2Differences from Algorithm #1 are highlighted in blueY = A + (F1 × p) + (F2 × p2) + (F3 × p3) + (F4 × p4) + (F5 × p5) + F6Where:F1 = a1 + (b1 × t) + (c1 × t2) + (d1 × t3) + (e1 × t4) + (fa1 × t5)F2 = a2 + (b2 × t) + (c2 × t2) + (d2 × t3) + (e2 × t4) + (fa2 × t5)F3 = a3 + (b3 × t) + (c3 × t2) + (d3 × t3) + (e3 × t4) + (fa3 × t5)F4 = a4 + (b4 × t) + (c4 × t2) + (d4 × t3) + (e4 × t4) + (fa4 × t5)F5 = a5 + (b5 × t) + (c5 x t2) + (d5 × t3) + (e5 × t4) + (fa5 × t5)F6 = a6 + (b6 × t) + (c6 × t2) + (d6 × t3) + (e6 × t4) + (fa6 × t5)Output: Y = pressure value in PSIInputs: p = 24-bit pressure channel ADC value, normalized 0 – 1Normalized pressure channel ADC value = pressure channel ADC value / 16,777,215t = 16-bit temperature channel ADC value, normalized 0 - 1Normalized temperature channel ADC value = temperature channel ADC value / 65,5353.2.1.2.1 Horner’s Method, Algorithm #2Ho rner’s method is a suggested microcontroller-friendly alternative for evaluating the above equations: Y = A + p(F1 + p(F2 + p(F3 +p(F4 + p(F5))))) + F6(5 multiplies, 6 additions)F1 = a1 + t(b1 + t(c1 + t(d1 + t(e1 + t(fa1))))) (5 multiplies, 5 additions)F2 = a2 + t(b2 + t(c2 + t(d2 + t(e2 + t(fa2))))) (5 multiplies, 5 additions)F3 = a3 + t(b3 + t(c3 + t(d3 + t(e3 + t(fa3))))) (5 multiplies, 5 additions)F4 = a4 + t(b4 + t(c4 + t(d4 + t(e4 + t(fa4))))) (5 multiplies, 5 additions)F5 = a5 + t(b5 + t(c5 + t(d5 + t(e5 + t(fa5))))) (5 multiplies, 5 additions)F6 = a6 + t(b6 + t(c6 + t(d6 + t(e6 + t(fa6))))) (5 multiplies, 5 additions)Total: 35 multiplies, 36 additions3.2.2 Pressure Sensor TemperatureStarting in the May 2011 timeframe, coefficients for converting 16-bit Pressure Sensor Temperaturevalues to °C have been appended to the EEPROM contents of new IPT transducers. This supplemental information allows users, if desired, to separately monitor the temperature of the pressure sensor. The algorithm is a simple 3rd order polynomial as described below:3.2.2.1 AlgorithmY = g1 + (g2 × t) + (g3 × t2) + (g4 × t3)Output: Y = pressure sensor temperature in °CInputs: t = 16-bit temperature channel ADC value, normalized 0 – 1:Normalized temperature channel ADC value = temperature channel ADC value / 65,535Coefficients (g1, g2, g3 and g4) for the identified algorithm are stored in the IPT EEPROM.3.2.2.1.1 Horner’s MethodHorner’s method is a suggested microcontroller-friendly alternative for evaluating the above equation:Y = g1 + t(g2 + t(g3 + t(g4))) (3 multiplies, 3 additions)3.3 EEPROM Storage3.3.1 EEPROM FormatThe IPT transducer uses a 2 Kbit serial EEPROM from Microchip, P/N 25LC020AT-E/MC.The EEPROM is organized as 256 x 8. Reads/w rites to the EEPROM should be per the manufacturer’s data sheet. Note: values are stored “b ig-endian”; most significant bit first.3.3.2 Contents3.3.2.1 Pressure Correction CoefficientsThe 37 correction coefficients (A through fa6) are stored in 32-bit IEEE 754 format inlocations 00 through 93.Example: -7.2467064 = C0E7E5043.3.2.2 Full Scale Pressure RangeThe IPT full scale pressure range (FS) is stored in 32-bit IEEE 754 format in locations 94through 97.Example: 20 = 41A000003.3.2.3 Minimum/Maximum Operating/Storage Temperature LimitsIPT operating/storage temperature limits (Min/Max Op/Stor Temp) are stored as 8-bit signed integers in locations 98 through 9B.Examples: Min Operating -40 = D8Max Operating 85 = 55Min Storage -55 = C9Max Storage 125 = 7D3.3.2.4 Minimum Pressure OutputThe minimum pressure output value (Pmin) is the minimum value observed from thepressure channel ADC over the IPT operating temperature/pressure range and is storedas a 24-bit unsigned integer. Location 9C is padded with 00 and Pmin is stored inlocations 9D through 9F.Example: 1213487 = 12842F3.3.2.5 Maximum Pressure OutputThe maximum pressure output value (Pmax) is the maximum value observed from thepressure channel ADC over the IPT operating temperature/pressure range and is storedas a 24-bit unsigned integer. Location A0 is padded with 00 and Pmax is stored inlocations A1 through A3.Example: 11021407 = A82C5FNote: These values can be used to determine if the IPT is being used within its specified operating range. If samples from the pressure ADC are outside this range, the accuracy of the correction algorithm cannot be guaranteed.3.3.2.6 Minimum/Maximum Temperature OutputThe minimum and maximum temperature output values (Min/Max Tout) are theminimum and maximum values observed from the temperature channel ADC over theIPT operating temperature/pressure range and are stored as 16-bit unsigned integers.The minimum value is stored in locations A4 through A5 and the maximum value in A6through A7.Examples: Min 40175 = 9CEFMax 60503 = EC57Note: These values can be used to determine if the IPT is being used within its specified operating range. If samples from the temperature ADC are outside this range, theaccuracy of the correction algorithm cannot be guaranteed.3.3.2.7 Algorithm/Type, DateFour unsigned bytes are used to identify the correction Algorithm, IPT transducer Type and the manufacturing Date Code (Algorithm/Type/Date Code) at locations A8through AB.The most significant byte is used to identify both the correction Algorithm and IPT typewith high nibble for Algorithm and low nibble for Type (shown here in binary).Algorithm is: #1 = 0000b#2 = 0001bType is defined as: Absolute = 0001bGauge = 0010bDifferential = 0011bDate is stored using the three remaining bytes in the format of mmddyy.Example: 010C1B07 = Algorithm #1, Absolute, December 27, 2007Example: 13060B0A = Algorithm #2, Differential, June 11, 20103.3.2.8 Serial NumberThe IPT’ serial number (Serial No.) is stored as an unsigned 32-bit value in locations AC through AF.Example: 1100009827 = 4190D1633.3.2.9 Honeywell Part NumberThe Honeywell part number (Hon. P/N) stored in EEPROM is encoded to form a P/N in the form of 22xxxxxx-0xx or 58xxxxxx-xxx with a special-order code of –Tyyy.xxxxxxxx is 24-bit unsigned value from 000000 to 16777215 and yyy is an 8-bitunsigned value from 00 to 255.xxxxxxxx is stored in locations B0 through B2. yyy is stored in location B3.Examples:2FDDE901 = Honeywell Part Number 22031370-001Special-order code–T001.37107D07 = Honeywell Part Number 58036087-001Special-order code–T007.3.3.2.10 Checksum BytesTwo checksum bytes (Checksum Bytes) are stored in locations B4 and B5. Thechecksum bytes are stored such that an 8-bit Fletcher checksum calculation (Modulo256) on the primary storage area (00 through B5) yields a zero for each of the calculated 8-bit Fletcher Checksum values.In the case of the example Table 1 below, the checksum bytes are B4 and 64.See section 6 for a description of the Fletcher Checksum.3.3.2.11 Supplemental Information: Pressure Sensor Temperature to °C CoefficientsThe 4 correction coefficients (g1 through g4) are stored in 32-bit IEEE 754 format inlocations B8 through C7.Example: -1796.9403 = C4E09E173.3.2.12 Supplemental Information:“Seed” Values and Corresponding Corrected PressureTo aid in development and debug of the Pressure Correction Algorithms found in section3.2.1, a transducer-specific 24-bit Seed Pressure Count (spc), a 16-bit SeedTemperature Count (stc) and the corresponding 32-bit IEEE 754 Corrected SeedPressure reading (csp) have been stored in the IPT EEPROM:The 24-bit spc value is stored in locations C8 through CB with leading zero’s.The 16-bit stc value is stored in locations CC through CF with leading zero’s.The 32-bit csp value is stored in locations DO through D3 in IEEE 754 format.3.3.2.13 Supplemental Information: Checksum BytesTwo checksum bytes (Checksum Bytes) are stored in locations D4 and D5. Thechecksum bytes are stored such that an 8-bit Fletcher checksum calculation (Modulo256) on the supplemental storage area (B8 through D5) yields a zero for each of thecalculated 8-bit Fletcher Checksum values.In the case of the example Table 1 below, the supplemental checksum bytes are CB and 1A. See section 6 for a description of the Fletcher Checksum.3.3.2.14 Unused LocationsLocations B6, B7 and D6 through FF are unused and available for storage of customerinformation.Table 1. EEPROM Map w/ Example Values4 Installation Recommendations1. IPT media compatibility is non-condensing, non-corrosive, non-combustible gases. To ensure the besttransducer performance it is strongly suggested that IPT transducers and associated plumbing beoriented to prevent accumulation of debris or condensation in the pressure ports.2. Pressure ports P1 and P2 should be shielded from direct light due to a strong photoelectric effect onthe sense element.3. Although conformally coated, electronics should be protected from humidity exposure.4. Transducer should be mounted to minimize mechanical stress between circuit board and on-boardpressure sensor.5. Although there is no official specification for the SPI interface (a defacto standard), it is intended forshort distance on-board communications between a microcontroller or microprocessor (Master) and a peripheral (Slave). To help ensure signal integrity, minimize signal path distance between any Master and the IPT.4.1 Installation ExamplesThe three examples below are for illustrative purposes only and do not represent all possible methods of installing the IPT.4.1.1 Flexible Tubing and Double-wire Hose ClampsConsiderations:1. Select tubing size/material for the application’s temperature and pressure extremes.2. Ensure hose clamps do no contact any IPT circuitry.3. Shield port P2 from light due to strong photoelectric effect upon the sense element.4. Minimize mechanical stress between the circuit board and the on-board pressure sensor.4.1.2 Static Radial O-ring SealsConsiderations:1. Select o-ring size/material for the application’s temperature and pressure extremes.2. Minimize mechanical stress between the circuit board and the on-board pressure sensor. 4.1.3 Static Radial and Face O-ring SealsConsiderations:1. Select o-ring size/material for the application’s temperature and pressure extremes.2. Minimize mechanical stress between the circuit board and the on-board pressure sensor.5 MarkingAn adhesive label on the O.D. of the IPT sensor contains the unit’s model code, serial numbe r, and date code (MMDDYY).Example: IPT0020A33R-T003 S/N 2376 0817106 Fletcher Checksum6.1 CalculationThe Fletcher checksum calculation results in two sums:SUM1[R-1] = D[0] + D[1] + …D[R-1]SUM2[R-1] = SUM1[0] + SUM1[1] + …SUM1[R-1]where R = number of bytes in the EEPROM storage area from 00 through B5 (182d), including thecheck bytes, and where all additions are modulo 256.If no errors are found, SUM1[R-1] = SUM2[R-1] = 0Example: 4 bytes of data, 2 check bytes, no errors21ADS-14152 Rev. 6/16Customer Service Email: ********************No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose, without the express written permission of Honeywell, Inc.2223 Honeywell reserves the right to make changes to improve reliability, function or design. Honeywell does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.Honeywell12001 Highway 55ADS-14152 Plymouth, MN 55441Rev. July 2016 © 2016 Honeywell International Inc.。
WPD-102 压力传感器说明手册说明书
WARNING Ensure that the maximum individual port pressure doesnot exceed the maximum pressure range of the unit. For example, the maximum individual port pressure on a WPD-102 is 100 PSI. Exceed-ing this may damage the sensors and WILL give erroneous readings.WARNING Do not use in an explosive or hazardous environment, with combustible or flammable gasses, as a safety or emergency stop device or in any other application where failure of the product could result in personal injury. Use electrostatic discharge precautions during installation and do not exceed the device ratings.MOUNTING The transmitter mounts on a vertical surface with the pressure ports and cable entrance on the bottom using the two screw holes on the base of the unit. Ensure there is enough space around the unit to make the pressure and electrical connections. Avoid locations with severe vibrations or excessive moisture. The enclosure has a standard ½” conduit opening and may be installed with either a conduit coupler or a cable gland type fitting. In this position the High port is on the left and the Low port is on the right as shown on the pcb.WIRING Use 22 awg shielded wiring for all connections and do not locate the device wires in the same conduit with wiring used to supply induc-tive loads such as motors. Disconnect the power supply before making any connections to prevent electrical shock or equipment damage. Make all connec-tions in accordance with national and local electrical codes.This device is a 3-wire sourcing type transmitter. Connect the positive dc voltage or the hot side of the ac voltage to the terminal marked PWR . The power supply common is connected to the terminal marked COM . The device is reverse voltage protected and will not operate if connected backwards. The analog output signal is available on the OUT terminal. This signal is jumper selectable for either voltage or 4-20 mA output. In voltage mode, either 0-5 or 0-10 Vdc can also be selected. These options are indicated on the circuit board.The remote zero feature may be used by wiring a dry-contact (relay only) digital output to the ZERO terminals. Do not apply voltage to the ZERO terminals.PLUMBING The two pressure ports are labeled High and Low . The out-put signal indicates a positive value when the pressure is higher on the High port than the Low port so ensure these ports are connected correctly. Use an appropriately rated pressure tubing and arrange it to minimize stress on the connections.Do not allow material to fall into the pressure ports as contamination could damage the sensors.CONFIGURATION As shown on the pcb drawing, push-on jumpers and switches are used to select the output signal type, the input pressure range and several features. The device is factory configured to operate in the 4-20 mA output mode but can be changed to voltage mode by moving the two jumpersfrom the positions marked Current to the positions marked Voltage . Always note the current jumper position first and then move them to the new position.If the jumpers are rotated 90 degrees and installed incorrectly the product will not work and damage may occur. In voltage mode the output scale may be changed to either 0-5 or 0-10 Vdc by moving the single jumper to the 5V or 10V position.The Range and Options switches can be changed while the unit is operating. However, the output jumpers can only be changed while the power is removed.The jumper marked Light is for the LCD back-light option. The back-light is enabled in the On position but can be set to Off to reduce power consumption. The input pressure range (as shown on the product label) is set by moving the 4-position slide switch marked RANGE .Bidirectional operation, port swap, slow damping and analog reverse functions are available by switching the appropriate DIP switch position to ON.BIDIRECTIONAL This switch changes the range from 0 to full scale differ-ential pressure to minus full scale to plus full scale differential pressure. The analog output will read ½ when the differential pressure is zero. The example below shows the results when a Model 2 (0 to 100 psi) is operated in bidirec-tional mode (-100 to 100 psi).PORT SWAP This switch reverses the polarity of the pressure ports. It makes the HIGH port “low” and the LOW port “high”. This is useful to correct plumbing errors.SLOW DAMPING This switch provides an 8-second averaging for surge dampening (normally it is 4-seconds).OUTPUT REVERSE This switch reverses the output signal polarity. In reverse mode the analog output is maximum when the pressure differential is zero and decreases as pressure increases.OPERATION For normal operation such as 0-100 PSI, the pressure applied to the High port must be higher than the pressure applied to the Low port. If the pressure connection is reversed then the transmitter will always output 4 mA or 0 V. If the Low port is left open to ambient pressure, then the High port is used to measure a positive pressure and 0 PSI = 4 mA and 100 PSI = 20 mA.Model 1 2 3 4 101 50 PSI 25 PSI 10 PSI 5 PSI 102 100 PSI 50 PSI 20 PSI 10 PSI 103 200 PSI 100 PSI 40 PSI 20 PSI 104 500 PSI 250 PSI 100 PSI 50 PSI 105 5.0 Bar 2.5 Bar 1.0 Bar 0.5 Bar 106 7.50 Bar 3.75 Bar 1.50 Bar 0.75 Bar 107 10 Bar 5 Bar 2 Bar 1 Bar 108 30 Bar 15 Bar 6 Bar 3 Bar 109 500 kPa 250 kPa 100 kPa 50 kPa 110 750 kPa 375 kPa 150 kPa 75 kPa 111 1000 kPa 500 kPa 200 kPa 100 kPa 1123000 kPa1500 kPa600 kPa300 kPaPressure Range Wet-WetDifferential Pressure TransducerInstallation InstructionsHIGH port LOW port LCD 4-20 mA 0-5 V 100 PSI 50 PSI 50 PSI 16 mA 3.75 V 50 PSI 100 PSI -50 PSI 8 mA 1.25 V 50 PSI 50 PSI 0 PSI 12 mA 2.5 V 100 PSI0 PSI100 PSI20 mA5 VFor bidirectional operation such as +/-100 PSI, the pressure applied to the High port should be higher than the pressure applied to the Low port for a positive output response. Negative pressure is indicated if the High pressure is less than the Low pressure. In this case –100 PSI = 4 mA and +100 PSI = 20 mA. Since the transmitter is linear 0 PSI = 12 mA.CALIBRATION With both ports open to the ambient pressure (or with both ports equalized at 0 pressure), press and hold the auto-zero button or provide contact closure on the ZERO terminals for at least 3 seconds. Release the button or terminals and the device will calculate and store the new zero point. To protect the unit from accidental zeroing this feature is enabled only when the detected pressure on both ports is less than 5% of the full range. It is not recommended that the span calibration be performed in the field unless a high quality calibrator is available. SPECIFICATIONSMedia compatibility 17-4 PH stainless steel Input power 15 to 30 Vdc / 24 Vac nominal Supply current @ 24 Vdc 100 mA with LCD backlight 35 mA with backlight disabledOutput signal 4-20 mA, 0-5 or 0-10 Vdc Proof pressure Max. 2x F.S. range Burst pressure Max. 5x F.S. range Accuracy +/-1 %F.S. (range 4 is +/- 2 %) Surge damping 4 sec averaging (8 sec for slow) Long term stability +/-0.25% typical (1 year) Auto-zero adjust pushbutton and remote input Sensor operating range -40 to 105 °C (-40 to 220 °F) Operating environment 0 to 50 °C, 10 to 90 %RH n.c. Fittings 1/8” NPT femaleEnclosure 5” x 5” x 2.25” PVC NEMA 4Optional switch settings. Default is Normal (switch set to off).Power in, 24Vac/dc Common is shared with outputOutput, Current or Voltage.Common is shared with power supplyNOTE: The range and options switch can be changed while the unit is powered. However, the output jumpers can only be changed while the unit is unpowered.DO NOT CONNECT POWER TO THE ‘OUT’ TERMINAL AS THE UNIT WILL BE DAMAGED!REV. 006 10/2008WARNING Ensure that the maximum individual port pressure does not exceed the maximum pressure range of the unit. For example, the maximum individual port pressure on a WPD-102 is 100 PSI. Exceeding this may damage the sensors and WILL give erroneous readings.BOARD LAYOUT WIRINGJUMPER SETTINGSDisplay backlight on Display backlight off4-20 mA output 0-10 Vdc output 0-5 Vdc outputNOTE: The current/voltage output jumpers must be oriented as they are shown in the above illustration.。
柔格煤气传感器产品说明书
Addendum Manual No. : IM 34M6P12-02EManual Name : Sequence CPU Instruction Manual - Functions(for F3SP21, F3SP25 and F3SP35)Edition :3rdEditionPage iUnder the heading “Range-free Multi-controller FA-M3,” include F3SP08-SP as anapplicable product as follows:- Model Name: F3SP21, F3SP25, F3SP35, F3SP05-0P, F3SP08-0P, F3SP08-SPReplace the CAUTION text with the following text:CAUTIONThe functions of the F3SP28, F3SP38, F3SP53, F3SP58 and F3SP59 sequence CPUmodules are not explained in this manual. For information on these functions, refer to“Sequence CPU Instruction Manual - Function (for F3SP28-3N/3S, F3SP38-6N/6S,F3SP53-4H/4S, F3SP58-6H/6S, F3SP59-7S)” (IM34M6P13-01E, 2nd edition or later)instead.Page viiIn the text under the heading “Overview of the Manual,” replace “F3SP08-0P” with“F3SP08-0P/F3SP08-SP.”Page ix-Replace the CAUTION text with the following text:CAUTIONThe functions of the F3SP28, F3SP38, F3SP53, F3SP58 and F3SP59 sequence CPUmodules are not explained in this manual. For information on these functions, refer to“Sequence CPU Instruction Manual - Function (for F3SP28-3N/3S, F3SP38-6N/6S,F3SP53-4H/4S, F3SP58-6H/6S, F3SP59-7S)” (IM34M6P13-01E, 2nd edition or later)instead.- Under the heading “Other Instruction Manuals,” replace the relevant paragraph with the following text:User’sManual Sequence CPU Instruction Manual - Functions(for F3SP21, F3SP25 and F3SP35)z When creating programs using ladder language, refer to:- FA-M3 Programming Tool WideField2 (IM34M6Q15-01E)or- FA-M3 Programming Tool WideField (IM34M6Q14-01E); and- FA-M3 Programming Tool WideField – Application (IM34M6Q14-02E)or- Ladder Diagram Support Program M3 (IM 34M6Q13-01E)Page xUnder the title “Other Instruction Manuals,” replace the relevant paragraph with thefollowing text:z For information on the functions of F3SP28, F3SP38, F3SP53, F3SP58 and F3SP59 sequence CPU modules, refer to:- Sequence CPU Instruction Manual – Function (for F3SP28-3N/3S, F3SP38-6N/6S, F3SP53-4H/4S, F3SP58-6H/6S, F3SP59-7S) (IM34M6P13-01E, 2nd editionor later)Page A1-5, Table A1.2, “Device List”In the “Device” column,remove “1-ms timer,” and replace “100-µs timer” with “1-ms timer.”Page A1-5, Table A1.2, “Device List”In the “Quantity” column for F3SP25, correct values as follows:- For the number of link registersWrong: 2048Correct: 8192- For the number of extended shared registersWrong: 0Correct: 3072Page A1-7Replace the footnote under “Configuration Function” with the following text:* FA-M3 Programming Tool WideField2, FA-M3 Programming Tool WideField, or Ladder Diagram Support Program M3.Page A1-9, Table A1.3, “Configuration Ranges (3 of 4)”In the Item column, replace the condition for momentary power failure detection modewith the following text:Effective if power supply modules other than F3PU01-0N are used.Page A2-5, Section A2.4, “Programming Tools"- Replace the text with the following text:The FA-M3 programming tool WideField2 (abbreviated hereinafter as WideField2), FA-M3programming tool WideField, and Ladder Diagram Support Program M3 are programmingtools available for the FA-M3 system.- Replace the table in Section A2.4.1 with the following table:Description Software Model Supported CPUsFA-M3 Programming ToolWideField2 SF620-ECWF3SP05 F3SP28F3SP08 F3SP38F3SP21 F3SP53F3SP25 F3SP58F3SP35 F3SP59F3FP36Pages A3-3, B1-1, and C1-1In the text, replace "F3PU10-0N" with "F3PU10-0N/F3PU10-0S",and replace "F3PU20-0N" with "F3PU20-0N/F3PU20-0S."Pages A3-10, A6-25, A6-28, A6-31, A6-36, and A6-56In the text, replace “WideField” with “WideField2,” andchange the name of the manual to “FA-M3 Programming Tool WideField2(IM34M6Q15-01E).”Pages A4-10 and A4-33In the text, replace “F3SP58” with “F3SP58 and F3SP59.”Page A6-36Add the following CAUTION text:CAUTIONThe transmission rate and data format does not apply to downloading of program not viathe programming port, e.g. through the Ethernet interface module. If the transmission rateor data format is changed, the sequence CPU module must be switched off and switchedon again before the change will be reflected.Page A6-42, “(2) Response Format and Elements”In the table under “When Communication is Abnormal”, correct the number of bytes forcommand as follows:Wrong: 2Correct: 3Page B2-4- Replace the text under Section B2.3, “Programming Tools,” with the following text:The FA-M3 programming tool WideField2 (abbreviated hereinafter as WideField2), FA-M3programming tool WideField, and Ladder Diagram Support Program M3 are programmingtools available for the F3SP05-0P sequence CPU module.- Replace the table in Section B2.3.1 with the following table:Description Software Model Supported CPUsFA-M3 Programming Tool WideField2 SF620-ECWF3SP05 F3SP28F3SP08 F3SP38F3SP21 F3SP53F3SP25 F3SP58F3SP35 F3SP59F3FP36Pages Toc-6 and Toc-C1Replace the title of PART C with the following text:PART C for CPU module designed for the FA-M3 Value II system (F3SP08-0P andF3SP08-SP)Page C1-1- Add F3SC23- to F3SC22- as applicable FA-M3 Value II system controllers.- Replace “F3SP08-0P” with “F3SP08- P.”- Append the following text under “Overview”:F3SP08-0P and F3SP08-SP have exactly the same dimensions, internal circuitry andother characteristics, except that F3SP08-0P has M3.5-screw terminals butF3SP08-SP has M4-screw terminals.-Replace the CAUTION text under “Overview” with the following text:CAUTIONFA-M3 Programming Tool WideField R2.04 or later or FA-M3 Programming Tool WideField2 is required when using the F3SP08- P sequence CPU module.Page C1-9, Section C1.2.5, “External Dimensions”Replace the diagram with the following diagram.F3SP08-0P/F3SP08-SP Unit mmPage C1-10, Section C1.3.1, “Units”Replace the entire text under “Main Unit” with the following text:Main UnitFor the FA-M3 Value II system, the F3SC22- /F3SC23- is called a main unit andconsists of the following modules:module- F3BU04-0N Base- F3SP08-0P Sequence CPU module with power supply (M3.5 screws) andmemory- F3SP08-SP Sequence CPU module with power supply (M4 screws) and memorymodule- F3WD32-3F I/Omodule- F3WD64-3F I/Omodule- F3XD16-3F Inputmodule- F3YD14-5A OutputInstall the F3SP08- P sequence CPU module in the leftmost slot of the F3BU04-0N base module and the other I/O modules in slot 2 (or slots 2 and 3). In the remaining third and fourth slots (or only slot 4), install other necessary I/O modules or special modules.001 002 003 004001 002 003 004Main Unit F3SC22-1FF 3S P 08-0PF 3W D 32-3FI /O M o d u l eI /O M o d u l eMain Unit F3SC23-1FF 3S P 08-S PF 3W D 32-3FI /O M o d u l e I /O M o d u l e001 002 003 004001 002 003 004Main Unit F3SC22-2FF 3S P 08-0PF 3W D 64-3FI /O M o d u l eI /O M o d u l eMain Unit F3SC23-2FF 3S P 08-S PF 3W D 64-3FI /O M o d u l e I /O M o d u l e001 002 003 004001 002 003 004 Main Unit F3SC22-1AF 3S P 08-0PF 3X D 16-3FF 3Y D 14-5AI /O M o d u l eMain Unit F3SC23-1AF 3S P 08-S PF 3X D 16-3FF 3Y D 14-5AI /O M o d u l ePage C2-4, Section C2.3, “Programming Tools"- Replace the body text with the following text:The FA-M3 programming tool WideField2 (abbreviated hereinafter as WideField2) and FA-M3 programming tool WideField are programming tools available for the F3SP08-0P sequence CPU module.- Replace the table in Section C2.3.1 with the following table:Description Software ModelSupported CPUs FA-M3 Programming ToolWideField2SF620-ECWF3SP05 F3SP28 F3SP08 F3SP38 F3SP21 F3SP53 F3SP25 F3SP58 F3SP35 F3SP59 F3FP36- Replace the CAUTION text with the following:CAUTIONFA-M3 Programming Tool WideField2 or FA-M3 Programming Tool WideField R2.04 or later version is required when using the F3SP08- P sequence CPU module.。
柔性薄膜压力传感器数字转换模块MY2901使用说明书
柔性薄膜压力传感器数字转换模块MY2901使用说明书版本号:V1.1执行日期:2019-05-16苏州能斯达电子科技有限公司Suzhou Leanstar Electronic Technology Co.,ltd声明本说明书版权属于苏州能斯达电子科技有限公司(以下称本公司)所有,未经书面许可,本说明书任何部分不得复制、翻译、存储于数据库或检索系统内,也不可电子、翻拍、录音等任何手段进行传播。
感谢您使用苏州能斯达电子的产品。
为使您更好地使用本公司的产品,减少因使用不当造成的产品故障,使用前请务必仔细阅读本说明书并按照所建议的使用方法进行使用。
如果用户不依照本说明书使用或擅自去除、拆解、更换产品组件,本公司不承担由此造成的任何损失。
您所购买产品的颜色、款式和尺寸以实物为准。
本公司秉承科技进步的理念,不断致力于产品改进和技术创新。
因此,本公司保留任何产品改进而不预先通知的权利。
使用本说明书时,确认其属于有效版本。
同时,本公司鼓励使用者根据使用情况,探讨本产品更优化的使用方法。
请妥善保管本说明书,以便在您需要时能及时查阅并获得帮助。
苏州能斯达电子科技有限公司MY2901是苏州能斯达电子自主研发的多通道压力转换模块,可将柔性薄膜传感器模拟信号转换为数字量。
将苏州能斯达电子的柔性压力传感器接到MY2901,可直接从通讯接口读取信号转换后的数字值。
本模块适配苏州能斯达电子DF9-40系列、SF15系列、MD30系列、ZNX 鞋垫传感器和ZNS 手套传感器等多种柔性薄膜压力传感器系列产品;可用于测量柔性薄膜压力传感器表面压力。
4个输入通道,最多可支持4路信号同时测量; 提供UART 方式输出信号; 4路数字开关信号输出; 小尺寸,易于集成; 低功耗;用于柔性薄膜压力传感器测试及应用、可穿戴电子产品、智能家居电子产品、消费类电子产品等多种场合。
产品型号 MY2901工作电压 3.3V~5.0V (无电压反接保护)输出数据 UART (3.3V 电平)模拟输入接口数量 4个 数字开关输出接口数量 4个模拟信号采样频率20Hz 工作电流 ≤30mA 工作温度 -10℃~55℃ 尺寸20mm*29mm产品描述产品特点主要应用技术参数典型应用引脚序号名称功能1~2 Vin 供电电压输入(3.3V~5.5V )3~4GND 供电电压接地端5~6 NC 保留 7 GND 接地8 VCC 模块正常工作电压3.3V 9 Rx UART (RXD) 0V ~3.3V 数据输入 10 Tx UART (TXD) 0V ~3.3V 数据输出11~14 A0~A3 模拟信号输入 15 GND 模拟信号输入公共端 16~19 D0~D3 数字开关信号输出 20 GND数字开关信号输出公共端尺寸规格管脚定义模块功能图示为MY2901同时测量4个柔性薄膜压力传感器的连接电路图。
【参考版】柔性电子传感器详解
柔性电子传感器详解目前,许多智能化的检测设备已经大量地采用了各种各样的传感器,其应用早已渗透到诸如工业生产、海洋探测、环境保护、医学诊断、生物工程、宇宙开发、智能家居等方方面面。
随着信息时代的应用需求越来越高,对被测量信息的范围、精度和稳定情况等各性能参数的期望值和理想化要求逐步提高。
针对特殊环境与特殊信号下气体、压力、湿度的测量需求,对普通传感器提出了新的挑战。
面对越来越多的特殊信号和特殊环境,新型传感器技术已向以下趋势发展:开发新材料、新工艺和开发新型传感器;实现传感器的集成化和智能化;实现传感技术硬件系统与元器件的微小型化;与其它学科的交叉整合的传感器。
同时,希望传感器还能够具有透明、柔韧、延展、可自由弯曲甚至折叠、便于携带、可穿戴等特点。
随着柔性基质材料的发展,满足上述各类趋势特点的柔性传感器在此基础上应运而生。
柔性传感器的特点与分类1、柔性传感器的特点柔性材料是与刚性材料相对应的概念,一般,柔性材料具有柔软、低模量、易变形等属性。
常见的柔性材料有:聚乙烯醇( P V A ) 、聚酯 ( P E T ) 、聚酰亚胺 ( P I ) 、聚萘二甲酯乙二醇酯( P E N ) 、纸片、纺织材料等。
而柔性传感器则是指采用柔性材料制成的传感器,具有良好的柔韧性、延展性、甚至可自由弯曲甚至折叠,而且结构形式灵活多样,可根据测量条件的要求任意布置,能够非常方便地对复杂被测量进行检测。
新型柔性传感器在电子皮肤、医疗保健、电子、电工、运动器材、纺织品、航天航空、环境监测等领域受到广泛应用。
2、柔性传感器的分类柔性传感器种类较多,分类方式也多样化。
按照用途分类,柔性传感器包括柔性压力传感器、柔性气体传感器、柔性湿度传感器、柔性温度传感器、柔性应变传感器、柔性磁阻抗传感器和柔性热流量传感器等;按照感知机理分类,柔性传感器包括柔性电阻式传感器、柔性电容式传感器、柔性压磁式传感器和柔性电感式传感器等。
柔性传感器的常用材料1、柔性基底为了满足柔性电子器件的要求,轻薄、透明、柔性和拉伸性好、绝缘耐腐蚀等性质成为了柔性基底的关键指标。
阵列式柔性薄膜压力传感器MF-3216
阵列式柔性薄膜压力传感器 SSSSSMF-3216 系列
特点描述: 超薄,薄膜厚度不超过 0.6mm; 有效检测区域大,可测量 50 码以下的足底压力分布; 压力点分布密度大,压力敏感区域内有 492 个压力点; 响应速度快,响应时间小于 1ms,恢复时间小于 15ms,满足高速动态扫描需求; 检测压力范围大,单点最大可检测 1Mpa; 可定制化,根据用户需求,可对外形尺寸、压力点尺寸和密度、压力测量范围进行定制; 产品已通过 RoHS 认证。
6 10 32 5 8.7 16 492
接口规格描述: 行接口 列接口
背面补强,接触电极在正面。间距 1.0mm,推荐采用 32P-1.0mm-上接 FFC/FPC 座。
正面补强,接触电极在背面。间距 1.0mm,推荐采用 16P-1.0mm-下接 FFC/FPC 座。
压力范围: 3216 规格书
REV1.0 May-20
1/2
苏州能斯达电子科技有限公司
整体尺寸
压力敏感区尺 寸
项目
整体宽度/W 整体高度/H 引线宽度/L
半径/R 阵列宽度/MW 阵列高度/MH
行宽/RW 行间距/RS
行数 列宽/CW 列间距/CS
列数 总压力点数
尺寸/mm
250 371 50 234.5 135.6 316
1Mpa 10Mpa
MF-3216 规格书
REV1.0 May-20
2/2
柔性薄膜压力传感器规格书ZNX-01
力敏特性 以下为柔性薄膜压力传感器ZNX-01中一个点的压力-电阻值变化曲线图。图表显示了全部电阻范 围内的压力-电阻值关系。
注意: 图表中曲线是在特定的条件下测得的数据绘制而成,曲线关系仅供参考,实际数据请根据具体
应用情况安装后测试。
ZNX-01 规格书
REV2.1 Jan-19
2/3
参考电路
苏州能斯达电子科技有限公司
单位:mm
1/3
ቤተ መጻሕፍቲ ባይዱ
接口定义
苏州能斯达电子科技有限公司
性能指标
项目 型号 量程 厚度 外观尺寸 响应点 耐久性 初始电阻 响应时间 恢复时间 测试电压 工作温度 电磁干扰 EMI 静电释放 ESD
参数 ZNX-01 10 kg 小于 0.45 mm 41 码(其他尺寸大小可以定制) 400 g >100 万次 >10MΩ (无负载) < 1ms < 15ms 典型值 DC 3.3 V -20℃ - 60℃ 不产生 不敏感
ZNX-01 是基于电阻式传感器,输出电阻随着施加于传感器表 面压力的增大而减小,通过特定的压力-电阻关系,可以测量出压 力大小。将 ZNX-01 传感器置于鞋底,能够检测出人体站立和行走 时的足底压力,检测数据可用于足底压力分析。
尺寸规格
✓ 已通过 ROHS 认证
ZNX-01 规格书
REV2.1 Jan-19
图示电路中 ZNX-01 是以前文接口定义中的左脚传感器图示为例,本图中传感器座 1#~10#引脚 对应 A~J。输出信号 Vout 的标号 1~10 对应接口定义图中的 1~10 个检测点。
图中电路是用电阻分压原理测量传感器电阻值,根据测量到的 Vout 电压值和分压电阻值计算传 感器敏感点受力后的电阻值。再根据压力-电阻曲线可计算出压力值。
柔性压感开关
苏州能斯达电子科技有限公司柔性智能压感开关DF9-40@开关超薄,厚度小于0.3mm 响应速度快寿命长,通过100万次以上按压测试检测电路简单,易于集成应用可定制传感器外形可定制传感器量程、触发点等参数DF9-40@智能压感开关柔性薄膜压力传感器是苏州能斯达拥有自主知识产权的柔性压力传感技术在柔韧轻薄材料上印刷附着力强、耐弯折、灵敏度高的柔性纳米功能材料,使其实现对压力的高灵敏度检测。
DF9-40@智能压感开关是开关型柔性压力传感器,输出电阻随着施加在传感器表面压力的增大而减小。
将传感器与电阻分压,后端接电压比较电路,可实现压感开关功能。
智能压感开关适用于柔性面的压力检测的场景,可广泛应用于智能家居、消费电子、汽车电子、智能机器人等领域。
尺寸规格标识尺寸(mm)长度16.0敏感区外径10.0敏感区内径7.5Pin 脚距离 2.54公差0.2✓已通过ROHS 认证产品特点产品描述尺寸表尺寸图型号DF9-40@智能压感开关量程0~500g厚度<0.3mm响应点5g重复性<±10%(60%负载)一致性±10%(同一型号批次)迟滞+10%(RF+-RF-)/RF+耐久性>100万次初始电阻>10MΩ(无负载)响应时间<10ms恢复时间<15ms工作电压典型值DC3.3V工作温度-20℃~60℃电磁干扰EMI不产生静电释放ESD不敏感力敏特性以下为DF9-40@智能压感开关的压力-电阻值曲线图。
左侧图表显示了全部电阻范围内的压力-电阻值关系;右侧图表为左侧图标的局部细节展示,显示了电阻值在30kΩ以下的压力-电阻关系。
从图中可以看出,柔性薄膜压力传感器的电阻值与施加在其表面的压力大体上呈反比例关系。
在压力小于触发点的区域,传感器的电阻值大于10MΩ;当压力值增大至超过响应点后,在较小的压力变化区间内,传感器电阻值迅速减小;随着压力值增大,电阻值变化率减小。
整体上为“L”型利用曲线的这一特性,可实现压力开关功能:将压力阈值设定在“L”型曲线的拐点处,左侧为压力未触发区域,右侧为压力触发区域;输出“开”与“关”信号。
PX3400系列薄膜压力传感器产品说明书
B-61THIN-FILM PRESSURE TRANSDUCER FOR OIL WELL LOGGING TOOLSULTRA-HIGH LONG-TERM STABILITYPX3400 SeriesmV/V Output0-1000 to 0-20,000 psi absolute 0-70 to 0-1400 bar absolute1 bar = 14.5 psi1 kg/cm 2= 14.22 psi1 atmosphere = 14.7 psi = 29.93inHg = 760.2 mmHg = 1.014 barPX3425-0004, $1395,shown smaller thanactual size.ߜVibration Resistance ߜOutstanding Stability at High Temperatures ߜSmall 19 mm (0.75")Body Diameter ߜHigh OperatingTemperature—Up To 177°C (350°F)ߜSolid State Reliability ߜGaged Diaphragm for Accurate Data and Fast Warm-UpߜBuilt-In Temperature Sensor for Thermal CorrectionߜStainless Steel Wetted PartsߜAvailable with Inconel ®Wetted Parts for Wells with Sour Gas or for Brine-Induced WellsOMEGA’s PX3400 Series pressure transducers have earned areputation for high performance,reliability, and stability in tough, real-world applications. They are particularly useful in deep well tools,with a narrow body diameter of 19mm (0.75") and pressure ranges up to 20,000 psi (1400 bar). Two models are available: the PX3425operates at up to 121°C (250°F),and the high-temperature PX3435 operates at up to 177°C (350°F). These outstanding transducers use OMEGA’s advanced sputtered thin-film sensor technology.Thousands of them are used on oil well logging tools throughout the world.Stability in such operations is critical. A transducer that shifts during a logging cycle invalidates costly data. The PX3400 Series uses thin-film strain gages, sputter deposited on a metal diaphragm.This advanced-technology gage system provides superior stability,especially at the high temperatures often found in oil wells.The diaphragm is machined from vacuum-remelted 17-4 PH stainless steel with elaborate annealing,aging, and stress-relieving processes to ensure a stable system. Thegaged-diaphragm design minimizes the number of components and welds in the transducer, increasing the reliability and precision oflogging data. The heat-sink effect of the diaphragm and the high bridge resistance reduce gage self-heating,decrease warm-up time, andconserve battery power. A built-in platinum resistance temperature element (RTD) provides data for correcting temperature effects using an external microprocessor. OMEGA’s PX3400 Series transducer can be modified to meet your design requirements. A broad selection of optional features is available,including pressure and electrical connections, special testing,additional thermal compensation,and 200°C (400°F) operating temperatures.DISCONTINUEDDISCONTINUEDDISCONTINUEDCANADA www.omega.ca Laval(Quebec) 1-800-TC-OMEGA UNITED KINGDOM www. Manchester, England0800-488-488GERMANY www.omega.deDeckenpfronn, Germany************FRANCE www.omega.frGuyancourt, France088-466-342BENELUX www.omega.nl Amstelveen, NL 0800-099-33-44UNITED STATES 1-800-TC-OMEGA Stamford, CT.CZECH REPUBLIC www.omegaeng.cz Karviná, Czech Republic596-311-899TemperatureCalibrators, Connectors, General Test and MeasurementInstruments, Glass Bulb Thermometers, Handheld Instruments for Temperature Measurement, Ice Point References,Indicating Labels, Crayons, Cements and Lacquers, Infrared Temperature Measurement Instruments, Recorders Relative Humidity Measurement Instruments, RTD Probes, Elements and Assemblies, Temperature & Process Meters, Timers and Counters, Temperature and Process Controllers and Power Switching Devices, Thermistor Elements, Probes andAssemblies,Thermocouples Thermowells and Head and Well Assemblies, Transmitters, WirePressure, Strain and ForceDisplacement Transducers, Dynamic Measurement Force Sensors, Instrumentation for Pressure and Strain Measurements, Load Cells, Pressure Gauges, PressureReference Section, Pressure Switches, Pressure Transducers, Proximity Transducers, Regulators,Strain Gages, Torque Transducers, ValvespH and ConductivityConductivity Instrumentation, Dissolved OxygenInstrumentation, Environmental Instrumentation, pH Electrodes and Instruments, Water and Soil Analysis InstrumentationHeatersBand Heaters, Cartridge Heaters, Circulation Heaters, Comfort Heaters, Controllers, Meters and SwitchingDevices, Flexible Heaters, General Test and Measurement Instruments, Heater Hook-up Wire, Heating Cable Systems, Immersion Heaters, Process Air and Duct, Heaters, Radiant Heaters, Strip Heaters, Tubular HeatersFlow and LevelAir Velocity Indicators, Doppler Flowmeters, LevelMeasurement, Magnetic Flowmeters, Mass Flowmeters,Pitot Tubes, Pumps, Rotameters, Turbine and Paddle Wheel Flowmeters, Ultrasonic Flowmeters, Valves, Variable Area Flowmeters, Vortex Shedding FlowmetersData AcquisitionAuto-Dialers and Alarm Monitoring Systems, Communication Products and Converters, Data Acquisition and Analysis Software, Data LoggersPlug-in Cards, Signal Conditioners, USB, RS232, RS485 and Parallel Port Data Acquisition Systems, Wireless Transmitters and Receivers。
基于多孔PDMS薄膜介电层的柔性压力传感器
㊀2019年㊀第4期仪表技术与传感器Instrument㊀Technique㊀and㊀Sensor2019㊀No 4㊀基金项目:山西省应用基础研究自然科学基金项目(201701D121063)收稿日期:2018-02-24基于多孔PDMS薄膜介电层的柔性压力传感器李㊀玲1,岳凤英1,乔㊀霖2,申恒瑞1,索艳春3(1.中北大学电气与控制工程学院,山西太原㊀030051;㊀2.中北大学仪器与电子学院,山西太原㊀030051;3.中国煤炭科工集团太原研究院有限公司,山西太原㊀030006)㊀㊀摘要:提出一种基于多孔弹性体薄膜介电层的电容式压力传感器㊂该多孔弹性体薄膜是由液体相位分离原理制作而成㊂首先将去离子水与聚二甲基硅氧烷(PDMS)以一定比例均匀混合,随后将溶剂蒸发后形成多孔复合弹性薄膜㊂以ITO为电极材料,PET为柔性基底,多孔弹性体薄膜为介电层,将两电极面对面层压封装,得到电容式柔性压力传感器㊂由于均匀孔结构的存在,薄膜介电层在压力作用下能发生较大形变㊂研究结果表明,基于多孔薄膜介电层的压力传感器的灵度为0.58kPa-1,具有良好的稳定性和重复性;传感器阵列能够准确地检测表面压力分布㊂制作的柔性压力传感器具有高灵敏度㊁低成本的特点,可用于人机交互界面㊁电子皮肤传感和细微压力变化监控等方面㊂关键词:柔性压力传感器;PDMS;多孔薄膜;电子皮肤中图分类号:TP212㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1002-1841(2019)04-0015-05FlexiblePressureSensorBasedonDielectricLayerofPorousPDMSThinFilmLILing1,YUEFeng⁃ying1,QIAOLin2,SHENHeng⁃rui1,SUOYan⁃chun3(1.SchoolofElectricalandControlEngineering,NorthUniversityofChina,Taiyuan030051,China;2.SchoolofInstrumentandElectronics,NorthUniversityofChina,Taiyuan030051,China;3.TaiyuanResearchInstitute,ChinaCoalTechnologyandEngineeringGroup,Taiyuan030006,China)Abstract:Acapacitivepressuresensorbasedonaporouselastomerfilmdielectriclayerwasproposed.Theporouselastomerfilmwaspreparedbytheprincipleofliquidphaseseparation.Firstly,deionizedwaterwasmixedwithpolydimethylsiloxane(PDMS)inacertainproportion,andthenthesolventwasevaporatedtoformaporouscompositeelasticfilm.Theindiumtinoxide(ITO)wasusedaselectrodematerial.Thepolyethyleneterephthalate(PET)waschosenasaflexiblesubstrateandmicro⁃poresfilmasdielectriclayer.Thenthecapacitivepressuresensorwaspackagedbytwoelectrodesfacetoface,thecapacitiveflexiblepressuresensorwasobtained.Duetotheexistenceofuniformporestructure,thethinfilmdielectriclayercandeformgreatlyundertheactionofpressure.Theresultsindicatethatthepressuresensorbasedonaporouselastomerfilmdielectriclayerhasasensitiv⁃ityof0.58kPa-1andgoodreliabilityandrepeatability.Thesensorarrayscanaccuratelydetectsurfacepressuredistribution.Theflexiblepressuresensorispreparedwithhighsensitivityandlowcost.Itcanbeusedforhuman⁃computerinteractioninterface,e⁃lectronicskinsensingandmonitoringofsubtlepressurechanges.Keywords:flexiblepressuresensor;PDMS;porousfilm;e⁃skin0㊀引言压力传感器因其在目标检测㊁触屏传感㊁指纹传感等领域的广泛应用,在过去的很多年一直备受关注[1–3]㊂近年来,医疗保健和医疗诊断系统[4-6]以及电子皮肤系统[7-11]等领域的快速发展对压力传感器的柔性㊁灵敏度㊁轻薄性和工作环境适应性等方面提出了更高的要求㊂压力传感技术通常分为3种类型:压电式[5,12-18]㊁压阻式[9-11]和电容式[6-8]㊂其中,电容式压力传感器因具有结构简单㊁灵敏度高㊁功耗低㊁过载能力强㊁动态响应特性好和对高温㊁辐射㊁强振等恶劣条件的适应性强等优点被广泛应用[6-9]㊂电容式压力传感器的灵敏度主要取决于在压力的作用下电容的变化量㊂而电容的变化量与介电层的介电常数的变化㊁介电层的厚度和电极的表面积都有关㊂通常,通过改变介电层的厚度来改变电容式压力传感器的电容变化量㊂此外,空气间隙[2,19-20]或高弹性材料[7,21-25]也是影响介电层的物理性质的重要因素㊂然而,这些改变只适用于提高测量压力较大的传感器的灵敏度,例如目标检测[1]㊁足底压力测量[21-22]㊂㊀㊀㊀㊀㊀16㊀InstrumentTechniqueandSensorApr 2019㊀当然,研究者们也试图通过在介电层表面修饰一些微米纳米结构来提高测量微小压力的柔性压力传感器的灵敏度,比如,微金字塔[6,8]㊁纳米针[26]等㊂但是,它们通常需要复杂和昂贵的制造工艺㊂所以,提出结构简单㊁有效的方法来提高微小压力范围内柔性压力传感器的灵敏度迫在眉睫㊂针对上述工艺复杂问题,本文提出一种基于多孔弹性体薄膜介电层的柔性电容式压力传感器,旨在提高测量微小压力的柔性压力传感器的灵敏度㊂通过对聚二甲基硅氧烷聚合物和去离子水的混合来实现多孔薄膜介电层的制备㊂由于这种弹性多孔薄膜在受到外部压力时会产生明显的形变,显著提高了柔性压力传感器的灵敏度,并且使得压力检测范围明显宽了,对进一步研究柔性电容传感器具有潜在的应用价值㊂1㊀实验部分1.1㊀多孔薄膜介电层的制作图1为多孔弹性体薄膜介电层的制作过程㊂实验中,聚甲基硅氧烷(PDMS;Sylgard184)作为一种基础材料,具有高的化学和热稳定性以及低弹性模量,去离子水(DI)被选为分散物㊂需要注意的是,DI水的沸点高于PDMS固化温度(70ħ)㊂图1㊀多孔PDMS薄膜工艺流程图首先,将PDMS预聚物溶液与固化剂以体积比10ʒ1混合,放在真空箱中脱泡处理20min㊂称取混合好的PDMS与DI水(质量比为3ʒ1)放入烧杯中,放置于磁力搅拌器上,以速度为2600r/min搅拌10min㊂搅拌过程中,由于水溶性,去离子水的微滴均匀分散在PDMS溶液中,得到含有微水滴的PDMS溶液㊂实验中采用2英寸硅片作为基底材料,将2片2英寸硅片清洗干净,使用匀胶机以1500r/min的速度将疏水性材料杜邦旋涂于2个基底表面,得到疏水性表面的基底㊂为了保证薄膜的精确厚度,将100μm厚的胶带贴于2个基底之间,然后将微水滴的PDMS溶液填充到2个基底之间,将组装好的样品在热板上以70ħ保持24h,既可以使PDMS达到热交联,又可以使在PDMS中的水的蒸发完全㊂冷却后,将薄膜从基板上剥离,得到完全聚合的具有微孔隙的PMDS薄膜,即PDMS多孔薄膜㊂它被用作设计的电容式压力传感器的电介质层㊂得到的厚度为100μm的多孔PDMS膜具有良好的柔韧性,在柔型传感器件领域具有潜在的应用价值㊂1.2㊀压力传感器的制作制作了基于对苯二甲酸乙二醇酯(PET)柔性衬底和多孔PDMS薄膜介电层的压力传感器阵列㊂工艺流程图如图2所示,该4ˑ4的柔性阵列采用光刻工艺制备,尺寸为2.5cmˑ2.5cm,衬底采用PET-ITO柔性基板㊂制作电极衬底时,制作的光刻版如图2(d)所示,每个单元为4mm2,根据所用光刻版中电极尺寸剪切PET/ITO衬底㊂将正性光刻胶均匀滴在PET/ITO材料表面,匀胶机的转速设置为:先以500r/min慢速运行5s,之后以2500r/min快速运行30s㊂匀胶的样品放在烘台上105ħ保持2min㊂通过EVG610光刻机进行曝光,曝光剂量设置为80mJ,之后进行坚膜处理(115ħ,2min),用正交显影液对完成曝光的样品进行显影处理,显影时间为45s㊂将得到的样品置于混合溶液中(体积比为HNO3ʒHClʒH2O=3ʒ50ʒ50),腐蚀时间为1min㊂用去离子水清洗后,将腐蚀完毕的样品置于乙醇中,去除多余的光刻胶,得到柔性电极衬底㊂图2㊀柔性阵列电极衬底制作流程对柔性阵列传感器进行封装,如图3所示,将2片柔性衬底和多孔PDMS介电层以三明治结构进行封装,实验中上电极与下电极相同,但是电极平面呈90ʎ放置㊂为了增加多孔PDMS薄膜与上下电极的粘附力,薄的一层(小于1μm)的PDMS溶液以5000r/min的转速旋涂于PET基板上的㊂整个样品放置于100ħ烘箱中,固化30min,得到封装好的柔性阵列压力传感器如图3所示㊂为了进行对比,实验中以相同的方㊀㊀㊀㊀㊀第4期李玲等:基于多孔PDMS薄膜介电层的柔性压力传感器17㊀㊀法制作了以PDMS薄膜为介电层的压力传感器㊂(a)结构示意图(b)结构图图3㊀柔性传感阵列结构封装后实物图2㊀多孔PDMS薄膜与柔性压力传感器阵列的表征2.1㊀多孔薄膜介电层的表征对制作的多孔PDMS薄膜介电层进行电子扫描显微镜(SEM)的观察㊂为了观察方便,首先对多孔薄膜进行喷金处理让其具有一定的导电性,将其置于SEM中观察㊂图4为多孔PDMS薄膜断面的SEM图,结果显示,微水滴在PDMS溶液中良好分散,蒸发完全后形成均匀的多孔结构,通过测量,孔的形状近似圆形,直径均匀维持在5μm左右㊂图中结构不平整主要是由于断面切割造成的㊂图4㊀柔性传感阵列结构示意图2.2㊀单个柔性压力传感器的表征搭建测试平台对单个压力传感器进行测试㊂如图5所示,使用铜导线作为连接线与阻抗分析仪(Agi⁃lent4284A)连接进行输出电容的测试,使用压力试验机(ZQ-21B-1)对传感器表面施加压力,施加压力过程中记录传感器电容的变化情况㊂图5㊀测试系统搭建图测试时压力为0 4kPa,在不施加压力时,测得压力传感器的电容初始值为3.62pF,不同薄膜介电层的压力传感器对施加压力的响应曲线如图6(a)所示㊂结果表明,传感器的电容变化量随着外部载荷的增加呈增加的趋势,这是由于随着外部压力的增加,导致多孔PDMS薄膜变形增加,上下两极板间间距变小㊂但是,当压力增加到一定程度,达到多孔PDMS薄膜的形变极限,导致传感器电容与压力的非线性增加㊂此外,当传感器的介电层由PDMS薄膜变为多孔PDMS薄膜时,传感器的压力灵敏度由0.2kPa-1增加到0.58kPa-1,这是由于在相同的压力施加时,后者由于内部存在多孔结构而呈现疏松状态,形变量大于前者㊂所以,多孔PDMS薄膜作为柔性压力传感器的介电层显著改善了器件的灵敏度㊂在实际应用中,传感器的稳定性也是非常重要的㊂如图6(b)所示,对传感器进行300次弯曲后的电容变化进行了测试㊂结果显示,300次的弯曲试验后,在相同的压力值时,传感器的变化率没有显著改变,制作的压力传感器具有很好的稳定性㊂2.3㊀柔性压力传感器阵列的表征对封装有多孔PDMS薄膜介电层的柔性压力传感器阵列进行测试㊂如图7(a)所示,当用大拇指对压力传感器阵列的4个单元施加力时,测量传感器阵列每个单元的电容值,结果如图7(b)所示㊂结果显示,在施加力的4个传感单元的电容变化较大,相邻2个单元的电容也发生了一定的变化,其余单元的电容几乎没有发生变化㊂结果表明,该柔性阵列传感器能准确检测外力的大小和位置㊂3㊀结论本文采用液体相位分离法快速制备了一种基于多㊀㊀㊀㊀㊀18㊀InstrumentTechniqueandSensorApr2019㊀(a)压力响应曲线(b)稳定性测试图6㊀柔性压力传感单元测试图(a)手指按压图(b)电容变化测试图7㊀柔性压力传感器阵列测试图孔薄膜介电层的电容式柔性压力传感器㊂该多孔弹性薄膜介电层的微孔是通过PDMS预聚物与水不相容的相位分离来实现的,具有低的弹性模量和很好的形变能力㊂研究结果表明,传感器在较低压力范围(<4kPa)内具有较高的灵敏度㊂通过对制作的压力传感器阵列压力分布的测试,本文制作的电容式柔性压力传感器具有高灵敏度㊁低成本特点,在医疗健康监控㊁微小压力传感等方面具有较大潜在应用㊂参考文献:[1]㊀METZGERC,FLEISCHE,MEYERJ,etal.Flexible⁃foam⁃basedcapacitivesensorarraysforobjectdetectionatlowcost[J].AppliedPhysicsLetters,2008,92(1):41.[2]㊀KIMHK,LEES,YUNKS.Capacitivetactilesensorarrayfortouchscreenapplication[J].Sensors&ActuatorsAPhys⁃ical,2011,165(1):2-7.[3]㊀SATON,SHIGEMATSUS,MORIMURAH,etal.Novelsur⁃facestructureanditsfabricationprocessforMEMSfinger⁃printsensor[J].IEEETransactionsonElectronDevices,2005,52(5):1026-1032.[4]㊀ZANGY,ZHANGF,DICA.Advancesofflexiblepressuresensorstowardartificialintelligenceandhealthcareapplica⁃tions[J].Mater.Horiz.,2015,2(2):140-156.[5]㊀DAGDEVIRENC,SUY,JOEP,etal.Conformableamplifiedleadzirconatetitanatesensorswithenhancedpiezoelectricre⁃sponseforcutaneouspressuremonitoring[J].NatureCom⁃munication,2014,5:4496.[6]㊀SCHWARTZG,TEECK,MEIJ,etal.Flexiblepolymertransistorswithhighpressuresensitivityforapplicationine⁃lectronicskinandhealthmonitoring[J].NatureCommuni⁃cation,2013,4:1859.[7]㊀YAOS,ZHUY.Wearablemultifunctionalsensorsusingprin⁃tedstretchableconductorsmadeofsilvernanowires[J].Nanoscale,2014,6:2345-2352.[8]㊀MANNSFELDSCB,TEECK,STOLTENBERGRM,etal.Highlysensitiveflexiblepressuresensorswithmicrostruc⁃turedrubberdielectriclayers[J].NatureMaterials,2010,9(10):859-864.[9]㊀ZHUB,NIUZ,WANGH,etal.Microstructuredgraphenear⁃raysforhighlysensitiveflexibletactilesensors[J].Small,2014,10(18):3625-3631.[10]㊀PANGC,LEEGY,KIMTI,etal.Aflexibleandhighlysensitivestrain⁃gaugesensorusingreversibleinterlockingofnanofibers[J].NatureMaterials,2012,11(9):795-801.[11]㊀PARKJ,LEEY,HONGJ,etal.Gianttunnelingpiezore⁃sistanceofcompositeelastomerswithinterlockedmi⁃crodomearraysforultrasensitiveandmultimodalelectronicskins[J].ACSNano,2014,8(5):4689-4697.[12]㊀CHOIW,LEEJ,YOOYK,etal.Enhancedsensitivityof㊀㊀㊀㊀㊀第4期李玲等:基于多孔PDMS薄膜介电层的柔性压力传感器19㊀㊀piezoelectricpressuresensorwithmicrostructuredpolydimethylsiloxanelayer[J].AppliedPhysicsLetters,2014,104(12):123701.[13]㊀AKIYAMAM,MOROFUJIY,KAMOHARAT,etal.Flexi⁃blepiezoelectricpressuresensorsusingorientedaluminumnitridethinfilmspreparedonpolyethyleneterephthalatefilms[J].JournalofAppliedPhysics,2006,100(11):114318.[14]㊀CHUNJ,LEEKY,KANGCY,etal.Embossedhollowhemisphere⁃basedpiezoelectricnanogeneratorandhighlyresponsivepressuresensor[J].AdvancedFunctionalMate⁃rials,2014,24(14):2038-2043.[15]㊀LEECT,CHIUYS.PiezoelectricZnO-nanorod⁃structuredpressuresensorsusingGaN-basedfield⁃effect⁃transistor[J].AppliedPhysicsLetters,2015,106(7):073502.[16]㊀GRAZI,KRAUSEM,BAUER-GOGONEAS,etal.Flexi⁃bleactive⁃matrixcellswithselectivelypoledbifunctionalpolymer⁃ceramicnanocompositeforpressureandtempera⁃turesensingskin[J].JournalofAppliedPhysics,2009,106(3):034503.[17]㊀JUNWOOL,WOOKC,YONGKYOUNGY,etal.Amicro⁃fabricatedforcesensorusinganallthinfilmpiezoelectricactivesensor[J].Sensors,2014,14(12):22199-22207.[18]㊀WANGJJ,TSAIJW,SUYC.Piezoelectricrubberfilmsforhighlysensitiveimpactmeasurement[J].JournalofMi⁃cromechanics&Microengineering,2013,23(23):075009.[19]㊀CHENGM,HUANGX,MAC,etal.Aflexiblecapacitivetactilesensingarraywithfloatingelectrodes[J].Micromech.Microeng.,2009,19(11):115001.[20]㊀LEEHK,CHANGSI,YOONE.Aflexiblepolymertactilesensor:fabricationandmodularexpandabilityforlargeareadeployment[J].Microelectromech.Syst.,2006,15(6):1681-1686.[21]㊀LEIKF,LEEKF,LEEMY.AflexiblePDMScapacitivetactilesensorwithadjustablemeasurementrangeforplantarpressuremeasurement[J].Microsys.Technol.,2014,20(7):1351-1358.[22]㊀LEIKF,LEEKF,LEEMY.DevelopmentofaflexiblePDMScapacitivepressuresensorforplantarpressuremeas⁃urement[J].Microelectron.Eng.,2012,99:1-5.[23]㊀DOBRZYNSKAJA,GIJSMAM.Polymer⁃basedflexiblecapacitivesensorforthree⁃axialforcemeasurements[J].JournalofMicromechanics&Microengineering,2012,23(1):15009-15019.[24]㊀ZHANGB,XIANGZ,ZHUS,etal.Dualfunctionaltrans⁃parentfilmforproximityandpressuresensing[J].NanoRes.,2014,7(10):1488-1496.[25]㊀WANGX,LIT,ADAMSJ,etal.Transparentstretchablecarbon⁃nanotube⁃inlaidconductorenabledbystandardrep⁃licationtechnologyforcapacitivepressure,strainandtouchsensors[J].JournalofMaterialsChemistryA,2013,1:3580-3586.[26]㊀KIMJ,NGANGT,SOOKIMW.Highlysensitivetactilesensorsintegratedwithorganictransistors[J].AppliedPhysicsLetters,2012,101(10):103308.作者简介:李玲(1991 ),硕士研究生,主要研究领域为动态测试与智能仪器㊂E⁃mail:1227816411@qq.com岳凤英(1977 ),副教授,博士研究生,主要研究领域为导航㊁制导与控制㊂E⁃mai:303979057@qq.com(上接第14页)[6]㊀李旺旺,梁庭,张迪雅,等.SOI压阻式压力传感器敏感结构的优化设计[J].仪表技术与传感器,2016(6):15-18.[7]㊀王喆垚.微系统设计与制造[M].北京:清华大学出版社,2008(2):161-178.[8]㊀王峰,谭晓兰,张敏亮.压阻式微压力传感器结构参数设计[J].自动化仪表,2013,34(3):83-86.[9]㊀刘广玉.微传感器设计制造与应用[M].北京:北京航空航天大学出版社,2008(2):9-10.[10]㊀CHENS,ZHUMQ,MABH,etal.Designandoptimizationofamicropiezoresistivepressuresensor[C].IEEEInterna⁃tionalConferenceonNano/microEngineeredandMolecularSystems.IEEE,2008:351-356.[11]㊀赵艳平.压力传感器弹性元件的力学性能分析与研究[D].南京:江苏大学,2007.[12]㊀潘东阳.基于MEMS技术纳米多晶硅薄膜压力传感器制作及特性研究[D].哈尔滨:黑龙江大学,2014.[13]㊀王峰.压阻式微压力传感器的研究[D].北京:北方工业大学,2012.[14]㊀杨梅,于炜,张莹,等.梁-膜结构微压传感器研制[J].实验流体力学,2010(2):74-76.[15]㊀陈雨,杨继昌,丁建宁.耐高温压力传感器的设计研究[J].机械设计与制造,2008(10):19-21.作者简介:范宗皓(1993 ),硕士研究生,研究方向为MEMS器件设计与工艺流程㊂E⁃mail:2465521333@qq.com郝建红(1966 ),教授,博导,现从事电磁场与微波技术㊁集成电路及系统芯片设计与应用等方面的研究工作㊂。
薄膜压电模组产品规格书(PRD)_V1.0
薄膜压电模组产品规格书编辑历史目录1产品简介 (4)1.1产品特点 (4)1.2产品业务形态 (4)1.3产品形态说明 (5)2薄膜压电模组主要参数规格 (5)2.1薄膜压电各个模块功能参数 (5)3非功能需求 (6)3.1规则变更需求 (6)3.2产品服务需求 (7)1产品简介本薄膜压电模组具有轻质超薄、抗电磁干扰、防水、防止假触摸、超低功耗、价格低廉以及经久耐用等特性,可广泛应用于家电控制、可穿戴设备、医疗电子等领域。
本薄膜压电模组主要包含几部分:电源、控制电路(数据采集、处理与输出)、薄膜压电传感器及压感输出电路,本模块可以任意接入客户产品中。
1.1产品特点➢轻质超薄:WPE-500S型号压感区域直径5.60mm,厚度0.25mm。
➢抗干扰能力强: 可抗EMI电磁干扰,可防水。
➢抗假触摸:可防止假触摸错误。
➢超低功耗: 分压电路中电源<6V、电流<1mA。
➢价格低廉:可根据客户需求定制,低廉价格。
➢经久耐用:可长时间使用。
➢可扩展性强:产品模块较小,可以轻易接入客户产品中。
1.2产品业务形态图示薄膜压电模组分压电路图1.3产品形态说明采用电阻分压设计,由于薄膜压电模组受到压力变化而阻值发生变化,因此薄膜压电模块所承受压力大小会直接影响到输出电压Vout, 我们根据输出电压Vout可直接体现按压大小,从而通过按压大小进行相关控制操作。
模组主要由电阻分压电路、抗干扰电路、前置输出判断电路、主控电路、引脚输出控制等模块组成。
2薄膜压电模组主要参数规格2.1薄膜压电各个模块功能参数型号ST XXXXXXXXXXXXXXXX薄膜压电传感器压电类型电阻型型号WPE-500/WPE-500SWPE-501/WPE-501SWPE-6003非功能需求3.1规则变更需求定制、深度合作需求变更升级等。
3.2产品服务需求售后、长期合作等。
PX931系列高精度压力传感器产品说明书
HigH-AccurAcy full bridge Output pressure trAnsducerPX931-3KSV,shown smallerthan actual size.SPECIFICATIONSExcitation:12 to 40 Vdc @ 20 mA Output:4 to 20 mA (2 wire)(±10% adjustable)Insulation Resistance: 5 M Ω@ 75 VdcPERFORMANCEAccuracy:±0.15% (combined effect of linearity, hysteresis and repeatability)Shunt Value:On calibration sheet (80% FS)Hysteresis:±0.10% typical Repeatability:±0.05% typicalZero Balance:4 mA (+10%, -2% adj)Operating Temperature Range:-18 to 85°C (0 to 185°F)Compensated Temperature Range:16 to 71°C (60 to 160°F)Thermal Zero Effect:±0.005% full scale/°FThermal Sensitivity Effect:±0.005% reading/°FProof Pressure: 150% rangeBurst Pressure:300% range CONSTRUCTIONBody Material:17-4 PH stainless steel Diaphragm Material:Pressure Port:14Male Thread:10 to 1000 psi Female thread:3000 to 7500 psiWeight:383 g (13.5 oz)Stainless Steel Diaphragm for Compatibility with Most Media 1⁄4NPT Fitting for Fast,Easy, and SecureInstallation Rugged Stainless Steel Case Protects Components from Industrial EnvironmentsQuick-Disconnect Style for Easy Field Connections 2-Wire, 4 to 20 mA Output Provides Excellent Noise Immunity over Long Cable Runs Adjustable Zero and Span Units ≤50 psi are Vented Gage for High Precision PX941A Series0-10 to 0-7500 psi 0-0.7 to 0-500 barHIGH-ACCURACYPRESSURE TRANSMITTERWITH SHUNT CALIBRATOR FOR QUICK CALIBRATION CHECKSMating Connector:PT06F10-6S -R(not included)PX941A-1KSI,1000 psi sealed gage transmitter with 4 to 20 mA output. (not included).10-6S -R , mating connector PT06F PX941A-025GI, shown smaller than actual size.*See section D for compatible meters.Absolute ranges available. Change “G”or “S” to “A” in model number .Ordering Examples: PX941A-050GI,50 psi gage transmitter with 4 to 20 mA output.HIGH-ACCURACY VOLTAGE OUTPUT PRESSURE TRANSDUCERWITH SHUNT FOR QUICK CALIBRATION CHECKSPX951 Series0-10 to 0-7500 psi 0-0.7 to 0-500 barSPECIFICATIONSExcitation:24 to 32 Vdc @ 25 mA Output:0 to 5 Vdc (4 wire) ±10% adj Insulation Resistance:5 M Ω@ 75 VdcPERFORMANCEAccuracy:±0.15% (combined effect of linearity, hysteresis and repeatability)Hysteresis:±0.10% typical Repeatability:+0.05% typical Zero Balance: 0 Vdc ±10% adj Shunt Value:80% full scale Response Time:2 msOperating Temperature Range:-45 to 121ºC (-50 to 250ºF)Compensated Temperature Range:16 to 71°C (60 to 160°F)Thermal Zero Effect:±0.005% full scale/°FThermal Sensitivity Effect:±0.005% reading/°FProof Pressure: 150% rangeCONSTRUCTIONBody Material:17-4 PH stainless steel Diaphragm Material:17-4 PH stainless steelPressure Port:1⁄4-18 NPT Male Thread:10 to 1000 psiFemale thread:3000 to 7500 psi Weight:383 g (13.5 oz)Zero and span adjustments.Stainless Steel Diaphragm for Compatibility with Most Media 1⁄4NPT Fitting for Fast,Easy, and Secure InstallationRugged Stainless Steel Case Protects Components fromIndustrial Environments Quick Disconnect Style for Easy Field Connections 0 to 5 Vdc Output for Maximum Versatility Adjustable Zero and Span Units ≤50 psi are Vented Gage for High PrecisionPX951-1KA5V, 1000 psi absolute transmitter with 0 to 5 Vdc output., mating connector (not incl PX951-1KS5V, shown smaller than actual size.Mating Connector:PT06F10-6S -R (not included)*See section D for compatible meters.Absolute ranges available, replace “G”or “S” with “A” in model number .Ordering Examples: PX951-050G5V, 50 psi gage transmitter with 0 to 5 Vdc output .PT06F10-6S-R uded).。
《基于PDMS薄膜介电层电容式柔性压力传感器的研究》范文
《基于PDMS薄膜介电层电容式柔性压力传感器的研究》篇一一、引言随着科技的进步,柔性电子设备在日常生活和工业应用中扮演着越来越重要的角色。
其中,柔性压力传感器作为柔性电子设备的重要组成部分,其性能的优劣直接影响到设备的整体性能。
因此,对柔性压力传感器的研究显得尤为重要。
近年来,电容式柔性压力传感器因其高灵敏度、快速响应和良好的稳定性等特点,受到了广泛关注。
本研究主要探讨了一种基于PDMS(聚二甲基硅氧烷)薄膜介电层的电容式柔性压力传感器。
二、PDMS薄膜介电层电容式柔性压力传感器PDMS薄膜因其优良的绝缘性、柔韧性和化学稳定性,被广泛应用于电子设备的介电层。
我们通过将PDMS薄膜作为介电层,构建了一种电容式柔性压力传感器。
该传感器利用压力变化引起的介电层电容变化,实现压力的检测。
三、传感器的工作原理该传感器的工作原理基于电容器的原理。
当PDMS薄膜受到压力时,其形状和厚度会发生变化,从而导致介电层的电容发生变化。
这种变化可以被电路检测并转化为电信号,从而实现压力的测量。
此外,由于PDMS的柔韧性,该传感器可以适应各种形状的表面,具有良好的弯曲和拉伸性能。
四、实验研究我们通过实验研究了该传感器的性能。
首先,我们制备了不同厚度的PDMS薄膜作为介电层,并测试了其电容随压力变化的特性。
实验结果表明,随着压力的增大,电容值呈现出明显的增大趋势。
此外,我们还研究了该传感器的灵敏度、响应时间和稳定性等性能指标。
实验结果表明,该传感器具有高灵敏度、快速响应和良好的稳定性等特点。
五、结论本研究表明,基于PDMS薄膜介电层的电容式柔性压力传感器具有良好的性能。
该传感器具有高灵敏度、快速响应和良好的稳定性等特点,可以应用于各种需要检测压力的场景。
此外,由于PDMS的柔韧性,该传感器可以适应各种形状的表面,具有良好的弯曲和拉伸性能。
因此,该传感器在柔性电子设备、机器人、医疗健康等领域具有广泛的应用前景。
六、展望尽管基于PDMS薄膜介电层的电容式柔性压力传感器已经取得了显著的成果,但仍有许多问题需要进一步研究。
Panduit 压力敏感热传输可打印多乙烯薄膜说明书
Thermal Transfer Printable Polyolefin FilmThis specification is intended to outline the physical and chemical properties of P ANDUIT’s pressure sensitive thermal transfer printable polyolefin material and include the following part numbers and printable material identifiers:Part Number Prefixes Printable Material SuffixesTCT-*PO FJ6TTC*POWH-C FJC-BKFJCFJTPRODUCT SPECIFICATIONS:Description: Material is RoHS compliant (European Union directive 2002/95/EC).Material is a top coated polyolefin film with a pressure sensitiveadhesive.Print Methods: This material is recommended for thermal transfer printing.Adhesive: Acrylic based, pressure sensitive permanent adhesive.Standard Colors: White opaque matteThickness: 4.0 +/- 0.6 mils (substrate and adhesive)Service Temperature Range: -40°F to 180°F (-40°C to 82°C)Minimum Application Temperature: -10°F (-23°C)Storage Conditions: Store at 70°F (21°C) and 50% Relative Humidity.For cassette products do not exceed 95°F.PROPERTIES: PERFORMANCE:Peel Adhesion to Stainless Steel: Minimum 30 oz/in width (PSTC-101, 15 min. dwell)Shear Adhesion: Minimum 2 hours (PSTC-107, Procedure A)Tensile Strength: MD: minimum 7500 PSI (PSTC-131)TD: minimum 13000 PSI (PSTC-131)UV Resistance: *3000 hours no change observed (ASTM G154)Elevated Temperature Exposure: After 8 hours at 150°F (65.5°C) there was no deterioration of the substrate*3000 hours equates to 5 years of assimilated outdoor UV exposure.Page 1 of 2 2005 PANDUIT CorpTDS: GMPO4CHEMICAL/SOLVENT RESISTANCE:The testing was conducted at room temperature. Samples were thermal transfer printed with Panduit RMR*BL/RMER*BLribbon on the Panduit TDP43MY/TDP43ME printer. Separate sets were conditioned for 24 hours before being immersed in the following solvents for a period of 1 hour and 24 hours. After the samples were removed for the immersed solvents, they wererubbed 10 times with a lint free gauze. Visual observations were noted for any smear or loss of legibility.1 Hour ImmersionChemical/Solvent Visual ObservationJet Fuel No changeGasoline Loss of print legibilityMethyl Ethyl Ketone Loss of print density1:1:1 TCE No changeTrichloroethylene No change409 Cleaner Loss of print legibilityAlpha Flux 200L No change24 Hours ImmersionChemical/Solvent Visual ObservationIsopropyl Alcohol No changeWater 150F No changeSalt Water No changeSAE 30 Motor Oil No changeHydraulic Fluid No changeSkydrol Loss of print legibilityMethanol/Water No changeEthylene Glycol Loss of print legibilityASTM #3 Oil Loss of print legibilityAPPROVALS:UL Recognized: UL 969 File Number: MH14979LIMITED WARRANTYAll P ANDUIT Identification Solution Products (except for Software programs) are warranted to be free from defects in material and workmanshipat the time of sale but our obligation under this warranty is limited to replacement of the product proved to be defective within 6 months from thedate of sale, or in the case of printers, within 90 days from the date of sale. This warranty is void if the products or printers are modified, alteredor misused in any way. Use of P ANDUIT printers with any product other than the specified P ANDUIT products for which the printer was designed constitutes misuse. Before using, the user shall determine the suitability of the product for its intended use and user assumes all risk andliability whatsoever in connection therewith. The foregoing may not be altered except by an agreement signed by officers or seller and manufacturer.NEITHER P ANDUIT OR SELLER SHALL BE LIABLE FOR ANY OTHER INJURY, LOSS OR DAMAGE, WHETHER DIRECT OR CONSEQUENTIAL, ARISING OUT OF THE USE OF, OR THE INABILITY TO USE THE PRODUCT OR THE PRINTER.THIS WARRANTY IS MADE IN LIEU OF AND EXCLUDES ALL OTHER WARRANTIES, EXPRESS OR IMPLIED. THE IMPLIEDWARRANTIES OF MERCHANTABILITY AND FITNESS OF PARTICULAR USE ARE SPECIFICALLY EXCLUDED.The information contained in this literature is based on our experience to date and is believed to be reliable. It is intended as a guide oruse by persons having technical skill at their own discretion and risk. We do not guarantee favorable results or assume any liability inconnection with its use. Dimensions contained herein are for reference purposes only. This publication is not to be taken as a license tooperate under, or a recommendation to infringe any existing patents. This supersedes and voids all previous literature, etc.Page 2 of 2 2005 PANDUIT CorpTDS: GMPO4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DF9-16@2kg
DF9-16 系列规格书
REV2.1 Jan-19
2/4
DF9-16@5kg DF9-16@10kg DF9-16@20kg
苏州能斯达电子科技有限公司
DF9-16 系列规格书
尺寸图 ✓ 已通过 ROHS 认证
标识 长度 敏感区外径 敏感区内径 Pin 脚距离 公差
尺寸(mm) 16.0 10.0 7.5 2.54 0.2
尺寸表
DF9-16 系列规格书
REV2.1 Jan-19
1/4
苏州能斯达电子科技有限公司
性能指标
型号 量程 厚度 外观尺寸 响应点 重复性 一致性 迟滞 耐久性 初始电阻 响应时间 恢复时间 测试电压 工作温度 电磁干扰EMI 静电释放ESD
参考电路二: 在分压测量的基础上,增加运算放大器电路, 可提高电压测量分辨率;增大驱动电流。 根据实际情况选择电路参数; 无压力时,传感器阻值在 10MΩ以上,等
效于断路。
注意事项
传感器使用时尽量使所受负载均匀,避免尖锐物体直接接触传感器; 超量程使用会降低传感器性能甚至破坏传感器; 力敏特性曲线仅供参考; 传感器端子为铜镀锡材质,可根据需求自行焊接引线。需注意,焊接温度不宜太高,建议不超过 300℃, 接触时间不超过 1 秒,以免高温使薄膜衬底融化变形。
苏州能斯达电子科技有限公司
柔性薄膜压力传感器 DF9-16 系列
产品特点
产品描述
超薄,厚度小于 0.3mm 响应速度快 寿命长,通过 100 万次以
上按压测试 检测电路简单,易于集成
应用 可定制传感器外形 可定制传感器量程参数
尺寸规格
DF9-16 系列柔性薄膜压力传感器是苏州能斯达电子拥有自 主知识产权的柔性压力传感技术在柔韧轻薄材料上印刷附着力强、 耐弯折、灵敏度高的柔性纳米功能材料,使其实现对压力的高灵 敏度检测。
DF9-16 系列规格书
REV2.1 Jan-19
4/4
REV2.1 Jan-19
3/4
参考电路
苏州能斯达电子科技有限公司
参考电路一: 采用分压方式测量。将压力变化在传感器上产 生的电阻值的变化,转换为电压的变化,Vout 为输出电压,可接到后端电路。 根据实际情况选择 R1,通常可取 47kΩ
~1MΩ; 无压力时,传感器阻值在 10MΩ以上,等
效于断路。
DF9-16@500g 500g
20g
DF9-16@2kg DF9-16@5kg DF9-16@10kg
2kg
5kg
10kg
< 0.3mm
见尺寸表Leabharlann 20g150g150g
<±9.7%(60%负载)
±10%(同一型号批次)
+10% (RF+ - RF-)/RF+
>100万次
>10MΩ(无负载)
< 1ms
< 15ms
典型值 DC 3.3V
-20℃ - 60℃
不产生
不敏感
DF9-16@20kg 20kg
200g
力敏特性
以下为DF9-16系列各型号柔性薄膜压力传感器的压力-电阻值曲线图。左侧图表显示了全部电 阻范围内的压力-电阻值关系;右侧图表为左侧图标的局部细节展示,显示了电阻值在30kΩ以下的 压力-电阻关系。 注意:
薄膜压力传感器是一种电阻式传感器,输出电阻随着施加在 传感器表面压力的增大而减小,通过特定的压力-电阻关系,可以 测量出压力大小。适用于柔性面的压力测量场景,可广泛应用于 智能家居、消费电子、汽车电子、医疗设备、工业控制、智能机 器人等领域。
DF9-16 系列目前有 500g、2kg、5kg、10kg、20kg 等不同 量程型号产品。