几种微型电机驱动电路分析
微型直流电机电压下降电流突然增大的原因
![微型直流电机电压下降电流突然增大的原因](https://img.taocdn.com/s3/m/10605c5a9a6648d7c1c708a1284ac850ad0204bf.png)
微型直流电机电压下降电流突然增大的原因微型直流电机是一种常见的电动机,广泛应用于各种电子设备中。
在使用微型直流电机时,有时会出现电压下降的情况,而伴随着电压下降,电流却突然增大。
那么,造成这种现象的原因是什么呢?我们需要了解微型直流电机的工作原理。
微型直流电机由电机本体和电动机驱动电路两部分组成。
电机本体包含定子和转子,定子上有线圈,转子上有永磁体。
当电流通过定子线圈时,会产生一个磁场,该磁场与转子上的永磁体相互作用,从而使转子开始旋转。
在正常情况下,微型直流电机的电压和电流应该是稳定的,即电压保持恒定,电流也不发生明显的变化。
但是,当电压下降时,电机的工作状态就会发生变化。
造成微型直流电机电压下降的原因有很多,以下是几种常见的原因:1. 电源电压不稳定:如果供电电压不稳定,波动较大,就会导致微型直流电机的电压下降。
这可能是由于电源本身的问题,或者是由于其他设备在同一电源线上造成的电压波动。
2. 电源线路过长或过细:当电机与电源之间的线路过长或过细时,会导致线路电阻增加,从而使电压下降。
特别是对于一些需要较大电流的应用,如果线路过长或过细,就会造成较大的电流损耗,引起电压下降。
3. 电机负载过大:如果微型直流电机的负载过大,即需要承担较大的转矩,就会导致电机的电压下降。
这可能是由于负载的机械阻力较大,或者是负载的转动惯量较大,使电机需要输出更大的功率。
当微型直流电机的电压下降时,伴随着电流的突然增大。
这是由于电机的特性造成的。
微型直流电机的电流与负载的转矩有关。
当电机的负载增加时,即需要输出更大的转矩时,电机的电流会相应增大。
而当电压下降时,电机需要输出更大的功率来维持其正常运转,因此电流也会随之增大。
微型直流电机的电流还与电机的内阻有关。
当电机的电压下降时,电机的内阻也会随之增大,从而导致电流增大。
造成微型直流电机电压下降电流突然增大的原因主要有供电电压不稳定、电源线路过长或过细以及电机负载过大等。
直流无刷风扇电路
![直流无刷风扇电路](https://img.taocdn.com/s3/m/c35ac77cfc4ffe473368ab90.png)
直流无刷风扇电路Last revision on 21 December 2020直流无刷风扇电路微型直流电机在家用电器中应用很广,尤其在计算机中广泛采用直流电机进行排风降温,这种新型的直流风扇采用无刷结构,克服了传统换向器式(有刷)电机易磨损、噪音大、寿命短等缺点。
据实物绘制的几种风扇电路,如附图所示。
其中图1为电源风扇电路;图2为显卡风扇电路;图3为CPU风扇电路。
图1中L1、L2为风扇无刷电动机的电枢绕组。
IC为霍尔器件,其{1}脚为电源正端;{2}脚为电源负端;{3}脚为输出端;当其{3}脚输出高电平时,三极管TR1导通,L1被接通(同时TR1c极呈低电平,TR2截止);当IC{3}脚输出低电平时,TR1截止,其c极呈高电平,TR2导通,L2被接通。
如此循环不已,L1、L2轮流通电形成旋转磁场而使无刷电机旋转,带动风扇工作。
图2、图3电路的工作原理与上述相同。
由于CPU等工作温度高,风扇工作环境温度高,最常见的故障现象为润滑油干涸,出现很大的噪音,也影响风扇工作。
这可揭开风扇有标签的一面,加几滴润滑油即可;另一种故障现象为晶体管损坏,可揭开标签,去掉内卡圈,拆开后更换相同的晶体管即可。
电脑及电子设备冷却风机用的大多是直流无刷电机,现解剖一个通过实物讲一下工作原理。
下面是解剖照片。
以上是实物解剖。
根据实物测绘电路原理图如下:直流无刷电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转子极对数(P)影响:N=120f / P。
在转子极对数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。
直流无刷电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子的转速反馈至控制中心反复校正,以期达到接近直流电机特性的方式。
也就是说直流无刷电机能够在额定负载范围内当负载变化时仍可以控制电机转子维持一定的转速。
直流无刷电机为了能转动,必须使定子线圈的磁场和转子永久磁体的磁场之间始终存在一定的角度。
常用电动车控制器电路及原理大全
![常用电动车控制器电路及原理大全](https://img.taocdn.com/s3/m/7769269ff021dd36a32d7375a417866fb84ac03f.png)
常用电动车控制器电路及原理大全目前流行的电动自行车、电动摩托车大都使用直流电机,对直流电机调速的操纵器有很多种类。
电动车操纵器核心是脉宽调制(PWM)器,而一款完善的操纵器,还应具有电瓶欠压保护、电机过流保护、刹车断电、电量显示等功能。
电动车操纵器以功率大小可分为大功率、中功率、小功率三类。
电动自行车使用小功率的,货运三轮车与电摩托要使用中功率与大功率的。
从配合电机分,可分为有刷、无刷两大类。
关于无刷操纵器,受目前的技术与成本制约,损坏率较高。
笔者认为,无刷操纵器维修应以生产厂商为主。
而应用较多的有刷操纵器,是完全能够用同类操纵器进行直接代换或者维修的。
本文分别介绍国内部分具有代表性的电动自行车操纵器整机电路,并指出与其他产品的不一致之处及其特点。
所列电路均是根据实物进行测绘所得,图中元件号为笔者所标。
通过介绍具体实例,达到举一反三的目的。
操纵器电路原理图见图6所示,该操纵器的特点是刹车时三管齐下,具体工作原理如下:刹车电路要紧由J、Q3、Q6等构成。
继电器常开触点串联在电机的供电电路中,+24V 通过R29、D8为Q3提供基极电流,Q3导通,J得电吸合,常开触点闭合,电机得电。
1)当刹车时,左、右刹车开关闭合,+15V通过R25、R21为Q6提供基极电流,Q6导通,集电极电位降低,D4导通,使D8截止,Q3失去基极电流而截止,J失电,常开触点断开,电机失电停止转动。
2)在Q6导通,集电极电位降低时,D5也导通,降低了U1的⑦脚电位。
该脚低电平关断PWM输出。
3)在Q6导通,集电极电位降低时,D6也导通,不管调速转把在低速或者高速位置,均将霍尔调速转把转速信号对地短路而降低送往U1⑾脚的信号电压。
欠压保护电路由欠压检测U2B与单端触发器U3构成。
其输出经Q4倒相送U1的⑦脚,关断U1的输出。
转把电压检测U2C的输出送单端触发器U3强制复位端④脚进行调速工作。
(4)北京某牌带防飞车功能有刷操纵器电路原理图见图7。
微电机控制电路
![微电机控制电路](https://img.taocdn.com/s3/m/a89d0b6869eae009581becc4.png)
课题三 微电机控制电路微电机控制电路使用1块CMOS集成电路、2只晶体管、2只电阻和1个双刀三掷开关,电路原理如图3-1所示。
通过拨动转换开关K,它可以对直流电机实现正转、停止和反转的控制。
该电路可以广泛用于电动玩具(如电码汽车)或日常用具(如电动窗帘)等,若配上遥控发射和接受电路,还可以实现对玩具和窗帘等的遥控。
一、工作原理与非门G1A、G1B的输出端(分别为集成电路6脚和9脚)分别与两个晶体管的集电极相连接,作为电路的输出端接接至微型电机的两个输入端。
与非门G1A的输入端(4脚)与G1B的输出相连,G1B的输入端(11脚)与G1A的输出相连。
两个晶体管的基极也分别通过限流电阻加至对方与非门的输出端,从而构成一双稳态电路。
与非门G1A、G1B的另一个输入端(5脚和10脚)与开关K的两定触点A、B相连,作为控制信号输入端。
由图2.18中的开关K的连接方式可知,当拨动开关K时,A、B两端的逻辑电平分别为01、00、10三种状态,分别对应电机的正转、停止和反转。
下面就按这3种状态分析电路的工作过程:图3-1中开关K的位置使A点为低电平,B点为高电平。
因此与非门G1A 输出高电平U O1=U OH≈V DD,这时与非门G1B的两个输入端均为高电平,所以其输出U O2=U OL≈0V。
由于选用的CMOS与非门的驱动级是漏极开路的CMOS管,所以与非门具有较大灌电流而不能提供拉电流,故必须增加晶体管VT1、VT2来弥补G1A、G1B无拉电流的不足。
因为这时U O1≈V DD通过R2加至晶体管VT2的基极使其截止,U O2≈0V,加至晶体管VT1的基极使其导通,VT1的导通电流经过导通的与非门G1B从左向右流过电机M,使电机产生正向转动。
当开关K往下拨一挡时,A、B两点的电位均为低电平,与非门G1A、G1B均截止而输出高电平,晶体管VT1、VT2的基极由于都加上高电平也截止,电机两端均为高电平,即加至电机两端的电压为0V,所以电机停止转动。
基于STM32的微型步进电机驱动控制器设计
![基于STM32的微型步进电机驱动控制器设计](https://img.taocdn.com/s3/m/8e74edca5022aaea998f0fdf.png)
3.2 控制器控制策略
STM32软件负责该模块的主控制器,首先让启动模式处于非启动状态(DISABLE),外部中断也处于关闭状态。一旦启动模式被打开,即点亮LED;其次,进行速度设置、细分系数设置以及旋转角度设置。睡眠模式下LED缓慢闪烁。具体该驱动控制器软件设计流程图。
4 结论
通过系统对软硬件进行调试,该控制器实现了对步进电机速度、细分系数、任意角度的设置,并达到了预期设定的目标。此控制器可以应用在相对比较精细的项目控制中,加快项目研发周期。该模块的主要缺陷就是输出驱动电流不够大,无法应用在扭力比较大的场合中,因此,通过上述对A4988模块的分析,可以再对A4988芯片进行改进,更换导通电阻小、驱动电流大的MOS管,实现电机驱动器的设计。
1.2 A4988的工作原理
为了更加清晰地分析A4988的工作原理,首先深入分析A4988的内部结构。为A4988的内部结构图和典型的外部电路连接图。
由图1所示,A4988有一个编译器(Translator),主要负责微控制器和驱动电路的信息交互。通过该编译器可产生DA信号,配合比较器辅助PWM锁存器修复衰减信号,并且该编译器能够产生逻辑电平控制逻辑控制器,逻辑控制器再配合电流调节器和N型MOS管驱动电压共同驱动两路全桥电路。电路中所标电容必须严格与技术文档中所给的相同,Rosc主要更改并修复衰减模式,接VDD自动修复衰减,接GND电流衰减设置为增减电流同时修复。SENSE1和SENSE2检测驱动输出电压,实则是实时检测输出电流,供电流调节器调节输出电流信号,形成闭环控制。因此SENSE1和SENSE2管脚连接的电阻非常关键,一般这个电阻的阻值在零点几欧姆左右。
(1)串口通信模块[6]:主要负责上位机和下位机通信。上位机通过串口通信模块发送相应的功能指令给下位机,下位机执行上位机的指令并控制A4988驱动器模块驱动步进电机。。
直流无刷风扇电路
![直流无刷风扇电路](https://img.taocdn.com/s3/m/5389247414791711cc7917f8.png)
直流无刷风扇电路 Revised as of 23 November 2020直流无刷风扇电路微型直流电机在家用电器中应用很广,尤其在计算机中广泛采用直流电机进行排风降温,这种新型的直流风扇采用无刷结构,克服了传统换向器式(有刷)电机易磨损、噪音大、寿命短等缺点。
据实物绘制的几种风扇电路,如附图所示。
其中图1为电源风扇电路;图2为显卡风扇电路;图3为CPU风扇电路。
图1中L1、L2为风扇无刷电动机的电枢绕组。
IC为霍尔器件,其{1}脚为电源正端;{2}脚为电源负端;{3}脚为输出端;当其{3}脚输出高电平时,三极管TR1导通,L1被接通(同时TR1c极呈低电平,TR2截止);当IC{3}脚输出低电平时,TR1截止,其c极呈高电平,TR2导通,L2被接通。
如此循环不已,L1、L2轮流通电形成旋转磁场而使无刷电机旋转,带动风扇工作。
图2、图3电路的工作原理与上述相同。
由于CPU等工作温度高,风扇工作环境温度高,最常见的故障现象为润滑油干涸,出现很大的噪音,也影响风扇工作。
这可揭开风扇有标签的一面,加几滴润滑油即可;另一种故障现象为晶体管损坏,可揭开标签,去掉内卡圈,拆开后更换相同的晶体管即可。
电脑及电子设备冷却风机用的大多是直流无刷电机,现解剖一个通过实物讲一下工作原理。
下面是解剖照片。
以上是实物解剖。
根据实物测绘电路原理图如下:直流无刷电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转子极对数(P)影响:N=120f / P。
在转子极对数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。
直流无刷电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子的转速反馈至控制中心反复校正,以期达到接近直流电机特性的方式。
也就是说直流无刷电机能够在额定负载范围内当负载变化时仍可以控制电机转子维持一定的转速。
直流无刷电机为了能转动,必须使定子线圈的磁场和转子永久磁体的磁场之间始终存在一定的角度。
交流伺服电机驱动电路
![交流伺服电机驱动电路](https://img.taocdn.com/s3/m/91f3545b4531b90d6c85ec3a87c24028905f8565.png)
交流伺服电机驱动电路在许多自动化系统和机械设备中,使用电动马达进行精确的位置控制是至关重要的。
交流伺服电机作为一种高性能电机,通常用于需要高精度位置控制和速度控制的应用中。
为了有效地驱动交流伺服电机,需使用专门设计的电路。
本文将介绍交流伺服电机驱动电路的基本原理和设计要点。
1. 交流伺服电机简介交流伺服电机是一种能够在宽范围内实现高精度位置和速度控制的电机。
它通常由电动机本体、编码器、控制器和驱动电路组成。
与普通交流电动机相比,交流伺服电机通常配备有更高分辨率的编码器,以便实现更精确的位置反馈。
2. 交流伺服电机驱动电路组成交流伺服电机驱动电路一般由以下几个主要组成部分构成:2.1 三相功率放大器交流伺服电机通常为三相电机,因此需要使用三相功率放大器来驱动。
功率放大器的作用是将控制信号转换为电流,通过电流驱动电机转子旋转。
2.2 位置反馈回路位置反馈回路通过编码器等装置获取电机当前位置信息,并将其反馈给控制器。
控制器可以根据位置反馈信息来调节电机的转速和位置,实现闭环控制。
2.3 控制器控制器是交流伺服系统的大脑,负责接收位置指令、位置反馈信息等,并根据反馈信息实时调节电机的输出信号,以实现精确的位置和速度控制。
2.4 电源模块电源模块为整个系统提供稳定的电源供应,并通过节能模式等功能来优化系统性能。
3. 交流伺服电机驱动电路设计要点3.1 电源系统设计在设计交流伺服电机驱动电路时,首先要考虑的是电源系统的设计。
电源系统需要提供稳定的电源输出,并能够应对电机启动、制动等瞬时大电流需求。
3.2 电流限制和过流保护在电机运行过程中可能会出现过载或短路等情况,因此需要设计电流限制和过流保护电路,以防止电机受损。
3.3 位置反馈系统设计位置反馈系统对于实现精确的位置控制至关重要。
设计时需选择高分辨率的编码器,并确保编码器与控制器之间的通信稳定可靠。
3.4 控制器设计控制器是整个系统的核心,需要具备强大的计算和响应能力。
28hd微型步进电机使用方法
![28hd微型步进电机使用方法](https://img.taocdn.com/s3/m/805aca41df80d4d8d15abe23482fb4daa58d1d1c.png)
28hd微型步进电机使用方法一、概述在现代电子设备和机械设备中,步进电机广泛应用于各类控制系统中。
28hd微型步进电机是一种小型、高效、精确度较高的步进电机,本文将详细介绍28hd微型步进电机的使用方法,包括其结构、工作原理、电路连接以及使用注意事项等方面。
二、结构与工作原理28hd微型步进电机采用了分步电机技术,其主要由电机本体、转子、定子和驱动电路组成。
它的工作原理基于每次电流改变一小步,从而使得转子转动一定角度的原理。
通过电流变化引起转子磁场变化,从而控制转子的位置。
三、电路连接为了正确驱动28hd微型步进电机,我们需要正确地连接电路。
具体连接方式如下所示:1.将步进电机的四个线圈(通常标记为A+、A-、B+、B-)分别与驱动电路的相应输出端口相连。
2.在连接电路之前,确保驱动电路符合28h d微型步进电机的电气参数要求,以避免过流或过热等问题。
四、使用方法使用28hd微型步进电机的方法如下:1.首先,确定步进电机的转动方向。
根据所需的转动方向连接电路,一般正转和反转可以通过调换两个线圈的连接顺序来实现。
2.然后,根据具体需要,选择合适的驱动电压和电流。
这个取决于实际应用中步进电机所需的功率和速度。
3.接下来,编写控制程序或使用控制器来控制步进电机的运动。
根据实际需求,可以通过改变电流频率和顺序来控制步进电机的精度和速度。
4.最后,根据实际情况进行优化调试,以确保步进电机的运动效果符合预期。
五、使用注意事项在使用28h d微型步进电机时,需要注意以下事项:1.驱动电压和电流不要超过步进电机的额定参数,以避免过载损坏电机。
2.在连接电路时,确保正常接地和正确连接,防止短路或电路故障。
3.在操作步进电机时,避免频繁启动和停止,以减少机械应力和电机损坏的风险。
4.定期检查电机的运行状态,及时清洁电机表面的灰尘和杂物,以维护电机的正常工作。
5.如果需要更高的精度和速度,可以考虑使用专业驱动器或控制器,并根据厂家提供的说明进行正确操作。
电动窗帘电路图大全(八款交流直流自动电动窗帘电路原理图详解)
![电动窗帘电路图大全(八款交流直流自动电动窗帘电路原理图详解)](https://img.taocdn.com/s3/m/05d7ad826aec0975f46527d3240c844769eaa0fd.png)
电动窗帘电路图大全(八款交流直流自动电动窗帘电路原理图详解)一、遥控交流电机正反转电路该装置发射/接收部分改用T966/T988多路无线发收模块。
发射部分采用T966两键式发射器成品,接收部分工作原理见图。
接通电源,IC2被复位,Q1、Q2输出低电平,T1、T2截止,J1、J2不吸合,电机M不工作,窗帘停止不动。
按动遥控发射键C,此时ICO的C端输出高电平,D1截止,IO端输出的高电平经IC1-1、IC1-2整形送入IC2-1的CPI端,使Q1翻转输出高电平,T1导通,J1吸合,电机正转,窗帘合上。
若再次按动发射键C,则Q1再次翻转输出低电平,J1释放,窗帘停止运动。
若在电机正转时,窗帘合上过程中,按动发射键D,同样D2截止,IO端输出的高电平经IC1-3、IC1-4整形送入IC2-2的CP2端,并通过D3使IC2-1的R1端呈现高电平,IC2-1被强制复位,J1释放。
同时Q2翻转输出高电平,T2导通,J2吸合,电机反转,窗帘打开。
同样,再次按动D键,Q2再次翻转输出低电平,窗帘停止运动。
如此通过两键可任意实现窗帘的打开、合上、停止,非常方便。
二、遥控直流电机正反转电路工作原理电源变压器B、桥式整流堆和电容C1组成12V 直流电源。
继电器J1、J2 和行程开关K1、K2组成互锁电源极性切换电路。
当按下按钮QA时,220V 交流电接通,指示灯L点亮,由于C2 的存在,J1两端的电压不能突变,故J2 优先吸合,J2-1闭合,电路自保,J2-2 断开,电路5 锁,J2-3、J2-4 闭合,电机得电正转,窗帘开启。
窗帘完全开启后,行程开关K2 被拉线拉动而断开,J2 失电释放,J2-1断开,整个电路断电停i止工作。
窗帘完全开启后,再次按下QA 时,由于K2 断开,J2 不能吸合,J1吸合,J1-1闭合,电路自保,指示灯L点亮,J1一2断开,电路互锁,J1-3、J1-4 闭合,电机得电反转,窗帘闭合。
窗帘完全闭合后,行程开关K1被拉线拉动而断开,J1失电释放,J1-1断开,整个电路断电停止工作。
单片机驱动h桥电路
![单片机驱动h桥电路](https://img.taocdn.com/s3/m/171a5dbf9f3143323968011ca300a6c30c22f1e4.png)
单片机驱动h桥电路单片机驱动H桥电路是一种常见的电路配置,用于控制电机的转向和速度。
H桥电路由四个开关组成,可以使电流在电机的两个终端之间改变方向。
单片机则是一种微型计算机,可以通过编程来控制电路的开关状态,从而实现电机的转向和速度控制。
在H桥电路中,有两个开关用于控制电流的方向,另外两个开关用于控制电流的大小。
当我们需要电机正转时,我们可以打开两个控制正转的开关,关闭两个控制反转的开关。
反之,如果我们需要电机反转,我们可以打开两个控制反转的开关,关闭两个控制正转的开关。
通过控制开关的状态,我们可以实现电机的正转、反转、停止和调速等功能。
单片机驱动H桥电路的原理很简单,我们只需要通过单片机控制开关的状态即可。
当我们需要电机正转时,我们可以将单片机的输出引脚连接到控制正转的开关,通过输出高电平来打开开关;当我们需要电机反转时,我们可以将单片机的输出引脚连接到控制反转的开关,通过输出低电平来打开开关。
通过不同的控制方式,我们可以实现电机的不同运动状态。
除了控制电机的转向,单片机还可以控制电机的速度。
我们可以通过改变单片机输出引脚的电平状态来改变开关的开闭频率,从而改变电流的大小。
当我们需要电机加速时,我们可以增加开关的开闭频率,从而增大电流的大小;当我们需要电机减速时,我们可以减小开关的开闭频率,从而减小电流的大小。
通过不同的开闭频率,我们可以实现电机的不同转速。
单片机驱动H桥电路可以实现电机的转向和速度控制。
通过编程控制单片机的输出引脚状态,我们可以实现电机的正转、反转、停止和调速等功能。
这种电路配置简单易用,广泛应用于各种电机驱动系统中。
希望本文对读者了解单片机驱动H桥电路有所帮助。
mems 静电驱动微马达
![mems 静电驱动微马达](https://img.taocdn.com/s3/m/78dc349f68dc5022aaea998fcc22bcd126ff4204.png)
mems 静电驱动微马达
静电驱动微马达(EDMA)是一种用于控制微型机械部件(如微型电机、微压发
生器和微力夹具等)的微型电机技术,其使用静电场技术通过带有相应分压的集电极上的负静电来驱动动作结构的移动。
EDMA优势在于其效率高、功耗低,
它可以在一定的尺寸范围内提供定位和振动控制,并且可以通过便携性低和低成本来减少整体系统尺寸,从而增强应用性能和可靠性。
EDMA技术可以将微小的静力转换为有效的动力,从而用于驱动大型机械系统的运动控制,比如微型电机、旋转平台、活塞系统等。
此外,它还可以用于有效控制高精度技术如弹性素技术(NIST)的定位、以及复杂的机械应用,如微电路制造、机器视觉和辐射散装技术等。
包装机电机驱动电路
![包装机电机驱动电路](https://img.taocdn.com/s3/m/250bb79d27fff705cc1755270722192e45365824.png)
包装机电机驱动电路
包装机电机的驱动电路通常包括电机启动控制电路和电机驱动电路
两部分。
电机启动控制电路的主要目的是控制电机的启动方式,以确保电机在启动过程中能够平稳、安全地开始运转。
一种常见的启动方式是直接启动,也就是将电机的定子绕组通过电源开关或接触器直接接入电源,在额定电压下进行启动。
这种启动方式简单直接,但启动电流较大,因此需要根据电机的功率和供电变压器的功率来确定是否允许采用
直接启动。
电机驱动电路的主要作用是为电机提供动力,以驱动电机的旋转。
这部分电路通常包括电机驱动芯片、电源模块、驱动继电器等组件。
电机驱动芯片负责将控制信号转换为电机能够理解的驱动信号,电源模块为电机提供稳定的电源,驱动继电器则负责在需要时接通或断开电机的电源。
微型直流电机驱动原理及设计PPT演示课件
![微型直流电机驱动原理及设计PPT演示课件](https://img.taocdn.com/s3/m/2144c3b9162ded630b1c59eef8c75fbfc77d9487.png)
H桥驱动电路原理
要使电机运转,必须使对角线上的一对三极管导通。例如, 如下图所示,当Q1管和Q4管导通时,电流就从电源正极经 Q1从左至右穿过电机,然后再经Q4回到电源负极。按图中电 流箭头所示,该流向的电流将驱动电机顺时针转动。当三极 管Q1和Q4导通时,电流将从左至右流过电机,从而驱动电机 按特定方向转动(电机周围的箭头指示为顺时针方向)。
直流电动机应用
• 录音机、录像机、电动剃须刀、电动玩具、电动 自行车等
• 控制内容:直流电动机启动、暂停或转速、旋转 方向等
• 驱动电路构成:直流电源、开关、调速装置等 • 直流电机工作原理不讲,自己看书
电机的种类
电机是一种将电能转换成机械能的装置,在各个领域都有 广泛的应用。电机有多种不同的类型,常见电机分类如下:
直流电动机的调速方法
• 1、变电枢电压调速。这种方法具有启动力矩大,阻尼效 果好,响应速度快,线性度好等优点,应用较多。
• 2、变磁通调速。实际上是改变励磁磁场的大小,对于励 磁电机来说,改变励磁电压可以进行变磁通调速。这种调 速方式调速范围小,而且会使电机的机械特性变软,一般 只作为变电枢电压调速的辅助方式。
H桥驱动芯片-L298
L298是著名的SGS公司的产品,内部包含4通道逻辑驱 动电路,具有两套H桥电路。L298内置两个H桥,每个桥 提供1A的额定工作电流,和最大3A的峰值电流。它能驱动 的马达不超过可乐罐大小。
伺服电机
电动机
控制电机
步进电机 力矩电机 无刷直流电机
mems微镜原理
![mems微镜原理](https://img.taocdn.com/s3/m/4fa8f74aa517866fb84ae45c3b3567ec102ddc94.png)
mems微镜原理一、引言mems微镜是一种基于微电子机械系统技术的微型光学元件,具有体积小、重量轻、功耗低等优点,被广泛应用于光学成像、光谱分析、生物医学等领域。
本文将介绍mems微镜的原理及其应用。
二、mems微镜的原理mems微镜的工作原理基于电磁力和机械运动。
其主要构成包括微型电机、反射镜和控制电路。
1. 微型电机mems微镜中的微型电机通常采用电磁式驱动方式。
当电流通过电磁线圈时,会产生磁场,而安装在磁场中的电磁铁芯会受到磁力的作用,从而产生力矩。
这个力矩会驱动微型电机旋转或摆动。
2. 反射镜反射镜是mems微镜的核心部件,通常采用金属或光学玻璃材料制成。
当微型电机驱动下,反射镜可以在不同的角度上进行旋转或摆动。
通过控制电路调节微型电机的电流,可以实现反射镜的精确定位和运动控制。
3. 控制电路mems微镜的控制电路主要用于控制微型电机的驱动和位置反馈。
通过传感器检测反射镜的位置信息,并通过控制电路反馈给微型电机,实现对反射镜位置的精确控制。
三、mems微镜的应用mems微镜在光学成像、光谱分析和生物医学等领域有着广泛的应用。
1. 光学成像mems微镜可以用于光学显微镜、光学投影仪等设备中。
通过调节反射镜的角度,可以改变光路,实现对样品的放大、聚焦和调焦等功能。
同时,由于mems微镜的体积小,可以集成到微型设备中,实现便携式成像。
2. 光谱分析mems微镜可以用于光谱仪等光学仪器中。
通过调节反射镜的角度,可以选择不同波长的光线,并将其聚焦到光谱仪的入口。
这样可以实现对样品的光谱分析和成分检测。
3. 生物医学mems微镜在生物医学领域有着广泛的应用。
例如,可以用于细胞观测和显微操作中。
通过调节反射镜的角度,可以对细胞进行高分辨率成像,并实现对细胞的定位和操作。
四、总结mems微镜是一种基于微电子机械系统技术的微型光学元件,其原理基于电磁力和机械运动。
通过微型电机驱动反射镜的旋转或摆动,实现对光路的控制和样品的成像。
电动机控制电路图全集
![电动机控制电路图全集](https://img.taocdn.com/s3/m/7b437547fe4733687e21aa60.png)
电动机控制电路图全集一.双速电动机用三个接触器的变速控制电路图二.三相电动机制动装置· [图文] 汽车热限制器的烙铁 Auto Heat Limiter for Soldering Iron · [图文] 简单的直流电机PWM调速电路 Simple DC motor PWM speed control · 步进电机和交流伺服电机性能比较· [图文] 直流电动机可逆电路--DC Motor Reversing Circuit· [图文] 直流电动机控制电路-DC Motor Control Circuit· [组图] 单极性步进电机控制器电路--Unipolar Stepper Motor Controller · [图文] 直流无刷电动机工作原理与控制方法· [图文] 电动机缺相保护器电路原理· [组图] 微型电机驱动电路原理分析及实验· [图文] 双向调速直流电机驱动电路设计方案· [组图] 直流电机无级调速电路的制作原理· [图文] 电动自行车控制器电路原理分析· [组图] 音频功率放大器· 起动机的工作原理· 自控电机起动方式原理分析· [图文] 起动电机电阻控制原理图· [图文] 串级型直流电源的结构电路图· [图文] 用晶体管做成的H电桥电路图· [图文] 实际的控制电路图· [图文] 设计的电动机控制电路图· [图文] 电动机正转逆转驱动电路图· [图文] 电动机正反转控制电路· [图文] 转轴转动状况检测电路· [图文] 压电泵驱动电路· [图文] 伺服电机转速控制电路· [图文] LM324的直流电动机调速器· [图文] 三相交流电焊机空载自停控制电路· [图文] 三相电动机制动装置· [图文] 交流电焊机的节电线路· [图文] 交流电动机的简易能耗制动· [图文] 电动机过热保护电路· [图文] 电动机断相自动保护装置· [图文] 双速电机控制电路图· [组图] 双速电机控制原理图· [图文] 自动夜光灯电路图· [图文] 与50kHz调频发射机配用的接收机电路图· [图文] 利用中断光束的脉冲发生器电路图· [图文] 可调光检测开关电路图· [图文] 精密光二极管比较器电路图· [图文] 精密光电二极管光强检测器电路图· [图文] 交流电源控制用光电池记忆开关电路图· [图文] 光线中断检测器电路图· [图文] 光通信系统电路图· [图文] 光束控制的通-断继电器电路图· [图文] 光施密特触发器电路图· [图文] 光亮度敏感器电路图· [图文] 光接收器电路图· [图文] 光隔离的固体功率继电器电路图· [图文] 光发射机电路图· [图文] 对数特性光敏感器电路图· [图文] 调频光发送器电路图· [图文] 4象限光导检测放大器电路图· [图文] 4位马达开关电路图· [图文] 两只单相电压互感器组成的V-V形接线图· [图文] 三只单相电压互感器组成星形接线图· [图文] 钻床主轴电动机和液压电动机的联锁控制电路图 · [图文] 自动循环控制电路· [图文] 直流电动机正反转控制电路图· [图文] 直流电动机使用变阻器起动控制电路图· [图文] 由三个接触器组成的正反转控制电路图· [图文] 用电流继电器控制机械扳手· [图文] 用电弧联锁继电器延长转换时间的正反控制 · [图文] 用倒顺开关的正反转控制· [图文] 用刀开关直接变换电动机星形三角形接线方式 · [图文] 用八档按钮操作的行车控制电路图· [图文] 用按钮点动控制电动机起停电路图· [图文] JZT电磁调速控制器电路图· [图文] 一种JZT电磁调速控制器· [图文] 一台电动机停止运行后另一台才能停止的控制 · [图文] 双速电动机自动加速控制电路图· [图文] 双速电动机用三个接触器的变速控制电路图 · [图文] 双速电动机的控制电路图· [图文] 双路保险起动自投控制电路图· [图文] 电动机手动正转控制电路图· [图文] 绕线式异步电动机转子串电阻起动电路图· [图文] 能发出开车信号的起停控制电路图· [图文] 另一种防止相间短路的正反转控制电路图· [图文] 两台电动机联锁控制原理图· [图文] 两台电动机联锁控制电路图· [图文] 利用转换开关预选的正反转起停控制· [图文] 利用转换开关改变运行方式· [图文] 可逆点动起动混合控制电路图· [图文] 可逆点动控制电路图· [图文] 具有自锁的正转控制电路图-原理图· [图文] 具有过载保护的正转控制电路图· [图文] 接触器联锁的电动机正反转控制· [图文] 既能点动又能长期工作的电动机控制电路· [图文] 防止相间短路的正反转控制电路图· [图文] 多台电动机同时起动控制电路图· [图文] 电动机自动快速再起动电路图· [图文] 电动机限位控制电路图-原理图· [图文] 电动机间歇运行控制电路图· [图文] 低速脉冲控制电路图· [图文] 单线远程正反转控制电路图· [图文] 单线远程起停控制电路图· [图文] 单按钮控制电动机起停电路图· [图文] 串激直流电动机刀开关可逆控制电路图· [图文] 采用转换开关的控制· [图文] 按直流原则控制直流电动机起动线路图· [图文] 按速度原则控制直流电动机起动原理图· [图文] 按时间原则控制直流电动机起动电路图· [图文] 按钮联锁正反转控制原理图· [图文] 按钮接触器复合联锁的电动机正反转控制电路图 · [图文] 建筑钟步进电机驱动电路· [图文] 双光源驱动电路· [图文] 智能型电动机节能控制电路· [图文] 直流能耗制动电路· [图文] 直流电机速度控制电路· [图文] 直流电动机的PWM方式斩波控制电路· [图文] 用LM1875驱动精密直流伺服电机电路· [图文] 异步电动机的轻载节电器· [图文] 星形接法的电动机断相保护电路· [图文] 小型单相交流电机调速电路· [图文] 零序电压电动机断相保护电路· [图文] 空气压缩机电动机保护电路· [图文] 精密直流电机速度控制电路· [图文] 节电式三相异步电动机断相保护电路· [组图] 柴油机的配气机构· [组图] 连杆曲轴机构· [组图] 20 V 956 TB 33 型柴油机油底壳结构图 · [图文] 20 V 956 TB 33 型柴油机汽缸盖结构图 · [图文] 汽缸套的结构· [图文] 20 V 956 TB 33 型柴油机的汽缸体结构图 · [图文] 节电式电机缺相保护电路· [图文] 电机转速控制电路· [图文] 汽车油箱液位侧量电路· [图文] 汽车发动机测速电路· [图文] 机动车信号灯故障自动监测电路· [图文] 机动车电路检测器· [图文] 电控燃油喷射器测试电路· [图文] 电动车速表电路· [图文] 齿轮疲劳微机测量电路· [图文] 车用转速表电路· [图文] 车速控制装置电路· [图文] 手电筒控制模型电动机电路· [图文] 皮带运输机失速保护电路· [图文] 多台电动机逐一星形三角形起动电路· [图文] 电动机自动再起动电路· [图文] 电动机自动切换起动电路· [图文] 电动机故障指示电路· [图文] 简单的水轮发电机制动电路· [图文] 物体振动位移检测电路· [图文] 五相步进电机驱动电路· [图文] 直流能耗制动电路· [图文] 直流电动机的速度控制电路· [图文] 压力测量电路· [图文] 微振动信号测量电路· [图文] 锁相伺服系统的一种失锁报警电路· [图文] 伺服回路用旋转编码器电路· [图文] 可控逆变器电路· [图文] 测量冲击和倾斜角的电路· [图文] 采用交流转速表传感器的电动机速度控制电路 · [图文] 采用霍尔器件作限位器的电路· [图文] 采用SSR控制单相感应电动机的正反转电路 · [图文] 采用MSM5816的PLL电动机控制电路· [图文] 采用M5172L的PLL电路· [图文] 采用BA802的PLL电动机控制电路· [图文] 步进电机驱动电路· [图文] 步进电动机的微机控制电路· [图文] 90度相位差基准电路· [图文] 90度相位差基准电路· [图文] 50A 150V PWM直流驱动电路· [图文] 电机速度光电控制电路· 电动车维修经验总结· [图文] 无刷电瓶车单片机控制器原理与检修· [图文] 电动自行车充电器的原理与检修· [组图] 电动车充电电路图· [图文] 电动车开关充电电源原理图· [图文] 电动车开关充电电源电路图· 电动自行车电气系统的组成和特点· [图文] 小口径高炮高精度伺服系统框图· [图文] 采样系统典型结构图· [图文] 炉温采样控制系统原理图· [图文] 熊猫牌PE-2617型音响遥控发射器电路原理图 · [图文] 上海牌无线遥控坦克模型接收电路原理图 · [图文] 上海牌无线遥控坦克模型发射电路原理图 · [图文] YSTS II型比例遥控调速器电路原理图· [图文] YD系列牙钻车调速器电路原理图· [图文] SR63彩灯控制器电路原理图· [图文] HD-1型中周侥线机控制电路原理图。
uln2003引脚图及功能_工作原理驱动应用电路
![uln2003引脚图及功能_工作原理驱动应用电路](https://img.taocdn.com/s3/m/7edfd10183d049649a665857.png)
uln2003有什么作用_引脚图及功能_工作原理及驱动应用电路一、uln2003有什么作用ULN2003是大电流驱动阵列,多用于单片机、智能仪表、PLC、数字量输出卡等控制电路中。
可直接驱动继电器等负载。
输入5VTTL电平,输出可达500mA/50V。
ULN2003是高耐压、大电流达林顿陈列,由七个硅NPN达林顿管组成。
该电路的特点如下: ULN2003的每一对达林顿都串联一个2.7K的基极电阻,在5V 的工作电压下它能与TTL和CMOS电路直接相连,可以直接处理原先需要标准逻辑缓冲器来处理的数据。
ULN2003 是高压大电流达林顿晶体管阵列系列产品,具有电流增益高、工作电压高、温度范围宽、带负载能力强等特点,适应于各类要求高速大功率驱动的系统。
三、uln2003工作原理驱动应用电路ULN2003是高耐压、大电流复合晶体管阵列,由七个硅NPN 复合晶体管组成,每一对达林顿都串联一个2.7K 的基极电阻,在5V 的工作电压下它能与TTL 和CMOS 电路直接相连,可以直接处理原先需要标准逻辑缓冲器来处理的数据。
LN2003也是一个7路反向器电路,即当输入端为高电平时ULN2003输出端为低电平,当输入端为低电平时ULN2003输出端为高电平,继电器得电吸合。
ULN2003是一个非门电路,包含7个单元,单独每个单元驱动电流最大可达500mA,9脚可以悬空。
比如1脚输入,16脚输出,你的负载接在VCC与16脚之间,不用9脚。
陈翠•来源:网络整理• 2017年10月23日14:37 • 12146次阅读ULN2003应用电路在自动化密集的的场合会有很多被控元件如继电器,微型电机,风机,电磁阀,空调,水处理等元件及设备,这些设备通常由CPU所集中控制,由于控制系统不能直接驱动被控元件,这需要由功率电路来扩展输出电流以满足被控元件的电流,电压。
高压大电流达林顿晶体管阵列系列产品就属于这类可控大功率器件,由于这类器件功能强、应用范围语广。
微型电机及其详述
![微型电机及其详述](https://img.taocdn.com/s3/m/6bec1e7df46527d3240ce00d.png)
New Scale是美国专业超小型运动制造商,创造出了世界上最小的直线电机-SQUIGLE 超声波压电陶瓷电机以及TRACKER (TM)定位传感器。
超声波压电式电机的产品特点:1.超微型尺寸2.低能耗,低电压驱动3.具有断电位置保护功能4.驱动力:>5N5.行程可达50mm6.速度从1um/s到10mm可调7.精度最高20nm8.无磁性,有真空型和低温型产品New Scalede TRACKER (TM)定位传感器世界上尺寸最小、分辨率最高的定位传感器,内部整合了一个磁感探测器及op-chip位置编码器。
产品特点:1.最小的体积:芯片尺寸:3.9*2.5mm2.精密的非接触感应:0.5um精度,<2um重复度3.传感器和编码器集成在一个封装中4.直接数字输出(I2C总线),不需要脉冲计数器5.对光、粒子、震动不敏感,没有安装限制6.绝对一流的性能:零基准,自动增益,自动偏置一.SQL-RV-1.8SQUIGGLE 降压直线驱动系统特点:1.小,2.8 x 2.8 x 6 mm, 高性能电机提高45% 速度减少40% 功耗推力几乎是SQL-1.8 电机的 2 倍亚微米的定位精度2.工业上最小的压电驱动方案比同类产品小 5 倍1.8 x 1.8 mm 驱动IC3.工业上第一个 2.3V 直流供电的直接IC 输出智能专用控制IC无需升压应用:电池供电的手持设备手机摄像头数码相机和数码摄像机微型医疗制动器机器人,无人机和安防运动稳定系统微型光学模块微型电子锁精密工业和科研仪器世界上最小的线性电控系统SQUIGGLE 降压微型电机和NSD2101驱动ASIC(专用集成电路)组合在一起成为世界上最小的直线压电运动控制系统,性能可与更大的系统相媲美。
最先进的多层压电技术,结合先进的智能集成电路设计和正在申请专利的控制算法,创造了具有无与伦比性能的直线运动控制系统。
新RV系列具有专利技术的超声波压电电机和驱动器,创造了多个行业第一,包括:1.2.3V直流电池输入驱动芯片,无需外加升压电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几种微型电机驱动电路分析
时间:2006-10-20 来源: 作者: 点击:557 字体大小:【大中小】
以下所述电路用于3V供电的微型直流电机的驱动,
这种电机有两根引线,更换两根引线的极性,电机换向。
该驱动电路要求能进行正反转和停止控制。
电路一:
如下图所示,这电路是作者最初设计的电路,P1.3、P2.2和P2.4分别是51单片机的IO引脚。
设计的工作原理是:当P1.3高电平、P2.2和P2.4都为低电平时,电机正转。
此时,Q1和Q4导通,Q2和Q3截止,电流注向为+5VàR1àQ1àMàQ4;当P1.3低电平、P2.2和P2.4都为高电平时,电机反转。
此时,Q2和Q3导通,Q1和Q4截止。
P2.2为高电平同时P2.4为低电平时,电路全不通,电机停止。
图中电阻:R1=20Ω,R2=R3=R4=510Ω
图1
但实际实验情况去出人意料,即电机正向和反向都不转。
经测量,当P1.3高电平,P2.2和P2.4都为低电平时,Q4导通,但Q1不导通,P1.3的电平只有0.67V左右,这样Q1无法导通。
经分析原因如下:51的P1、P2、P3各引脚都是内部经电阻上拉,对地接MOSFET管,所谓高电平,是MOSFET截止,引脚上拉电阻拉为高电平。
若此内部上拉电阻很大,比如20K,则当上图电路接上后,则流过Q1的b极的电流最大为
(5-0.7)/20mA=0.22mA,难以动Q1导通。
所以此电路不通。
总结:51单片机的引脚上拉能力弱,不足以驱动三极管导通。
电路二:
如下图所示:这个电路中四个三极管都采用PNP型,这样,导通的驱动是控制引脚输出低电平,而51的低电平时,是通过MOSFET接地,所以下拉能力极强。
但此电路的Q1和Q3需要分别控制,所需控制引脚较多。
如果要用一个IO脚控制则可以加一个反相器。
但此电路的Q1和Q3需要分别控制,所需控制引脚较多。
如果要用一个IO 脚控制则可以加一个反相器。
如图3所示。
图中标有各点实测电压值。
图2
图3
电路三:
在电路二中,由于Q2和Q4的发射极高出基极一个0.7V,而基极最低为0V,实际由于CPU引脚内部有MOSFET管压降,所以Q2和Q4的发射极不会低于1V,这样使M两端的有效电压范围减小。
要解决这一问题,则Q2和Q4需换成NPN管。
但NPN管的驱动如电路一所示,只靠CPU引脚的上拉是不行了,所以需要另加上拉电阻,如下图所示。
图4
上图中,与电路一不同的是两只NPN管移到了下方,PNP 在上方,这样,Q1和Q3的集电极的电位最低可达到一个管压降(0.3V)。
这样增加了M的压降范围。
但为了保证对NPN管的足够的驱动,P1.3和P2.2必须加上拉电阻,如图所示。
图中,R2、R5、R6都不可少。
所以这种电路的元件用量比较大。
还有,R5应该比R6大几倍,比如10倍,这样,当Q1导通时,P1.3处的电压可以分得较大,不致于使Q2导通。
如果R5太小或为0,则当Q1导通时,由于P1.3处的压降只有0.7V 左右,将使Q2也导通。
经过试验,R2、R6、R3、R4可取510Ω,R5取5.1kΩ。
这种值下各处的电压如下(R1为20欧):
U1:4.04
U2:2.99
U3:3.87
U4:4.00
U5:0.06
U7:0.79
电路四:
这个电路由电路一改造而来,如下图5,图中标有各点实测电压值:
图5
此图中基极的限流电阻都去掉了,因为作者设计的电路对元件要求要少。
从电路上分析,不要没什么关系,有R1起着总的限流作用,而且引脚内部有上拉电阻,这样保证电路不会通过太大的电流。
这个电路可以使电机运行。
但在R2的选择上,比较讲究,因为R2的上拉作用不但对Q1有影响,而且对Q2的导通也有影响。
如果R2选的过小,则虽然对Q1的导通有利,但对Q2的导通却起到抵制作用,因为R2越小,上拉作用越强,Q2的导通是要P1.3电位越低越好,所以这是矛盾的。
也就是说,Q1的导通条件和Q2的导通条件是矛盾的。
经实验,R2取5.1k欧比较合适。
由此可见,这个电路虽然很省元件和CPU引脚,但驱动能力有个最大限,即Q1和Q2的驱动相互制约下,只能取个二者都差不多的折中方案。
否则如果一个放大倍数大,则另一个则会变小。
总结:以上电路各有利弊,要视应用场合选用。