如何用eviews分析时间序列

合集下载

在Eviews中对时间序列进行预测的详细步骤

在Eviews中对时间序列进行预测的详细步骤

在Eviews中对时间序列进行预测的详细步骤一、输入数据1.1打开Eviews6.0,按照如图所示打开工作表创建框。

1.2在右上角的data specification框中输入起止年份(start data和end data)1.3输入数据:在输入框中输入data gdp(本文采用的数据为1990—2012年的GDP值)。

当然,data后面可以输入任何你想要定义的“英文名字”输入data gdp后注意按回车键,弹出表格窗口后在其中输入数据(也可复制进去数据:ctrl+v键)二、平稳性检验2.1在打开的数据窗口中点击View→Correlogram(1)在弹出的窗口中直接点OK即可↓2.2自相关图和偏相关图进行分析:最简单粗暴的方法就是看最右边的Prob值(即P值),当这列数据有多数都大于0.05(置信水平)时为白噪声序列=序列是平稳的。

本文中GDP数据P值均小于0.05,则为非白噪声。

需对序列进行差分。

三、取一阶差分3.1在输入框中输入第二列代码,这代表将数据gdp进行一阶差分,一阶差分后的值命名为dgdp.按回车键3.2在dgdp数据的窗口中重复2.1的操作,对序列的平稳性进行检验得到结果如下:惨!还是非白噪声,只能进行二阶差分了!四、取二阶差分4.1如第三列代码所示(记得不能重复命名)4.2对新的序列dgdp2进行平稳性检验,步骤同上,结果如下:MY GOD! 看见了木有,这回是白噪声了,P值多数都大于0.05!五、用最小二乘法对模型进行估计:输入ls dgdp2 c ar(2)(探索性建模)5.1AR(2)模型结果(准确的说这个模型应该是ARIMA的疏系数模型,本文重点不在这!如有需要请私信我!)5.2MA(2)模型结果5.3优化模型:根据AIC和SBC准则选择模型,值越小的拟合效果越好,本文的选择MA(2)模型。

5.4对模型进行检验:View→Residual Tests→Correlogram Q statistics检验结果如下:P值大于0.05,为白噪声序列,则平稳。

eviews时间序列一阶自相关检验命令

eviews时间序列一阶自相关检验命令

eviews时间序列一阶自相关检验命令在EViews中,我们可以使用AR(p)模型来进行时间序列的一阶自相关检验。

AR(p)模型表示自回归模型,其中p表示阶数。

一阶自相关检验是用来确定时间序列数据是否存在自相关性。

自相关是指序列中一个值与其在时间上前一时刻的值之间的相关性。

在时间序列分析中,我们希望序列的值是彼此相互独立的,因此自相关性可能会影响我们对序列的分析和预测。

在EViews中,可以通过以下步骤来进行一阶自相关检验:1.打开EViews软件并导入时间序列数据。

2.在EViews主菜单中选择“Quick/Estimate Equation”(快速估计方程)。

3.在“Equation Specification”(方程规范)对话框中,输入要估计的模型。

例如,如果要进行一阶自相关检验,则可以输入模型“y c ar(1)”。

- “y”表示被解释变量。

- “c”表示常数项。

- “ar(1)”表示自回归项,其中1表示阶数。

4.单击“OK”按钮以估计模型。

5.将结果显示为估计方程的系数,t统计量,R-squared(R平方值)等。

在估计方程后,EViews将为我们提供一阶自相关检验的结果。

重要的统计值包括Jarque-Bera(JB)统计量、ARCH LM检验、DW统计量等。

- Jarque-Bera(JB)统计量是用来检验数据是否服从正态分布。

如果JB统计量的p值小于0.05,则我们可以拒绝原假设,即数据不服从正态分布。

- ARCH LM检验旨在检验序列中是否存在异方差性。

如果ARCH LM 统计量的p值小于0.05,则我们可以拒绝原假设,即序列中存在异方差性。

- Durbin-Watson(DW)统计量是用来检验序列的自相关性。

DW统计量的值介于0和4之间,如果DW值接近于2,则表示序列不存在一阶自相关。

除了上述统计量之外,EViews还提供了其他有关模型估计的信息,包括系数的标准误差、置信区间、F统计量和R平方等。

时间序列 eviews操作

时间序列 eviews操作

1.打开EVIEWS新建一个工作文件,步骤如下:
出现如下对话框,选择数据频率为季度,开始日期为1989年1季度,结束日期为2004年4季度,即为工作文件的范围区间。

点击ok生成工作文件
2.若要改变工作文件的范围区间,双击Range,出现如下对话框
3.利用命令series 生成时间序列gdp
点击Edit+/-改变数据的编辑状态,打开EXCEL文件将数据复制粘贴到数据区域,查看数据序列的折线图,步骤如下:
结果:
从图中可看出时间序列有明显的季节波动。

4.对gdp序列进行描述统计分析:
5.对原GDP数据进行季节调整,调整后时间序列存为GDP_SA
6.做出折线图:
由图知序列受季节影响程度变小。

7.进行单位根检验,结果如下:
计算自相关函数和偏相关函数如下:
9.利用方程建立ARMA(3,3)模型
10.建立组,包括gdp gdp_sa dgdp
建组后展示如下:
11.将建组后的收据以EXCEL格式输出:
点击ok即可。

时间序列的eview操作步骤

时间序列的eview操作步骤

1.打开eviews软件,点击file-new-workfile,见对话框又三块空白处,选择时间序列dated-regular frequency。

在date specification中选择monthly,start(起始时间)输入2005M11,end(终止时间)输入2008M6(eviews的时间序列没有间隔序列输入就将时间进行调整)。

右下角为工作间取名字tmd。

点击ok。

在所创建的workfile中点击object-new object,选择series,以及填写名字tmd,点击OK。

将数据填写入内就生成了以tmd为名的数据集2. 点击view-United root test,test type选择ADF检验,滞后阶数中lag length 选择SIC检验,点击ok得结果如下:一阶差分:点击GENR命令按钮,在输入框中输入bod1=D(bod),得到一阶差分后的结果:再对一阶差分后的数据同样进行平稳性检验(单根值检验)ADF序列零均值化①在命令窗口输入如下命令(如下图所示):Scalar m=@mean(tmd)其中:Scalar命令在Eviews中表示生成标量数据(均值只是一个数,而不是序列)。

在tmd窗口下选择菜单操作方式:单击Genr在对话框中输入BOD1=BOD-m得到零均值后的新序列tmd1与之前的数据完全不同。

3. 在工作区双击序列图标tmd1,再选用菜单操作方式:View—>Correlogram,在出现的对话框点击OK。

4.估计模型中的未知参数识别透明度这组时间序列适合的模型后,需要进一步的估计模型中的具体参数,下面就用eviews软件进行估计。

由前面的图形看出:自相关系数和偏相关系数具有相似的衰减特点:衰减快,偏相关图中,2阶以后函数值趋于0,呈截尾性选AR(2);而在自相关图中,在4阶以后函数值趋于0,呈拖尾性,因此可将q取3故可选MA(3)模型。

利用菜单操作建立ARMA模型。

如何用eviews分析时间序列课程

如何用eviews分析时间序列课程

如何用eviews分析时间序列课程时间序列分析是一种常用的数据分析方法,通过对一系列时间上连续测量的数据进行观察、描述和分析,可以发现其中的规律和趋势,从而预测未来的发展走势。

Eviews是一种专业的时间序列分析软件,具有强大的数据处理和统计分析功能。

本文将介绍如何使用Eviews进行时间序列分析。

首先,打开Eviews软件,并导入需要分析的时间序列数据。

在Eviews的工作区中,选择“File”菜单下的“Open”选项,然后选择需要导入的数据文件,点击“Open”按钮导入数据。

导入数据后,可以在Eviews的对象浏览器中看到导入的数据对象。

接下来,对时间序列数据进行初步的观察和描述分析。

在对象浏览器中,选择需要分析的数据对象,右键点击并选择“Open as Group”选项,将数据对象打开为一个分析组。

然后,在Eviews的对象浏览器中,选择分析组,在右侧窗口中可以看到该组中包含的所有时间序列数据。

可以通过列出每个时间序列的统计概要、绘制时间序列图、查看自相关和偏自相关等方式对数据进行初步的观察和描述分析。

接下来,进行时间序列模型的构建和估计。

在Eviews的操作菜单中,选择“Quick”菜单下的“Estimate Equation”选项,打开方程估计窗口。

在方程估计窗口中,选择需要构建的时间序列模型类型,如AR、MA、ARMA等。

然后,在“Dependent Variable”栏目中选择需要分析的时间序列数据,将其作为因变量。

在“Independent Variables”栏目中选择需要作为自变量的时间序列数据,可以根据需求选择多个自变量。

点击“OK”按钮,Eviews将根据所选择的时间序列模型类型和数据进行模型的估计。

估计完成后,可以查看估计结果。

在方程估计窗口中,可以看到估计结果的统计指标、系数估计值、显著性水平等信息。

可以根据需要查看和分析各个系数的显著性水平、置信区间等信息,判断模型的有效性和可靠性。

时间序列分析实验1 Eviews的基本操作与平稳性检验

时间序列分析实验1 Eviews的基本操作与平稳性检验
随机产生100个标准正态分布的随机数可在matlab中进行将结果导入eviews中命名为randnum绘制时序图和检验
实验目的: 1. 熟悉 Eviews 的基本操作,重点是工作文件的创建、数据的录入(导入) 。 2. 掌握散点图、时序图以及自相关图的操作。 3. 掌握序列平稳性的检验。
, x100 ,将它们保存起来,命名为 aut,考察这个序
实验内容:
1. 随机产生 100 个标准正态分布的随机数(可在 Matlab 中进行) ,将结果导入 Eviews 中,命名为 rand_num,绘制时序图和自相关图。
2. 考察上述序列的平稳性。
3. 对于自回归过程 X t 0.5 X t 1 0.6 t ,其中 t ~ i.i.d . N (0, 1) ,从初值 X 0 1开 始,模拟生成序列 x1 , x2 , 列的平稳性。

eviews使用指南与案例

eviews使用指南与案例

eviews使用指南与案例EViews是一款经济统计软件,广泛应用于经济学、金融学等领域的数据分析和建模工作。

本文将为大家介绍EViews的使用指南和一些实际案例,帮助读者更好地了解和应用EViews。

一、EViews的使用指南1. EViews的安装和启动:首先,用户需要下载并安装EViews软件。

安装完成后,双击桌面上的EViews图标即可启动软件。

2. 数据导入和处理:EViews支持导入多种数据格式,如Excel、CSV等。

用户可以使用“File”菜单中的“Import”选项将数据导入EViews中,并进行必要的数据清洗和处理。

3. 数据探索和描述统计分析:在导入数据后,用户可以使用EViews提供的数据探索功能进行数据分析,包括数据的描述统计分析、数据可视化等。

4. 模型建立和估计:EViews提供了多种经济学模型的建立和估计方法,如回归分析、时间序列分析等。

用户可以通过选择相应的命令和参数来进行模型建立和估计。

5. 模型诊断和检验:在模型建立和估计完成后,用户需要对模型进行诊断和检验。

EViews提供了多种模型诊断和检验的功能,如残差分析、异方差性检验等。

6. 模型预测和模拟:EViews可以基于已建立的模型进行预测和模拟。

用户可以输入新的自变量数据,通过模型预测因变量的值,或者进行模型的蒙特卡洛模拟分析。

7. 结果输出和报告生成:EViews可以将分析结果以表格、图形等形式输出,并支持生成报告和文档。

用户可以选择相应的输出选项和格式,方便结果的展示和分享。

二、EViews的应用案例1. 时间序列分析:使用EViews可以进行时间序列数据的建模和分析。

例如,可以通过ARIMA模型对股票价格进行预测,或者通过VAR模型分析宏观经济变量之间的关系。

2. 经济政策评估:EViews可以用于评估不同经济政策对经济变量的影响。

例如,可以建立一个VAR模型,通过冲击响应分析来评估货币政策对通胀和经济增长的影响。

用EVIEWS处理时间序列分析

用EVIEWS处理时间序列分析

应用时间序列分析实验手册目录目录1第二章时间序列的预处理2一、平稳性检验2二、纯随机性检验9第三章平稳时间序列建模实验教程9一、模型识别9二、模型参数估计(如何判断拟合的模型以及结果写法)14三、模型的显著性检验17四、模型优化18第四章非平稳时间序列的确定性分析19一、趋势分析19二、季节效应分析34三、综合分析38第五章非平稳序列的随机分析44一、差分法提取确定性信息44二、ARIMA模型57三、季节模型61第二章时间序列的预处理一、平稳性检验时序图检验和自相关图检验(一)时序图检验根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的X围有界、无明显趋势及周期特征例2.1检验1964年——1999年中国纱年产量序列的平稳性1.在Eviews软件中打开案例数据图1:打开外来数据图2:打开数据文件夹中案例数据文件夹中数据文件中序列的名称可以在打开的时候输入,或者在打开的数据中输入图3:打开过程中给序列命名图4:打开数据2.绘制时序图可以如下图所示选择序列然后点Quick选择Scatter或者XYline;绘制好后可以双击图片对其进行修饰,如颜色、线条、点等图1:绘制散点图图2:年份和产出的散点图10020030040050060019601970198019902000YEARO U T P U T图3:年份和产出的散点图(二)自相关图检验 例2.3导入数据,方式同上;在Quick 菜单下选择自相关图,对Qiwen 原列进行分析;可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列。

图1:序列的相关分析图2:输入序列名称图2:选择相关分析的对象图3:序列的相关分析结果:1.可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列2.看Q统计量的P值:该统计量的原假设为X的1期,2期……k期的自相关系数均等于0,备择假设为自相关系数中至少有一个不等于0,因此如图知,该P值都>5%的显著性水平,所以接受原假设,即序列是纯随机序列,即白噪声序列(因为序列值之间彼此之间没有任何关联,所以说过去的行为对将来的发展没有丝毫影响,因此为纯随机序列,即白噪声序列.)有的题目平稳性描述可以模仿书本33页最后一段.(三)平稳性检验还可以用:单位根检验:ADF,PP检验等;非参数检验:游程检验图1:序列的单位根检验表示不包含截距项图2:单位根检验的方法选择图3:ADF检验的结果:如图,单位根统计量ADF=-0.016384都大于EVIEWS给出的显著性水平1%-10%的ADF临界值,所以接受原假设,该序列是非平稳的。

数模之Eviews教程时间序列ARIMA模型

数模之Eviews教程时间序列ARIMA模型

图形表示出:该序列具有相同的均值,但从样本自相关图看,虽然自相关系数缓慢下降到0,但随着时间的推移,则在0附近波动且呈发散趋势。 样本自相关系数显示:r1=0.48,落在了区间[-0.4497, 0.4497]之外,因此在5%的显著性水平上拒绝1的真值为0的假设。 该随机游走序列是非平稳的。
可以看出:k>0时,rk的值确实落在了该区间内,因此可以接受 k(k>0)为0的假设。同样地,从QLB统计量的计算值看,滞后17期的计算值为26.38,未超过5%显著性水平的临界值27.58,因此,可以接受所有的自相关系数k(k>0)都为0的假设。因此,该随机过程是一个平稳过程。
序列Random2是由一随机游走过程 Xt=Xt-1+t生成的一随机游走时间序列样本。其中,第0项取值为0, t是由Random1表示的白噪声。
随机时间序列的计量经济学模型
时间序列的平稳性及其检验随机时间序列分析模型协整分析与误差修正模型
§9.1 时间序列的平稳性及其检验
一、问题的引出:非平稳变量与经典回归模型二、时间序列数据的平稳性三、平稳性的图示判断四、平稳性的单位根检验五、单整、趋势平稳与差分平稳随机过程
一、问题的引出:非平稳变量与经典回归模型
进行回归,如果确实发现=1,就说随机变量Xt有一个单位根。
一般地:
检验一个时间序列Xt的平稳性,可通过检验带有截距项的一阶自回归模型: Xt=+Xt-1+t (*)中的参数是否小于1。
或者:检验其等价形式: Xt=+Xt-1+t (**)中的参数是否小于0 。
(*)式可变形成差分形式: Xt=(-1)Xt-1+ t =Xt-1+ t (**)检验(*)式是否存在单位根=1,也可通过(**)式判断是否有 =0。

eviews时间序列一阶自相关检验命令

eviews时间序列一阶自相关检验命令

eviews时间序列一阶自相关检验命令摘要:一、引言二、eviews 时间序列一阶自相关检验命令介绍1.语法结构2.参数说明三、eviews 时间序列一阶自相关检验命令实例1.数据准备2.命令执行3.结果解读四、结论正文:一、引言在时间序列分析中,自相关系数检验是评估时间序列数据之间关系的重要方法。

eviews 作为一款强大的时间序列分析软件,提供了丰富的自相关系数检验命令。

本文将详细介绍eviews 时间序列一阶自相关检验命令及其应用。

二、eviews 时间序列一阶自相关检验命令介绍1.语法结构eviews 时间序列一阶自相关检验命令为:ACF(depvar, type, lags, options)其中:- depvar:因变量(时间序列数据)- type:自相关系数类型,包括"ACF"(自相关系数)和"CCF"(偏自相关系数)- lags:滞后阶数- options:可选参数,如"plot"(绘制自相关系数图)2.参数说明在上述语法结构中,depvar 表示需要进行自相关检验的时间序列数据,type 表示需要计算的自相关系数类型,lags 表示需要计算的滞后阶数。

options 为可选参数,用于指定是否绘制自相关系数图等。

三、eviews 时间序列一阶自相关检验命令实例1.数据准备假设我们已经得到了一个时间序列数据集,包含以下变量:- 时间(time)- 因变量(y)2.命令执行我们可以通过以下命令计算时间序列一阶自相关系数:ACF(y, ACF, 1)该命令表示计算y 变量的一阶自相关系数(ACF),滞后阶数为1。

3.结果解读命令执行后,eviews 会显示计算得到的自相关系数结果。

对于一阶自相关系数,我们主要关注其p 值。

如果p 值小于显著性水平(通常为0.05),则说明因变量与自身存在显著的正相关或负相关关系;反之,则无法拒绝原假设,认为因变量与自身不存在显著的相关关系。

学习使用Eviews进行经济统计和时间序列分析

学习使用Eviews进行经济统计和时间序列分析

学习使用Eviews进行经济统计和时间序列分析第一章介绍EviewsEviews是经济学家和统计学家常用的一款软件,它提供了丰富的数据分析工具和计量经济模型。

在这一章节中,我们将介绍Eviews的简介和安装。

1.1 Eviews简介Eviews是美国IHS Markit公司开发的一款计量经济学软件,它具有直观的用户界面和强大的数据分析能力。

Eviews支持数据导入、数据整理、图表绘制、回归分析、时间序列分析等功能,广泛应用于经济学研究、金融分析和市场预测等领域。

1.2 Eviews安装要使用Eviews,我们需要先下载并安装软件。

Eviews提供了Windows和Mac版本的安装程序,用户可以根据自己的操作系统选择相应的版本。

安装完成后,我们可以打开Eviews并开始学习如何使用它进行经济统计和时间序列分析。

第二章数据导入和整理在使用Eviews进行经济统计和时间序列分析之前,我们首先需要将数据导入到软件中并进行整理。

本章节将介绍如何导入和整理数据。

2.1 导入数据Eviews支持多种数据格式的导入,包括Excel、CSV、文本文件等。

我们可以使用Eviews内置的导入工具,或者通过复制粘贴的方式将数据导入到软件中。

2.2 数据整理导入数据后,我们可能需要对数据进行整理,以便于后续的分析和建模。

在Eviews中,我们可以使用浏览对象窗口对数据进行编辑、删除、排序等操作。

此外,Eviews还提供了数据转换功能,例如对数据进行差分、平滑等处理。

第三章图表绘制图表是展示数据和分析结果的重要工具,在经济统计和时间序列分析中起着至关重要的作用。

本章节将介绍Eviews的图表绘制功能。

3.1 绘制时间序列图在Eviews中,我们可以轻松地绘制时间序列图来展示数据的趋势和变化。

通过选择合适的数据、设置坐标轴和图例,我们可以创建具有较好可读性和美观性的时间序列图。

3.2 绘制散点图和回归直线除了时间序列图,Eviews还支持绘制散点图和回归直线。

Eviews时间序列分析实例.

Eviews时间序列分析实例.

Eviews时间序列分析实例时间序列是市场预测中经常涉及的一类数据形式,本书第七章对它进行了比较详细的介绍。

通过第七章的学习,读者了解了什么是时间序列,并接触到有关时间序列分析方法的原理和一些分析实例。

本节的主要内容是说明如何使用Eviews软件进行分析。

一、指数平滑法实例所谓指数平滑实际就是对历史数据的加权平均。

它可以用于任何一种没有明显函数规律,但确实存在某种前后关联的时间序列的短期预测。

由于其他很多分析方法都不具有这种特点,指数平滑法在时间序列预测中仍然占据着相当重要的位置。

(-)一次指数平滑一次指数平滑又称单指数平滑。

它最突出的优点是方法非常简单,甚至只要样本末期的平滑值,就可以得到预测结果。

一次指数平滑的特点是:能够跟踪数据变化。

这一特点所有指数都具有。

预测过程中添加最新的样本数据后,新数据应取代老数据的地位,老数据会逐渐居于次要的地位,直至被淘汰。

这样,预测值总是反映最新的数据结构。

一次指数平滑有局限性。

第一,预测值不能反映趋势变动、季节波动等有规律的变动;第二,这种方法多适用于短期预测,而不适合作中长期的预测;第三,由于预测值是历史数据的均值,因此与实际序列的变化相比有滞后现象。

指数平滑预测是否理想,很大程度上取决于平滑系数。

Eviews提供两种确定指数平滑系数的方法:自动给定和人工确定。

选择自动给定,系统将按照预测误差平方和最小原则自动确定系数。

如果系数接近1,说明该序列近似纯随机序列,这时最新的观测值就是最理想的预测值。

出于预测的考虑,有时系统给定的系数不是很理想,用户需要自己指定平滑系数值。

平滑系数取什么值比较合适呢?一般来说,如果序列变化比较平缓,平滑系数值应该比较小,比如小于0.l;如果序列变化比较剧烈,平滑系数值可以取得大一些,如0.3~0.5。

若平滑系数值大于0.5才能跟上序列的变化,表明序列有很强的趋势,不能采用一次指数平滑进行预测。

[例1]某企业食盐销售量预测。

现在拥有最近连续30个月份的历史资料(见表l),试预测下一月份销售量。

Eviews时间序列分析要点

Eviews时间序列分析要点

时间序列分析实验指导42-2-450100150200250统计与应用数学学院前言随着计算机技术的飞跃发展以及应用软件的普及,对高等院校的实验教学提出了越来越高的要求。

为实现教育思想与教学理念的不断更新,在教学中必须注重对大学生动手能力的培训和创新思维的培养,注重学生知识、能力、素质的综合协调发展。

为此,我们组织统计与应用数学学院的部分教师编写了系列实验教学指导书。

这套实验教学指导书具有以下特点:①理论与实践相结合,书中的大量经济案例紧密联系我国的经济发展实际,有利于提高学生分析问题解决问题的能力。

②理论教学与应用软件相结合,我们根据不同的课程分别介绍了SPSS、SAS、MATLAB、EVIEWS等软件的使用方法,有利于提高学生建立数学模型并能正确求解的能力。

这套实验教学指导书在编写的过程中始终得到安徽财经大学教务处、实验室管理处以及统计与应用数学学院的关心、帮助和大力支持,对此我们表示衷心的感谢!限于我们的水平,欢迎各方面对教材存在的错误和不当之处予以批评指正。

统计与数学模型分析实验中心 2007年2月目录实验一 EVIEWS中时间序列相关函数操作·······- 1 - 实验二确定性时间序列建模方法···········- 9 - 实验三时间序列随机性和平稳性检验········- 18 - 实验四时间序列季节性、可逆性检验········- 21 - 实验五 ARMA模型的建立、识别、检验·······- 27 - 实验六 ARMA模型的诊断性检验··········- 30 - 实验七 ARMA模型的预测·············- 31 - 实验八复习ARMA建模过程············- 33 - 实验九时间序列非平稳性检验···········- 35 -实验一 EVIEWS中时间序列相关函数操作【实验目的】熟悉Eviews的操作:菜单方式,命令方式;练习并掌握与时间序列分析相关的函数操作。

Eviews作时间序列分析的一个实例

Eviews作时间序列分析的一个实例

Eviews作时间序列分析的⼀个实例时间序列分析是作时间序列数据预测的⼀个重要部分,由于此次实验室竞赛也⽤到了时间序列分析,就在此说⼀下平稳性分析以及⾮平稳处理的⽅法:1.判断平稳性1.1平稳性的定义(1)严平稳严平稳是⼀种条件⽐较苛刻的平稳性定义,它认为只有当序列所有的统计特性都不会随着时间的推移⽽发⽣变化时,该序列才能被认为平稳。

满⾜如下条件的序列称为严平稳序列:(2)宽平稳宽平稳是使⽤序列的特征统计量来定义的⼀种平稳性。

它认为序列的统计性质主要由它的低阶矩决定,所以只要保证序列低阶矩平稳(⼆阶),就能保证序列的主要性质近似稳定。

满⾜如下条件的序列称为宽平稳序列: 1.2平稳性检验的⽅法 (1)时序图检验: 根据平稳时间序列均值、⽅差为常数的性质,平稳序列的时序图应该显⽰出该序列始终在⼀个常数值附近随机波动,⽽且波动的范围有界、⽆明显趋势及周期特征 (2)⾃相关图检验: 平稳序列通常具有短期相关性。

该性质⽤⾃相关系数来描述就是随着延迟期数的增加,平稳序列的⾃相关系数会很快地衰减向零。

2.时序分析实例 下⾯以国际原油2011年⾄2017年每天国际原油的价格作为时间序列数据进⾏分析2.1时序图检验⾸先需要作出时序图,通过时序图作出⼀个基本的判断。

⽤Eviews作出的时序图如下: 从图中可以看出,该时间序列不是平稳的,接着再⽤⾃相关图进⼀步检验。

2.2⾃相关图检验 作出的⾃相关图如下: ⾃相关系数也并不是很快衰减到0,⽽且图中的prob数值都是⼩于0.05的,更加证实了该序列是⾮平稳的。

接下来对该序列进⾏差分运算(即后项减去前项),差分后的序列的时序图如下: 其⾃相关系数图如下: 此时,可以看出,差分后的序列是平稳的。

Eviews多元时间序列分析案例研究

Eviews多元时间序列分析案例研究

Eviews多元时间序列分析案例研究介绍本文档旨在通过一个案例研究,展示如何使用Eviews进行多元时间序列分析。

我们将使用Eviews进行数据准备、模型建立以及结果分析。

数据准备首先,我们需要准备用于分析的多元时间序列数据。

数据应包含多个相关变量,以便我们能够观察它们之间的相互影响。

在Eviews中,我们可以导入外部数据或使用内部示例数据。

通过导入外部数据,我们可以使用来自其他来源的实际数据进行分析。

此外,Eviews还提供了一些内置的示例数据集,这些数据集可用于研究和实践分析技术。

模型建立在数据准备完成后,我们可以开始建立多元时间序列的模型。

Eviews提供了各种统计方法和模型选项,可用于分析时间序列数据。

常见的多元时间序列模型包括VAR(向量自回归)模型、VARMA(向量自回归移动平均)模型以及VARX(包含外生变量的向量自回归)模型等。

我们可以根据数据特点和研究目的选择合适的模型,并进行参数估计和模型诊断。

结果分析完成模型估计后,我们可以对结果进行分析和解释。

Eviews提供了丰富的结果输出和图表展示功能,可以直观地展示模型的性质和统计显著性。

我们可以分析模型的系数、残差、拟合优度、滞后阶数选择等指标,评估模型的拟合程度和显著性。

此外,Eviews还支持进行模型对比和冲击响应分析,以更深入地理解多元时间序列数据的动态性质。

总结本文档简要介绍了如何使用Eviews进行多元时间序列分析。

我们从数据准备开始,使用Eviews进行模型建立和结果分析。

通过合理运用Eviews的功能,我们可以有效地研究和理解多元时间序列数据。

请注意,本文档仅为案例研究的简要介绍,具体的步骤和分析方法还需要根据具体情况进行调整和深入研究。

时间序列分析应用实例(使用Eviews软件实现)

时间序列分析应用实例(使用Eviews软件实现)

时间序列分析应⽤实例(使⽤Eviews软件实现)引⾔某公司的苹果来货量数据是以时间先后为顺序记录的⼀组数据,从计量经济学的⾓度来分类就是⼀组时间序列数据。

为了提⾼苹果来货量预测的准确度以及预测结果的可信度,下⾯运⽤Eviews软件包(即Econometrics Views 计量经济学软件包)并结合计量经济学的理论知识,选取2017年1⽉⾄2019年4⽉的苹果来货量⽉度数据(事前对原始数据进⾏处理,把数值单位从吨转换为万吨)为样本数据,⽤⼀个时间序列模型来拟合上述样本数据,然后利⽤建⽴好的模型预测苹果未来⼏个⽉的来货量情况,并对预测结果进⾏分析。

1 平稳性检验1.1 初步检验设来货量时间序列为Qt,⾸先观察Qt的折线图,如图1所⽰:图1 Qt的折线图从图1可知,苹果来货量的⽉度数据总体呈下降趋势,并存在季节性因素,进⽽通过序列原⽔平的⾃相关系数图进⼀步探讨序列的平稳性,结果如图2所⽰:图2 Qt的⾃相关系数图从图2可以看到,所有的⾃相关系数(Autocorrelation)均落在2倍标准差之内(垂⽴的两道虚线表⽰2倍标准差),初步判定序列Qt是平稳的。

下⾯运⽤ADF单位根检验法证明序列的平稳性。

1.2 ADF单位根检验假设序列Qt的特征⽅程存在多个特征根,那么序列平稳的条件为所有特征根λi的绝对值均⼩于1,即所有特征根都在单位圆内。

构造该ADF 检验的原假设H0:存在i,使得λi>1,备择假设H1:λ1, λ2, … , λp<1,运⽤Eviews软件对序列Qt的原⽔平进⾏带常数项(Intercept)的ADF检验,采⽤SC准则⾃动选择滞后阶数,检验结果如图3所⽰:图3 ADF检验根据图3的检验结果可知,t统计量(t-Statistic)的伴随概率p为0.00,在显著性⽔平α=0.05下,因此我们有理由拒绝原假设(p<α),说明序列Qt是平稳的。

2 模型识别从图2可知,序列Qt的⾃相关系数(Autocorrelation)和偏⾃相关系数(Partial correlation)均在阶数1处突然衰减为在零附近⼩值波动,因此我们初步选择AR(1)、ARMA(1,1)这两个模型拟合样本数据3 模型参数估计3.1 AR(1)模型的拟合与参数估计设AR(1)模型为:Qt=C + Φ*Qt-1 +εt,其中C为常数项,Φ为待估计的Qt滞后⼀阶的系数,εt为服从均值为零、⽅差为常数正态分布的正态分布(即⽩噪声序列),下⾯运⽤Eviews软件对AR(1)模型的参数采⽤最⼩⼆乘估计法(⽆偏估计)进⾏参数估计,模型估计结果如图4所⽰:图4 AR(1)模型拟合结果根据图4的参数估计结果来看,在显著性⽔平α=0.05下,常数项显著不为零,⽽参数Φ的显著性估计结果并不是太好,另外AR(1)模型的特征⽅程的根(Inverted AR Roots)为-0.16,印证了序列Qt是平稳的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用时间序列分析实验手册目录目录 (2)第二章时间序列的预处理 (3)一、平稳性检验 (3)二、纯随机性检验 (9)第三章平稳时间序列建模实验教程 (10)一、模型识别 (10)二、模型参数估计(如何判断拟合的模型以及结果写法) (14)三、模型的显著性检验 (17)四、模型优化 (18)第四章非平稳时间序列的确定性分析 (19)一、趋势分析 (19)二、季节效应分析 (34)三、综合分析 (38)第五章非平稳序列的随机分析 (44)一、差分法提取确定性信息 (44)二、ARIMA模型 (58)三、季节模型 (62)第二章时间序列的预处理一、平稳性检验时序图检验和自相关图检验(一)时序图检验根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常数值附近随机波动,而且波动的范围有界、无明显趋势及周期特征例2.1检验1964年——1999年中国纱年产量序列的平稳性1.在Eviews软件中打开案例数据图1:打开外来数据图2:打开数据文件夹中案例数据文件夹中数据文件中序列的名称可以在打开的时候输入,或者在打开的数据中输入图3:打开过程中给序列命名图4:打开数据2.绘制时序图可以如下图所示选择序列然后点Quick选择Scatter或者XYline;绘制好后可以双击图片对其进行修饰,如颜色、线条、点等图1:绘制散点图图2:年份和产出的散点图图3:年份和产出的散点图(二)自相关图检验 例2.3导入数据,方式同上;在Quick 菜单下选择自相关图,对Qiwen 原列进行分析;可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列。

图1:序列的相关分析图2:输入序列名称图2:选择相关分析的对象图3:序列的相关分析结果:1. 可以看出自相关系数始终在零周围波动,判定该序列为平稳时间序列2.看Q统计量的P值:该统计量的原假设为X的1期,2期……k期的自相关系数均等于0,备择假设为自相关系数中至少有一个不等于0,因此如图知,该P值都>5%的显著性水平,所以接受原假设,即序列是纯随机序列,即白噪声序列(因为序列值之间彼此之间没有任何关联,所以说过去的行为对将来的发展没有丝毫影响,因此为纯随机序列,即白噪声序列.) 有的题目平稳性描述可以模仿书本33页最后一段.(三)平稳性检验还可以用:单位根检验:ADF,PP检验等;非参数检验:游程检验图1:序列的单位根检验表示不包含截距项图2:单位根检验的方法选择图3:ADF检验的结果:如图,单位根统计量ADF=-0.016384都大于EVIEWS给出的显著性水平1%-10%的ADF临界值,所以接受原假设,该序列是非平稳的。

二、纯随机性检验计算Q统计量,根据其取值判定是否为纯随机序列。

例2.3的自相关图中有Q统计量,其P值在K=6、12的时候均比较大,不能拒绝原假设,认为该序列是白噪声序列。

另外,小样本情况下,LB统计量检验纯随机性更准确。

第三章平稳时间序列建模实验教程一、模型识别1.打开数据图1:打开数据2.绘制趋势图并大致判断序列的特征图2:绘制序列散点图图3:输入散点图的两个变量图4:序列的散点图3.绘制自相关和偏自相关图图1:在数据窗口下选择相关分析图2:选择变量图3:选择对象图4:序列相关图4.根据自相关图和偏自相关图的性质确定模型类型和阶数如果样本(偏)自相关系数在最初的d 阶明显大于两倍标准差范围,而后几乎95%的自相关系数都落在2倍标准差的范围以内,而且通常由非零自相关系数衰减为小值波动的过程非常突然。

这时,通常视为(偏)自相关系数截尾。

截尾阶数为d 。

本例:⏹ 自相关图显示延迟3阶之后,自相关系数全部衰减到2倍标准差范围内波动,这表明序列明显地短期相关。

但序列由显著非零的相关系数衰减为小值波动的过程相当连续,相当缓慢,该自相关系数可视为不截尾⏹ 偏自相关图显示除了延迟1阶的偏自相关系数显著大于2倍标准差之外,其它的偏自相关系数都在2倍标准差范围内作小值随机波动,而且由非零相关系数衰减为小值波动的过程非常突然,所以该偏自相关系数可视为一阶截尾:就是常数项)。

表示的是求出来的系数(其中模型中的模型:)(模型:模型:μ⋯⋯ε⋯⋯---⋯⋯---+μ=ε⋯⋯---+μ=ε⋯⋯---+μ=)1(MA )1(ar B *)P (AR B *)2(AR B *)1(AR 1B*)q (MA B *)2(MA B *)1(MA 1ARMA B *)q (MA B *)2(MA B *)1(MA 1MA B*)P (AR B *)2(AR B *)1(AR 11AR tP2q2t X t q 2t X tP2t X二、模型参数估计根据相关图模型确定为AR(1),建立模型估计参数在ESTIMATE中按顺序输入变量cx c cx(-1)或者cx c ar(1) 选择LS参数估计方法,查看输出结果,看参数显著性,该例中两个参数都显著。

细心的同学可能发现两个模型的C取值不同,这是因为前一个模型的C为截距项;后者的C则为序列期望值,两个常数的含义不同。

图1:建立模型图2:输入模型中变量,选择参数估计方法图3:参数估计结果图4:建立模型图5:输入模型中变量,选择参数估计方法图6:参数估计结果t B 703332.01132034.81tx AR ε-+=模型:三、模型的显著性检验检验内容:整个模型对信息的提取是否充分;参数的显著性检验,模型结构是否最简。

图1:模型残差图2:残差的平稳性和纯随机性检验对残差序列进行白噪声检验,可以看出ACF 和PACF 都没有显著异于零,Q 统计量的P 值都远远大于0.05,因此可以认为残差序列为白噪声序列,模型信息提取比较充分。

常数和滞后一阶参数的P 值都很小,参数显著;因此整个模型比较精简,模型较优。

四、模型优化当一个拟合模型通过了检验,说明在一定的置信水平下,该模型能有效地拟合观察值序列的波动,但这种有效模型并不是唯一的。

当几个模型都是模型有效参数显著的,此时需要选择一个更好的模型,即进行优化。

优化的目的,选择相对最优模型。

优化准则:最小信息量准则(An Information Criterion ) ⏹ 指导思想⏹ 似然函数值越大越好 ⏹ 未知参数的个数越少越好⏹ AIC 准则的缺陷在样本容量趋于无穷大时,由AIC 准则选择的模型不收敛于真实模型,它通常比真实模型所含的未知参数个数要多但是本例中滞后二阶的参数不显著,不符合精简原则,不必进行深入判断。

)(2)ˆln(2未知参数个数+=εσn AIC ))(ln()ˆln(2未知参数n n SBC +=εσ第四章非平稳时间序列的确定性分析第三章介绍了平稳时间序列的分析方法,但是自然界中绝大多数序列都是非平稳的,因而对非平稳时间序列的分析跟普遍跟重要,人们创造的分析方法也更多。

这些方法分为确定性时序分析和随机时序分析两大类,本章主要介绍确定性时序分析方法。

一个序列在任意时刻的值能够被精确确定(或被预测),则该序列为确定性序列,如正弦序列、周期脉冲序列等。

而某序列在某时刻的取值是随机的,不能给以精确预测,只知道取某一数值的概率,如白噪声序列等。

Cramer分解定理说明每个序列都可以分成一个确定序列加一个随机序列,平稳序列的两个构成序列均平稳,非平稳时间序列则至少有一部分不平稳。

本章先分析确定性序列不平稳的非平稳时间时间序列的分析方法。

确定性序列不平稳通常显示出非常明显的规律性,如显著趋势或者固定变化周期,这种规律性信息比较容易提取,因而传统时间序列分析的重点在确定性信息的提取上。

常用的确定性分析方法为因素分解。

分析目的为:①克服其他因素的影响,单纯测度某一个确定性因素的影响;②推断出各种因素彼此之间作用关系及它们对序列的综合影响。

一、趋势分析绘制序列的线图,观测序列的特征,如果有明显的长期趋势,我们就要测度其长期趋势,测度方法有:趋势拟合法、平滑法。

(一)趋势拟合法1.线性趋势拟合例1:以澳大利亚政府1981-1990年每季度消费支出数据为例进行分析。

图1:导入数据长期趋势具备线性上升的趋势,所以进行序列对时间的线性回归分析。

图3:序列支出(zc)对时间(t)进行线性回归分析可以看出回归参数显著,模型显著,回归效果良好,序列具有明显线性趋势。

图5:运用模型进行预测图6:预测效果(偏差率、方差率等)图7:绘制原序列和预测序列的线图图8:原序列和预测序列的线图图9:残差序列的曲线图可以看出残差序列具有平稳时间序列的特征,我们可以进一步检验剔除了长期趋势后的残差序列的平稳性,第三章知识这里不在叙述。

2.曲线趋势拟合例2:对上海证券交易所1991.1-2001.10每月月末上正指数序列进行拟合。

图1:导入数据图2:绘制曲线图可以看出序列不是线性上升,而是曲线上升,尝试用二次模型拟合序列的发展。

图3:模型参数估计和回归效果评价因为该模型中T的系数不显著,我们去掉该项再进行回归分析。

图4:新模型参数估计和回归效果评价图5:新模型的预测效果分析图6:原序列和预测序列值图7:原序列和预测序列值曲线图图8:计算预测误差图9:对预测误差序列进行单位根检验拒绝原假设,认为序列没有单位根,为平稳序列,说明模型对长期趋势拟合的效果还不错。

同样,序列与时间之间的关系还有很多中,比如指数曲线、生命曲线、龚柏茨曲线等等,其回归模型的建立、参数估计等方法与回归分析同,这里不再详细叙述。

(二)平滑法除了趋势拟合外,平滑法也是消除短期随机波动反应长期趋势的方法,而其平滑法可以追踪数据的新变化。

平滑法主要有移动平均方法和指数平滑法两种,这里主要介绍指数平滑方法。

例3:对北京市1950-1998年城乡居民定期储蓄所占比例序列进行平滑。

图1:打开序列,进行指数平滑分析图2:系统自动给定平滑系数趋势给定方法为选择使残差平方和最小的平滑系数,该例中平滑系数去0.53,超过0.5用一次平滑效果不太好图3:平滑前后序列曲线图图4:用二次平滑修匀原序列可以看出,平滑系数为0.134,平均差为4.067708,修匀或者趋势预测效果不错。

图5:二次平滑效果图例4:对于有明显线性趋势的序列,我们可以采用Holt两参数法进行指数平滑对北京市1978-2000年报纸发行量序列进行Holt两参数指数平滑图1:报纸发行量的曲线图图2:Holt两参数指数平滑(指定平滑系数)图3:预测效果检验图4:系统自动给定平滑系数时平滑效果图5:原序列与预测序列曲线图(其中FXSM为自己给定系数时的平滑值,FXSM2为系统给定系数时的平滑值)二、季节效应分析许多序列有季节效应,比如:气温、商品零售额、某景点旅游人数等都会呈现明显的季节变动规律。

例5:以北京市1995-2000年月平均气温序列为例,介绍季节效应分析操作。

相关文档
最新文档