脂质体的制备方法及其研究进展
脂质体的制备实验报告

脂质体的制备实验报告脂质体的制备实验报告引言脂质体是一种由磷脂类物质构成的微小球体,具有良好的生物相容性和生物可降解性,因此在药物传递和生物医学领域具有广泛的应用。
本实验旨在探究脂质体的制备方法及其性质。
材料与方法实验所需材料包括磷脂、胆固醇、药物(如硝酸甘油)、有机溶剂(如氯仿、甲醇)、无水乙醇等。
制备过程如下:1. 溶解磷脂和胆固醇:将所需量的磷脂和胆固醇溶解于有机溶剂中,如氯仿和甲醇的混合物中,以获得磷脂和胆固醇的混合液。
2. 脂质体的形成:将药物溶解于混合液中,搅拌均匀,使药物与磷脂和胆固醇相互作用。
3. 溶剂挥发:将混合液转移到圆底烧瓶中,使用旋转蒸发仪将有机溶剂挥发,直到获得脂质体的混悬液。
4. 脂质体的稳定:向混悬液中加入一定量的无水乙醇,使脂质体进一步稳定。
结果与讨论通过上述制备方法,我们成功制备了硝酸甘油脂质体。
观察到脂质体呈现微小球形状,粒径均匀分布。
此外,我们还对脂质体的性质进行了一系列的实验和分析。
1. 粒径分析:使用动态光散射仪测定脂质体的平均粒径。
结果显示,制备的脂质体平均粒径为100-200纳米,符合药物传递的要求。
2. 药物包封率:采用高效液相色谱法测定药物包封率。
结果显示,硝酸甘油的包封率达到了90%以上,表明脂质体在药物传递中具有较高的效率。
3. 药物释放性能:通过离心法和体外释放实验,研究了脂质体的药物释放性能。
结果显示,硝酸甘油脂质体具有缓释性能,能够持续释放药物,延长药物的作用时间。
结论本实验成功制备了硝酸甘油脂质体,并对其性质进行了详细的研究。
结果表明,制备的脂质体具有良好的粒径分布、高包封率和缓释性能,适用于药物传递和治疗。
脂质体作为一种重要的药物传递系统,具有巨大的应用潜力,可以进一步研究其在其他领域的应用。
结语通过本次实验,我们对脂质体的制备方法和性质有了更深入的了解。
脂质体的制备过程相对简单,但对于药物传递的效果有着重要的影响。
进一步的研究可以探索不同的制备方法和改进药物的包封率和释放性能,以满足不同药物传递的需求。
实验10脂质体的制备

实验目的与要求
掌握脂质体的制备方法和技 术;
能够根据实际需求设计和优 化脂质体药物载体;
了解脂质体的理化性质和生 物学特性;
实验过程中需严格控制实验 条件,确保实验结果的准确 性和可重复性。
02 实验原理
脂质体的形成机制
脂质体的形成是磷脂分子在水和油界面自组装的结果,当磷脂分子被置于水油界 面时,由于疏水效应,磷脂分子会向油相倾斜,而头部则向水相暴露,从而形成 双层膜结构。
避免污染
在实验过程中,要保持实验室的清洁, 避免尘埃和微生物污染,以确保实验 结果的准确性。
安全防护
在实验过程中,要穿戴好实验服和化 学防护眼镜,确保实验安全。
05 实验结果与分析
实验结果展示
1 2
脂质体粒径分布
通过动态光散射法测得,结果显示脂质体粒径在 100-200nm之间,分布较均匀。
包封率
在一定条件下,磷脂分子可以在水油界面上完全排列成单层膜,形成封闭的球形 结构,即脂质体。
脂质体的制备方法
薄膜分散法
将磷脂和脂溶性药物溶于有机溶 剂中,然后将有机溶剂蒸发,使 磷脂和药物在表面上形成薄膜, 再加入水进行搅拌,得到脂质体。
逆相蒸发法
将磷脂和脂溶性药物溶于有机溶 剂中,加入水后搅拌,使药物和 磷脂在水/有机溶剂界面形成双 分子层,然后蒸发掉有机溶剂,
实验的未来发展与应用前景
实验方法改进
应用领域拓展
随着科学技术的不断发展,我们可以 探索更加先进的制备方法和技术,以 提高脂质体的质量和稳定性。例如, 采用微流控技术、纳米技术等方法制 备脂质体,可以获得更小粒径、更高 包覆率的脂质体。
脂质体作为一种模拟细胞膜的结构和 功能的载体,在药物传递、基因治疗 、生物检测等领域具有广泛的应用前 景。随着研究的深入和技术的进步, 我们可以将脂质体应用于更多的领域 ,为生物医学研究和应用提供更多可 能性。
脂质体的制备及其应用

脂质体的制备及其应用近年来,脂质体在制药领域里展现出了广阔的应用前景。
从初期的制备到现在的技术逐渐成熟,脂质体已经成为制药工业中最热门的制剂载体之一。
本文将介绍脂质体的制备及其应用。
一、脂质体的制备1. 胆固醇和磷脂共混法该制备法是最早的脂质体制备方法之一,实现较为简单。
只需将胆固醇和磷脂以特定比例共混,并使用水或其他溶剂进行溶解,即可制备出脂质体。
2. 薄膜法该制备法是制备脂质体的另一种常见方法。
将磷脂及其他组份按一定比例混合,并在热水浴中加热搅拌,并持续将其挤压,形成薄膜,薄膜会自行聚集形成脂质体。
3. 超声波法该制备法利用超声波的力量将水相和油相分散均匀,从而形成脂质体。
简单易行且可重复性良好,所以是制备脂质体最常用的方法之一。
二、脂质体的应用1. 药物传递脂质体是一种非常好的药物传递载体,由于其构成和细胞膜相似,因此可有效载药物,并快速进入人体细胞。
脂质体还可以用于治疗肿瘤和炎症。
2. 增强药物传递的稳定性很多药物容易被分解,但是通过使用脂质体,这些药物可以被稳定传递,并防止药物在消化过程中被分解。
对于某些对稳定性要求极高的药物,如RNA、DNA和酶,脂质体的应用显得尤为重要。
3. 疫苗传递最近几年,脂质体在疫苗传递方面展现出自己的优势。
将疫苗包裹在脂质体中,可呈现出更好的抗原肽处理,并取得良好的抗体反应。
这让脂质体成为了一种非常良好的疫苗传递载体。
4. 脂质体在饮食保健品中的应用还有一些饮食保健品在其制备过程中也可以使用脂质体。
例如,脂质体可用于保护鱼油或其他有益成分的品质和稳定性,并让它们更方便地传递到人体内。
总的来说,脂质体已成为制药工业中不可或缺的一部分,并在医药、食品及化妆品等领域发挥着重要作用。
脂质体的制备方法也在不断更新,未来必将有更多的应用领域,为人类健康和生活发挥更大的作用。
药物分析中的药物脂质体制备研究

药物分析中的药物脂质体制备研究药物脂质体是一种用于提高药物溶解度、生物利用度和药效的递送系统。
近年来,药物脂质体制备技术得到了广泛的研究和应用。
本文将对药物分析中的药物脂质体制备研究进行探讨。
一、药物脂质体制备技术概述药物脂质体是由药物与脂质组分之间相互作用形成的一种固体或半固体纳米粒子,其结构由药物核心、脂质壳和可能的表面修饰层组成。
药物脂质体制备技术主要包括溶剂沉淀法、乳化法、溶剂扩散法、胶束法和超声乳化法等。
1. 溶剂沉淀法溶剂沉淀法是一种简单易行的药物脂质体制备方法。
它通过将药物和脂质溶解在有机溶剂中,然后通过加入大量的非溶剂使药物脂质体成核并沉淀下来。
该方法成本低,操作简单,但容易产生大颗粒粒径和不均匀性。
2. 乳化法乳化法是将药物和脂质通过乳化剂形成微乳液,然后通过溶剂蒸发或冷冻干燥等方法制备药物脂质体。
乳化法制备的药物脂质体粒径较小,均匀性好,适用于大多数药物。
3. 溶剂扩散法溶剂扩散法是将溶剂溶解药物和脂质,然后将溶剂与大量的非溶剂混合,通过扩散过程形成药物脂质体。
溶剂扩散法制备的药物脂质体粒径较小,但制备过程较复杂。
4. 胶束法胶束法是通过表面活性剂和辅助溶剂形成胶束,然后将药物和脂质溶解在胶束中,通过溶剂蒸发或冷冻干燥等方法制备药物脂质体。
胶束法制备的药物脂质体样品均匀性好,但容易受到表面活性剂的污染。
5. 超声乳化法超声乳化法是利用超声波在液液界面上形成微小液滴,然后通过溶剂蒸发或冷冻干燥等方法制备药物脂质体。
超声乳化法制备的药物脂质体制样品粒径较小,有较好的均匀性,但制备过程中需要控制超声波的功率和时间。
二、药物脂质体制备过程中的关键因素药物脂质体制备过程中,存在着一些关键因素,这些因素会直接影响到药物脂质体的性质和性能。
1. 药物选择药物的选择直接影响到药物脂质体的可制备性和稳定性。
一般来说,极性和脂溶性较好的药物更容易制备成脂质体。
而一些水溶性较差的药物则需要通过表面修饰或改变脂质的组分和性质来增加其溶解度和稳定性。
脂质体制备实验报告

脂质体制备实验报告1. 引言脂质体是一种由磷脂、胆固醇等组分构成的微小球形结构,广泛应用于药物传递、基因治疗等领域。
本实验旨在通过简单的实验步骤,了解脂质体的制备方法及其特性。
2. 实验材料•卵磷脂(L-α-磷脂酰胆碱)•胆固醇•氯仿•甲醇•磷酸盐缓冲液(pH 7.4)3. 实验步骤步骤一:制备脂质体的脂质溶液1.取适量的卵磷脂和胆固醇,按磷脂和胆固醇的摩尔比例混合(通常为10:1)。
2.将混合的脂质溶液置于干燥密闭容器中,加入适量的氯仿。
3.使用超声波仪器对溶液进行均匀混合,直到形成乳白色的透明溶液。
步骤二:制备脂质体悬浮液1.取适量的脂质溶液,将其加入磷酸盐缓冲液(pH 7.4)中。
2.使用超声波仪器对溶液进行均匀混合,直到脂质体悬浮分散均匀。
步骤三:脂质体特性分析1.利用动态光散射仪(DLS)测定脂质体的平均粒径和粒径分布。
2.利用透射电子显微镜(TEM)观察脂质体的形貌。
4. 实验结果与讨论经过实验制备得到的脂质体悬浮液呈乳白色,具有较好的分散性。
通过DLS测定,发现脂质体的平均粒径约为100 nm,粒径分布较窄。
透射电子显微镜观察结果显示,脂质体呈现球形结构,表面光滑。
这些结果表明,本实验制备的脂质体具有良好的稳定性和合适的粒径。
脂质体的制备方法简单、成本较低,适用于大规模制备。
脂质体具有良好的生物相容性,可被细胞摄取,并能够在细胞内释放药物。
因此,脂质体在生物医学领域具有广阔的应用前景,例如用于药物传递、基因治疗等方面。
5. 结论本实验通过简单的步骤制备了脂质体,并对其进行了特性分析。
实验结果表明,制备的脂质体具有较小的粒径和良好的稳定性,适用于药物传递等应用。
本实验为脂质体制备提供了一个简单可行的方法,为进一步研究和应用脂质体奠定了基础。
6. 参考文献[1] Torchilin, V. P. (2005). Recent advances with liposomes as pharmaceutical carriers. Nature Reviews Drug Discovery, 4(2), 145-160.[2] Allen, T. M., & Cullis, P. R. (2004). Drug delivery systems: entering the mainstream. Science, 303(5665), 1818-1822.。
脂质体的制备方法及研究进展_曹宁宁

第19卷第1期2003年3月天津理工学院学报JOURNAL OF TIANJIN INSTITUTE OF TECHNOLOGYVol.19N o.1M ar.2003文章编号:1004-2261(2003)01-0030-06脂质体的制备方法及研究进展*曹宁宁,羡菲,刘金鹏(天津理工学院生物与化学工程学院,天津300191)摘要:脂质体是磷脂自聚集而形成的双分子层结构,作为药物载体具有减少药物毒副作用及靶向作用的特点.主要介绍:脂质体3种制备方法物理分散法、两相分散法和表面活性剂增溶法的原理,制备出的脂质体的结构及包封性能和各自的优缺点;脂质体作为药物载体在抗癌、抗菌药物上的应用及其在药物载体方面应用的研究进展.关键词:脂质体;制备方法;药物载体中图分类号:R94文献标识码:APreparation methods of liposome and prospectsCAO Ning-ning,XIAN Fei,LIU Jin-Peng(Colleg e of Biotechnolog y and Chemical Eng.,T ianjin Institute of T echnolog y,T ianjin300191,China)Abstract:Liposomes made from phospholipid sel-f aggregat ion can deduce the drug toxit y and have the same target property as drug delivery system.T he form principles,propert ies,structure and advantages of main three methods are reviewed.T he application prospects of liposome as drug delivery system are mainly introduced.Keywords:liposome;preparation methods;drug delivery syst em自1965年由英国的Bang ham首先发现磷脂在水中可以自发形成脂质体(liposomes)以来[1],对其实验研究日渐广泛,已遍及生命科学及膜工程学等领域,并逐渐向临床应用发展.脂质体是由脂质双分子层组成,内部为水相的闭合囊泡.它的结构类似生物膜,又称人工生物膜,在水中平衡后具有亲水性和疏水性两性性质.脂质体具有以下特征[2~3]:1)脂质体是一种囊泡,2)脂质体的囊泡壁是两层磷脂分子构成,3)脂质体很小一般在1L m以下(1000L m= 1mm),4)磷脂在一定条件下才能形成脂质体,并非把磷脂放在水中就产生脂质体,磷脂在水中或甘油中搅拌只能形成乳化颗粒,5)脂质体包裹其他物质则形成不同内容物脂质体.脂质体的应用范围非常广泛,由于它的磷脂双分子膜与细胞膜结构类似,并且可以通过对其进行修饰,使其具有某些与生物体相似的性质,从而脂质体作为细胞模型,在生物体结构功能研究和模拟等方面具有重要意义[4~5].它的另一个重要的应用是作为药物载体[1].将药物包裹在脂质体的水相和膜相内,控制脂质体的靶向作用使其富集于病变部位将药物释放,从而可以减少所需药物的剂量,也大大避免了药物对人体正常部位的损害.近年来立体稳定脂质体[6]的研制大大提高了脂质体在体内的稳定性,使得脂质体作为药物载体在治疗癌症等疾病方面正在走向实用阶段[7~9].另外脂质体还在太阳能转换、超细微粒制备等方面得到了应用.1脂质体作为药物载体的应用1.1作为抗癌药物的载体由于脂质体对淋巴系统的定向性和对癌细胞的亲*收稿日期:2002-07-05基金项目:天津市高等学校科技发展基金资助项目(20010404)第一作者:曹宁宁(1972)),女,讲师,博士研究生和性,改变了药物在组织中的分布,使药物选择性的杀死癌细胞或抑制癌细胞的繁殖,从而提高疗效,减少剂量,降低毒性,减轻变态和免疫反应.研究表明[10]脂质体猪苓多糖能显著减少黑色素瘤肝转移癌生成作用而空白脂质体和游离态猪苓多糖则无明显作用.1.2作为抗菌,抗寄生虫的药物载体利用脂质体和生物细胞膜亲和力强的特点,将抗生素包裹在脂质体内可增强抗菌效用.如消炎痛制成脂质体后,其抑制角膜穿孔伤炎性反应的作用较混悬水剂明显增强[11].同时由于脂质体和脂复合物或脂分散体的粒子相对于游离的药物来说主要聚集于网状内皮系统,因此可以用来治疗利什曼病等网状内皮系统疾病.同时由于脂质体可以很大程度的降低肾脏的摄取,当二性霉素B制成脂质体后,能显著降低在治疗过程中对真菌感染患者引起的急性肾毒症[12].1.3作为抗病毒药物载体抗病毒药物制成脂质体可显著提高抗病毒疗效,降低了用量和毒副作用.无环鸟苷[13]是一种核苷类抗病毒剂,其水溶性差,将其制成脂质体混悬液后,大大提高其水溶度,降低了用量.2脂质体的制备方法脂质体的制备方法可分为三大类:物理分散法;两相分散法;表面活性剂增溶法.2.1物理分散法物理分散法的基本原理都是将类脂材料干燥成薄膜,然后加入水溶性介质分散,工艺也不复杂,但他们都有一共同的缺点)包封率都较低(微乳化法除外).下面简述一下这些方法.1)手摇法(也称薄膜法):手摇法是脂质体制备方法中最原始,但也是至今为止最基本和应用最广泛的方法[14].类脂材料溶解在有机溶剂中,然后在旋转蒸发器上,在真空下蒸除溶剂,加入缓冲液,再加入一些小玻璃球帮助分散,这样就形成了一个奶白色的分散液.这里应注意的一点是所用的烧瓶应尽量的大些,以便使类脂干燥后形成一层均匀的薄膜,并且使包封体积达到最大值.2)非手摇法:这是一个慢慢水合的方法以提高其包封率[15].在类脂膜形成后,首先将湿的氮气流通过薄膜15m in,然后再加水膨胀、水合,并慢慢搅拌形成脂质体.它的直径可达几百微米,但是只有在无离子和蛋白质时才可形成.3)超声波分散法[16]:水溶性药物溶于磷酸盐缓冲液,加入磷脂与胆固醇及脂溶性药物共溶于有机溶剂的溶液,搅拌蒸发除去有机溶剂,残留液经超声波处理,然后分离出脂质体.本法制备的大多为单室脂质体,如维生素E脂质体[17]、5-氟脲嘧啶脂质体等[18].4)法兰西加压法:这个方法是用非常高的压力将大的类脂球(M LV)通过一个膜.此法避免了像超声波所引起的降解和不均匀的问题[19].一般这种方法制备的脂质体的粒径在30nm~80nm.将M LV经过1400大气压的法兰西压力筒一次,约600Þ0左右的颗粒直径达25nm~50nm,而通过4次后,约940Þ0的脂质体直径到31.5nm~52.5nm.这个方法比超声波法形成的脂质体粒径稍大些,但与此相比,包封率上升,而渗透性有所下降.5)膜挤压法:降低脂质体的颗粒也可在低压下(小于7个大气压)通过一个滤膜[20].这个方法的优点是可选择膜的孔径,已决定颗粒的大小.而且在经过几次后也较均匀.6)微乳化法:梅赫(M ay hew)等报告了用一个高压均质器从浓的类脂悬浮液中制备小的M LV(也有称为SUV)的方法[21].这个装置可用空气泵或电力/水压增强泵产生非常高的液体压力(可到2100at).利用高压流经过精确规限的微细通道,流体立刻被加速到极高速度,并在特制的专利反应室内产生强大的剪切、冲击及空化作用,形成预期的精细密集及极为均一的脂质体.类脂材料可用MLV悬浮液也可用未水合的类脂浆加入到微乳化其中,经过几次循环,直到达到满意的尺寸为止.一般来说,循环一次后平均直径在100nm ~200nm,确切的方法分布取决于膜的成分及水和介质.这个方法有以下几个优点:重复性好,能大规模生产;微粒均匀稳定性好;包封率高能达到750Þ0.7)预脂质体法:这个方法是通过减少水的量来增加干燥类脂的表面积而发展起来的.将类脂干燥到一个多孔的支持体上(如粉状氯化钠、山梨醇或多糖等[22])然后搅拌下加入少量水以湿润被粉末包覆的干燥类脂.当支持体溶解后,就形成了一个M LV悬浮液.一般这个过程是一点点加水,待水蒸发后再加剩余的水.最后形成一个干燥的类脂.(预脂质体).2.2两相分散法这个方法的基本原理是将类脂剂溶解在有机溶剂中,然后这个油相与水相接触.同时将溶剂蒸发,以变成脂质体.又可分为3种类型:溶剂和水可互溶,(如乙醇注入法);溶剂和水不溶解,但水相过量,(如乙醚注#31#2003年3月曹宁宁,等:脂质体的制备方法及研究进展入法);溶剂和水不溶解,但溶剂过量,(如逆相蒸发法).1)乙醇注入法[23]:将磷脂与胆固醇等类脂质及脂溶性药物溶入乙醇,该溶液经注射器迅速注射到磷酸盐缓冲溶液(或含水溶性药物)中,形成脂质体.直径约25nm.其主要缺点是包封率低,且乙醇很难除去. 2)乙醚注入法[24]:将磷脂与胆固醇等类脂质及脂溶性药物溶入有机溶剂中(多用乙醚),该溶液经注射器缓缓注入加热至50e (并用磁力搅拌)的磷酸盐缓冲溶液(或含水溶性药物)中,不断搅拌至乙醚除尽为止,即得大的多孔脂质体.将其混悬液通过高压乳均机两次,所得成品大多为单室脂质体,少量为多室脂质体,粒径绝大多数在2um 以下.优点是方法较温和,包封率高且被氧化的可能性小,缺点是速度慢不适合大量制备.如头孢菌类脂质体[26]可用此法制得. 3)逆相蒸发法[27]:将磷脂等膜材溶于有机溶剂如氯仿、乙醚等,加入待包封药物的水溶液进行短时超声,直至形成稳定的W/O 型剂,然后减压蒸发除去有机溶剂,达到胶态后,滴加缓冲液,旋转帮助器壁上的凝胶脱落,然后,在减压下继续蒸发,制得水性混悬液,通过凝胶色谱法或超速离心法,除去未包封的药物,即得到大单层脂质体.此法适用于包裹水溶性药物、大分子生物活性物质如各种抗生素、胰岛素免疫球蛋白、碱性磷脂酶、核酸等.2.3 表面活性剂增溶法脂质薄膜、多层脂质体或单层脂质体与胆酸盐、脱氧胆酸盐等表面活性剂混合[27],通过离心法或凝胶过表1 脂质体的制备方法及参数Table 1 Preparation methods and parameters of liposome类别方法直径(L m)包裹体积(l/mol)包裹效率(0Þ0)M LV 手摇法0.4~3.5 3.55~15UVL逆相蒸发法0.2~1.011.735~65乙醚注入法0.1~0.423~3138~46膜挤压法0.2 1.3824.9洗涤剂除去法0.1 2.412.0钙离子熔化法0.2~1.07.010~15S UV超声波法0.025~0.050.8)乙醇注入法0.03~0.110.5 1.0法兰西挤压法0.03~0.08))高压乳化法-0.10.6970滤法或透析法除去表面活性剂,就可获得中等大小的单层脂质体此法适用于制备脂溶性蛋白类药物的脂质体,但这个方法并不作为脂质体的主要制备方法.它的优点是:方法温和,并不产生水解和氧化;表面活性剂/类脂比随意变化,以得到满意的尺寸. 它的缺点是:除去表面活性剂时需要渗析,这一过程需要几个甚至几十个小时.3 脂质体形成原理和脂质的组成3.1 脂质组成各种脂质和脂质混合物均可用于制备脂质体,而磷脂是最常用的[28].磷脂的主要成分是磷脂酰胆碱,磷脂酰乙醇胺,磷脂酰丝氨酸,磷脂酰甘油,磷脂酸等.其结构可简述为有一个离子型(至少是强极性链)的/极性头0和两条疏水性的高级脂肪烃长链(非极性尾部)组成,在某一特定浓度条件下,其极性头与极性头部分相结合,非极性尾部与非极性尾部相结合,而形成一个稳定的双分子层结构.构成脂质的另一类物质是胆固醇,它在膜中主要起着改变纯磷脂层性质的作用,它像/缓冲剂0一样起着调节膜结构/流动性0的作用.3.2 结合超声波分散法和离心法说明脂质体形成原理如图1所示,加入到磷脂和胆固醇的有机溶剂的水溶液在超声作用下分散为小水滴.磷脂、胆固醇吸附在水滴表面形成一层单分子膜,从而生成油包水(W/O)微乳液.将微乳液转移到缓冲水溶液上后,有机溶剂中多余的磷脂、胆固醇在与缓冲液的油水界面迅速生成一层单分子膜,在离心作用下,油相中的小水滴穿过油水界面的单分子膜并被其包围,在水相中形成脂质体.图1 脂质体的形成原理Fig.1 Formation principle of liposome#32#天 津 理 工 学 院 学 报 第19卷 第1期4脂质体作为药物载体的优点及对其表面修饰的目的脂质体作为一种内层含有水相的封闭的圆球型双层膜,用于药物释放系统,具有两个独特的优点:1)可以在其内水相包封水溶性药物,也可以在外层双层膜包封脂溶性药物;2)它和天然生物膜的生物相溶性比较好,在药物学应用中,安全性可靠.然而,脂质体不论其组成、尺寸大小和表面所带电荷如何,它都能够在静脉给药1h 后被网状内皮系统(RES)截留[29].因此,对脂质体进行表面修饰的主要目的是:(1)延长脂质体的半衰期和提高它在血液循环中的稳定性;(2)改变脂质体的生物学分布;(3)产生靶向效应;(4)使脂质体具有独特的性能,如使它具有对pH、温度和光等外界刺激产生敏感性.5种新型脂质体1)温度敏感脂质体:脂质膜在由/凝胶态0转到液晶结构时,其磷脂的脂酰链紊乱度及活动度增加,膜的流动性也增大,此时包封的药物的释放速率亦增大,此温度称为脂质体的相变温度.根据这一原理制备的脂质体成为温度敏感脂质体.2)pH敏感脂质体:根据肿瘤附近的pH值比周围正常组织低的事实,设计了pH敏感脂质体.其原理是pH低时可导致脂肪酸羧基的质子化而引起六方晶体(非相层结构)的形成.而它的形成则是膜融合的主要机制.如白喉霉素A pH敏感脂质体,DNA pH敏感脂质体.3)免疫脂质体:免疫脂质体是机体修饰的脂质体的简称.近年来,将癌细胞当作抗原细胞,使产生对抗这种癌细胞的单体,然后将这种抗体结合到脂质体上,从而使这种脂质体能够将药物定向输送到癌细胞,起到良好的疗效.4)掺入糖脂的脂质体:将糖脂链的一部分用棕榈酰或具有适当间隔基的胆淄醇基取代得到糖类衍生物,再与含药脂质体混合,在适当的条件下孵育,即得到掺入糖脂的脂质体.这种脂质体可改变其在组织内的分布,且稳定性好.5)前体脂质体:前体脂质体通常为干燥,具有良好流动性能的颗粒或粉末,贮存稳定,应用前与水水合可分散或溶解成等张的脂质体,这种脂质体解决了稳定性和高温灭菌等问题,为工业生产奠定了基础.6)聚合脂质体:聚合脂质体是构成脂质体的每个类脂分子通过共价键的形式连接起来的一种新型脂质体,通过共价键把脂质体的双分子膜与表面活性剂分子连接起来.可显著提高其稳定性,降低粒子的融合与聚集,使脂质体中药物渗漏显著降低,延长了有效期.7)磁性脂质体:磁性脂质体是在脂质体中掺入铁磁性物质制成.8)声振波敏感脂质体:将含有声振波敏感分子的脂质体药物给予患者,在其体外施声振波于所选择的靶位区域,使药物在脂质体内释放出,以增加组织细胞对药物的摄取,使靶位的药物浓度升高,从而降低全身毒性.9)光敏脂质体:光敏脂质体是将光敏物质的药物包裹在脂质体内,用来进行光学治疗,当在一定波长的光照射时,脂质体膜与囊泡物质间或脂质体之间发生融合作用而释放药物.无论是何种脂质体,都可分为3种类型:小单层状囊;大单层状囊和多层状囊.这3种类型的脂质体各有优缺点.各种类型脂质体的性能比较见表2.表2不同类型脂质体的性能比较结果Table2Performance of different type of liposome 脂质体种类优点缺点多层状囊的包封体积大,包封性能好,稳定相当好形状大小不均匀,难包封聚合物;很难有效地将包封物输送入皮肤细胞小单层状囊的形状大小均匀包封的有效体积较小,难包封聚合物,容易出现互溶现象.大单层状囊的能包封聚合物,包封的性能好,包封的体积大大小不均匀6脂质体研究展望研究证实,利用神经甘酯[30]或者聚乙二醇(PEG)衍生物对脂[31~34]质体进行表面修饰可以提高其稳定性.另外,Sunamoto等人[35~37]也利用多糖衍生物包覆脂质体,能够有效地延长脂质体的体内循环时间.除此之外,一系列的生物相容性合成高分子,无论是中性的或是荷电的,都已被用于提高脂质体的稳定性而得到较多的研究.近期的研究工作证实,高分子作为脂质体的包覆材料不仅只是扮演一个被动的保护角色,而且可能在实际上通过接受外来的刺激而参与控制药物的#33#2003年3月曹宁宁,等:脂质体的制备方法及研究进展释放过程.今后随着科学技术的发展和脂质体生产工艺研究的深入,相信会创造出更多更好的新型脂质体,使脂质体得到更广泛的应用.参考文献:[1]Bangham A D,Standish M M,Watkins J C.Diffussion ofunivalent inos across the lamella of swollen phospholipids [J].J.M ol.Biol.1965,13:238)252.[2]M artin C,Woodle,Danilo D L asic.Sterically stabilizedliposomes[J].Biochimica et Biophysica Acta,1992,1113:171)199.[3]王闻珠,邓英杰.脂质体肺部给药研究进展[J].沈阳药科大学学报,2000,17(3):226)229.[4]Lasic D D.L iposomes.From Physics to Application[M].Elvev ier:Amsterdam,1993.[5]Gregoriadis G.Liposome T echnology[M].Boca Rato n:CRC Press;1984.[6]牛荣丽,李志良.阿苯达唑免疫脂质体的制备[J].新疆医科大学学报,2001,24(1):659)661.[7]陈忠斌,王升启,王弘,等.pH敏脂质体对反义寡核苷酸康流感病毒活性的影响[J].中国生物化学与分子生物学报,1999,15(4):553)557.[8]石丽萍,颜光涛,李英丽,等.酸敏脂质体的制备及其在肠缺血-再灌注小鼠体内重要脏器中的分布[J].中华危重病急救医学,2001,13(11):659)661.[9]邹一愚,顾学裘,崛越勇.肝动脉注射阿霉素温度敏感脂质体的制剂研究[J].药学学报,1991,26(8):622)626. [10]张中冕,段方龄,张明智.脂质体猪苓多糖抗肝转移癌作用的研究[J].白求恩医科大学学报,1999,8(3):180)182.[11]吕延长,母敬郁,王友联,等.消炎痛脂质体对兔角膜穿孔伤的疗效观察[J].白求恩医科大学学报,1997,23(2):139)140.[12]郭宁如,吴绍熙.二性霉素B脂质体的研究与应用[J].中国新药杂志,1996,5(4):264)265.[13]周青.无环鸟苷脂质体混悬液的分析[J].中国医院药学杂志,1997,17(3):115)116.[14]W ang C Y,Yughes K W,Huang L.Improvedcytoplasmic delivery to plant protoplasts via PH-sensitiveliposome[J].Plant Physiol,1986,82:179)186.[15]Ropert C,M alvy C,Couvreur P.Inhibit ion of the fr iendretrovirus by antisense oligonucleot ide encapsulat ed inliposome:mechamism of action[J].P harm Res,1993,10(10):1427)1433.[16]郭健新,平其能,黄罗生.柔性环孢素纳米脂质体的制备及其变行性[J].中国药科大学学报,1999,30(3):187)191.[17]李国锋,周日红,曾抗,等.维生素E脂质体的制备[J].中国应用药学,1997,14(4):18)20.[18]肖旭.5-氟脲嘧啶温度敏感性脂质体制备方法的优化[J].药学实践杂志,1998,16(6):344)346.[19]T ari A M,T ucher S D,Deisser oth A,et al.Liposomedeliv er y of methyphosphonate antisenseoligo deoxynucleotide in chromic myelogenous lerkemia[J].Blood,1994,84(2):601)607.[20]M a D D F,Wei A Q.Enhanced delivery of syntheticoligonucleotides to huaman leukaemic cells by liposomesand immunoliposomes[J].L eukemia Research,1996,20(11~12):925)930.[21]K remer J M H.V esicles of variade diameter by a modifiedinject ion method[J].Biochemistry,1977,16(17):3932)3935.[22]阎家麟,童岩,王九一.紫杉醇脂质体的制备即其抑瘤作用的研究[J].药物生物技术,1996,3(3):1) 5. [23]Szoka F,O lsom F.Preparation of liposo me o f inter mediasize by a combination of reverse phase evaporation andextr usion through polycarnonate membranes[J].BiochemBiophys Acta,1980,601:559)571.[24]全东琴,苏德森,顾学裘.药物载体空白脂质体前体的制备及性质的研究[J].沈阳药科大学学报,1999,16(3):160)164.[25]张根旺,刘晓见.脂质体化妆品及其应用[J].郑州工程学院学报,2000,21(12):4)8.[26]Senior J H.Fate and behavior of liposomes in vivo:ar ev iew of co ntrolling factors[J].T her.Drug Carr ierSyst.,1987,3:123)193.[27]Allen T M,Chonn rge unila mellar liposomes w ith lowuptake into the reticuloendothelial system[J].FEBS L ett.,1987.223:42)46.[28]K libanovA l,M ar uyama K,T orchilinV P,et al.Amphipathic polyethyleneglycols effectively prolong thecirculation time of liposomes[J].FEBS L ett.,1990,268:235)237.[29]M or i A,K libannov A L,T o rchilin V P,et al.Influence ofster ic barrier activity of amphipathic poly(ethyleneglycol)and ganglioside GM1o n the circulat ion time of liposomesand on the target binding of immunoliposomes in v ivo[J].F EBS L ett.,1991,284:263)266.[30]Woodle M C,Lasic D D.Ster ically stabilized liposomes[J].Biochim.Biophys Acta,1992,1113:171)199. [31]T orchilin V P,K libanov A L,Huang L,et al.T ar getedaccumulation of poly ethyleneg lycol-coatedimmunoliposomes in infr acted rabbit myocardium[J].FASEBJ,1992,6:2716)2719.[32]SunamotoJ,Sato T,T aguchi T,et al,N aturally o ccurr ingpolysacchar ides deriv at ives w hich behave as an artificial cell#34#天津理工学院学报第19卷第1期wall on an ar tificial cell liposome[J].M acromolecules,1992,25:5665)5670.[33]Baszkin A,Rosilio V,A lbrecht G,et al.Cholesteryl-pullulan and cholesteryl-amylopectin interact ions w ithegg phosphatidy lcholine monolayers[J].J.ColloidI nterface Sci.,1991,145:502)511.[34]Sunamo to J,Sato T,Hiro ta M,et al.A newly developedimmunoliposomes an egg phosphatidylcholine liposomecoated w ith pullulan bearing both a cholesterol moiety andan IgM s frag ment[J].Biochim.Biophys.Acta,1987,898:323)330.[35]Ozden M Y,Hasir ci V N.Enzy me im mobilizatio n inpolymer-coated liposomes[J].Br itish Poly m.,J.,1990,23:229)234.[36]Ishihara K,Nakabayashi N.Specific interaction betw eenwate-r soluble phospholipi polymer and liposome[J].J.Polm.Sic:Po lym.chem.,1991,29:831)835.[37]T omas J L,Y ou H,T irrell D A.T uning the response o f apH-sensit ive membrane switch[J].J.Am.Chem.Soc.1995,117:2949)2950.(上接第12页)5结论通过在终端系统建立一种高效的、扩展性好的、能够支持数据密集和通信密集应用的底层基础结构,并在上层网络系统将CORBA与Web的结合,大大方便了WWW应用的开发、发布和维护,有助于在WWW 上建立分布式对象环境,推动WWW进入动态的应用阶段,从而极大地提高了WWW的发布能力,实现各种高级服务策略.基于该混合模式的系统将实现资源的管理和分配、通信、安全机制、统一的资源信息服务、提供远程数据访问等功能,使传统诊断技术能够在网络上得到充分发挥,并为故障诊断技术开创了新的研究方向.参考文献:[1]季立明.基于网络的设备监测诊断开放平台的研究[D].天津:天津大学,2002.43)67.[2]胡春华,朱庆华,张智勇,等.基于COR BA的分布式网络化制造系统建模[J].机电一体化,2001,(2):16)20. [3]吴伟蔚,杨叔子.故障诊断Ag ent研究[J].振动工程学报,2000,13(3):393)399.#35#2003年3月曹宁宁,等:脂质体的制备方法及研究进展。
脂质体制备技术及其研究进展

基金项目:/重大新药创制0科技重大专项(2009ZX09308-003)作者简介:刘晓谦,女,博士研究生 研究方向:药物新剂型研究 *通讯作者:王智民,男,教授 研究方向:药物化学及中药质量标准研究 Te:l (010)84014128 E-m ai:l z hmw 123@2631net #综 述#脂质体制备技术及其研究进展刘晓谦,王锦玉,仝燕,王智民*(中国中医科学院中药研究所,北京100700)摘要:目的 综述脂质体制备技术的研究进展及其发展前景。
方法 以近年来的研究文献为基础,结合药物的性质、工艺要求,对脂质体的制备方法进行综述,并对各种方法的优缺点进行分析。
结果与结论 脂质体作为药物载体用于药物的体内传递具有独特的优势,具有巨大的发展潜力和良好的应用前景。
关键词:脂质体;药物载体;制备技术中图分类号:R 944 文献标志码:A 文章编号:1001-2494(2011)14-1084-05 脂质体系指将药物包封于类脂质双分子层内而形成的超微型球状载体制剂,亦称类脂小球或液晶微囊。
其结构为一层或多层同心脂质双分子层。
脂质体技术于20世纪60年代中期即应用于化妆品领域,但直到20世纪70年代才将脂质体应用于药物载体,并引起广泛关注。
脂质体材料与生物体细胞膜成分相似,具有良好的生物相容性和可降解性,故而对机体的刺激性较低。
此外,脂质体还具有靶向和缓释的作用,因而有高效低毒的治疗特点。
脂质体最初主要用于包封脂溶性成分,后随着贮库泡沫技术(D epofoam techno logy ,D epo -Foam TM )[1]的出现开始应用于水溶性成分。
近年来又出现了长循环脂质体[2]、隐形脂质体等新型脂质体。
目前脂质体技术正在向着基因给药、靶向定位给药等领域发展。
可以预见,随着生化物理技术的发展,脂质体在医药领域必将拥有更为辉煌的前景。
理想的脂质体应具备以下特点:包封率高、粒径分布范围窄、稳定性好。
脂质体实验报告

脂质体实验报告引言脂质体是一种由磷脂和胆固醇等成分组成的微粒体,具有很强的生物相容性和可调控性。
由于其在药物递送和生物医学领域的广泛应用,研究脂质体的制备和性质具有重要意义。
本实验旨在制备脂质体,检测其粒径和稳定性,并评价其适用性。
材料和方法材料•卵磷脂•胆固醇•水相•甲醇•水解棕榈酰胺•氢氧化钠溶液•氯仿方法1.准备脂质体制备溶液:称取一定比例的卵磷脂和胆固醇加入甲醇中,并加入少量的水解棕榈酰胺,使其均匀混合。
2.制备脂质体:将溶液置于旋转蒸发仪中,在无菌条件下,以适当速度蒸发甲醇,形成脂质体。
3.超声处理:将脂质体溶液置于超声波清洗器中进行超声处理,以促进脂质体的形成和稳定性。
4.离心:使用高速离心机将脂质体样品离心,以去除未形成的脂质体和其他杂质。
5.检测粒径和稳定性:使用动态光散射仪(DLS)测量脂质体的粒径和Zeta电位,评估其稳定性。
结果与讨论通过以上方法制备的脂质体样品,得到了粒径分布较窄且稳定的脂质体,其粒径大小为XX nm,Zeta电位为XX mV。
这表明制备的脂质体颗粒均匀且具有较高的稳定性。
脂质体的粒径大小对药物递送和生物活性具有重要影响。
较小粒径的脂质体能够更容易被细胞吞噬,提高药物的靶向性和吸收率。
同时,脂质体的稳定性也是影响药物递送效果的重要参数。
因此,制备出具有较小粒径和高稳定性的脂质体对药物递送具有较好的应用前景。
总之,通过本实验制备的脂质体具有较小粒径和高稳定性,为药物递送和生物医学领域的应用提供了潜在的解决方案。
结论本实验成功制备出具有较小粒径和高稳定性的脂质体,并通过动态光散射仪对其进行了粒径和稳定性的测试。
这些结果显示,通过合适的材料比例和制备方法,能够制备出具有较好性能的脂质体样品。
脂质体在药物递送和生物医学领域具有重要应用前景,可以实现更准确和有效的药物输送。
这些研究成果对于进一步开发和优化脂质体递送系统具有重要意义。
参考文献[1] 张三, 李四. 脂质体在药物递送中的应用研究进展. 中药材学报, 2018, XX(X): XX-XX.[2] 王五, 赵六. 动态光散射技术在脂质体研究中的应用. 分析测试技术, 2019,X(X): X-X.。
药剂学实验脂质体的制备及包封率的测定

06
实验注意事项与改进建议
实验安全注意事项
实验室安全
01
确保实验室通风良好,佩戴适当的防护装备,如实验服、手套
和护目镜。
化学品安全
02
熟悉并遵守所有化学品的安全数据表(SDS)指南,特别注意
有毒、易燃或腐蚀性物质的正确处理和存储。
设备安全
03
正确使用实验设备,遵循制造商的操作指南,确保设备维护和
其他制备方法
复乳法
将药物水溶液与磷脂等膜材制成W/O型乳剂 后,再分散到外水相中形成W/O/W型复乳 ,除去有机溶剂后可得脂质体
熔融法
将磷脂等膜材在高于相变温度条件下熔融成液晶态 ,加入药物溶液进行搅拌,然后冷却固化得到脂质 体
超声波分散法
利用超声波的空化作用将磷脂膜材分散成脂 质体
03
包封率测定原理及方法
02
直至形成稳定的W/O型乳剂,减压蒸发除去有机溶 剂
03
形成脂质体,加入缓冲液,通过凝胶色谱法或超速 离心法除去未包封的药物
注入法
1
将类脂质和脂溶性药物溶于有机溶剂中,然后把 此药液经注射器缓缓注入加热至相变温度以上的 磷酸盐或醋酸盐等缓冲液
2
类脂质排列成整齐的脂质双分子层而形成脂质体
3
该方法可制备粒径较大且粒径分布均匀的脂质体
包封率定义及意义
包封率定义
包封率是指脂质体中药物包裹量与投 药量之比,是评价脂质体制备工艺和 药物包裹效果的重要指标。
包封率意义
高包封率意味着更多的药物被有效地 包裹在脂质体内,有利于提高药物的 稳定性和生物利用度,减少用药剂量 和副作用。
测定原理
分离原理
通过物理或化学方法将脂质体中的游 离药物与包裹药物分离,然后分别测 定两者的含量,计算包封率。
脂质体制备方法的研究进展

脂质体制备方法的研究进展摘要】对国内有关脂质体的研究进展进行了检索、分析、整理和归纳,综述了脂质体的制备方法研究进展。
【关键词】脂质体制备方法1965年英国的Banghan首先发现磷脂在水中自发形成脂质体(1iposome)。
脂质体是双分子类脂组成的封闭膜性微球,其结构类似生物膜。
60年代,Rahman等人首先将脂质体为药物载体,将药物包裹在脂质体的水相和膜相内,控制其靶向作用,使药物富集于病变部位释放。
近年来,随着生物技术的不断发展,脂质体制备工艺逐步完善,脂质体的作用机制进一步阐明。
脂质体在体内无降解,无毒性,无免疫性,使得脂质体作为药物的载体可以提高药物的治疗指数,矮有降低药物的毒性,减少药物的不良反应,减少药物的剂量等优点。
目前脂质体作为药物的载体越来越受到重视,进步迅速。
1 薄膜分散法将磷脂和胆固醇等类脂及脂溶性药物溶于氯仿中,将该氯仿液于玻璃瓶中旋转蒸发,使在玻璃瓶的内壁上形成薄膜,将水溶性药物溶于磷酸盐缓液中,加入玻璃瓶不断搅拌,即得脂质体。
2 逆相蒸发法将磷脂等膜材溶于有机溶剂如氯仿、乙醚等,加入待包封药物的水溶液进行短时超声,直到形成稳定的w/o型乳剂,然后减压蒸发除去有机溶剂,达到胶态后,滴加缓冲液,旋转帮助器壁上的凝胶脱落,然后再减压下继续蒸发制得水性悬浮液,通过凝胶色谱或超离心法除去未包入的药物,即得脂质体。
3 冷冻干燥法将类脂高度分散在水溶液中,冷冻干燥,然后再分散到含药的水性介质中,形成脂质体[1]。
4 冻融法先制备未包封药物的小单室脂质体,在冻干前将待包封的药物加入,在快速冷冻过程中,由于冰晶的形成,使形成的脂质体膜破裂,形成冰晶的片层与破碎的膜同时存在,此状态不稳定,在缓慢融化过程中,暴露出的脂膜互相融合,重新形成脂质体。
5 熔融法将磷脂,表面活性剂加少量水相溶解,胆固醇熔融后与之混合,然后滴入65℃左右的水相溶液中保温制得[2]。
6 复乳法将少量水相与较多的磷脂油相进行乳化(第1次)形成w/o的反相胶团,减压除去溶剂,然后加较大量的水相进行乳化(第2次),形成w/o/w型复乳,减压蒸发除去有机溶剂,即得脂质体。
脂质体的制备方法及其研究进展精品资料

脂质体的制备方法及其研究进展作者:穆筱梅,梁世强【摘要】介绍了目前常用脂质体的两大类制备方法:被动载药法和主动载药法,并对其优缺点进行比较。
被动载药法适于脂溶性强的药物,包封率高且不易泄露;而主动载药法适于两亲性药物。
【关键词】脂质体;被动载药;主动载药脂质体作为药物载体具有提高药物疗效、减轻药物不良反应及靶向作用的特点。
三十多年来,人们就其制备方法进行了大量的研究。
脂质体是由磷脂分子在水相中通过疏水作用形成的,因此制备脂质体所强调的不是膜组装,而是如何形成适当大小、包封率高和稳定性高的囊泡。
制备的方法不同,脂质体的粒径可从几十纳米到几微米,并且结构也不尽相同。
目前,制备脂质体的方法较多,常用的有薄膜法、反相蒸发法、溶剂注入法和复乳法等,这些方法一般称为被动载药法,而pH梯度法,硫酸铵梯度法一般被称为主动载药法。
1 被动载药法脂质体常用制备方法主要有薄膜分散法、反相蒸发法、注入法、超声波分散等。
在制备含药脂质体时,首先将药物溶于水相或有机相中,然后按适宜的方法制备含药脂质体,该法适于脂溶性强的药物,所得脂质体具有较高包封率。
1.1 薄膜分散法此法最初由Bangham 等报道,是最原始但又是迄今为止最基本和应用最广泛的脂质体的制备方法。
将磷脂和胆固醇等类脂及脂溶性药物溶于有机溶剂,然后将此溶液置于一大的圆底烧瓶中,再旋转减压蒸干,磷脂在烧瓶内壁上会形成一层很薄的膜,然后加入一定量的缓冲溶液,充分振荡烧瓶使脂质膜水化脱落,即可得到脂质体。
这种方法对水溶性药物可获得较高的包封率,但是脂质体粒径在0.2~5 μm 之间,可通过超声波仪处理或者通过挤压使脂质体通过固定粒径的聚碳酸酯膜,在一定程度上降低脂质体的粒径。
1.2 超声分散法将磷脂、胆固醇和待包封药物一起溶解于有机溶剂中,混合均匀后旋转蒸发去除有机溶剂,将剩下的溶液再经超声波处理,分离即得脂质体。
超声波法可分为两种“水浴超声波法和探针超声波法”,本法是制备小脂质体的常用方法,但是超声波易引起药物的降解问题。
脂质体的制备技术及研究进展

脂质体的制备技术及研究进展摘要】目的综述脂质体的制备方法及其应用的研究进展。
方法查阅近几年有关脂质体研究的国内外文献。
结果从制备方法和应用方面进行了概括。
结论脂质体的制备方法多样,应用广泛。
开展脂质体制剂的研究,推进脂质体的工业化具有可能性和现实意义。
【关键词】脂质体制备综述【中图分类号】R94 【文献标识码】A 【文章编号】2095-1752(2013)05-0096-03脂质体(liposomes)是磷脂分散在水中时形成的一个球状的脂质双分子层,其内部为水相的闭合囊泡。
磷脂、三酰甘油类和胆固醇是脂质体的主要成分。
由于其结构类似生物膜,故又称人工生物膜(artificial biological membrane),因此被认为具有高度的生物相容性[1]。
脂质体作为药物载体,具有以下优点:脂质体既能包封脂溶性药物,又能包封水溶性药物;脂质体能有效地保护包裹物;能有效地控制药物释放;可通过改变脂质体大小和电荷,以控制药物在体内组织中的分布及在血液中的清除率;改变脂质体某种物理因素,例如改变用药局部的pH、病变部位的温度等能明显改变脂质体膜的通透性,促使脂质体选择性地释放药物;可用单克隆抗体等配体修饰脂质体,靶向病变部位(即药物导弹);脂质体进入体内后主要被网状内皮系统中吞噬细胞所吞噬,这能激发机体的自身免疫功能,并使药物主要分布在肝、脾、肺和骨髓等组织器官中,从而提高药物的治疗指数;脂质体本身对人体无毒性和免疫抑制作用;脂质体适合多途径给药等。
自从1965年英国科学家Alec Bangham在研究血液中的脂质成分时发现脂质体以来,脂质体作为一种药物给药载体在医药领域的研究得到国内外的广泛关注,并取得令人瞩目的成就,到目前为止SFDA已批准了多柔比星、阿糖胞苷、两性霉素B、紫杉醇等多个相关脂质体产品在中国的上市,奥沙利铂、长春瑞滨等多个脂质体产品申报上市也在进行中。
本文着重介绍脂质体作用特点、制备方法、处方设计的研究进展。
一种脂质体的制备方法及其应用与流程

一种脂质体的制备方法及其应用与流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!脂质体的制备方法、应用及流程解析脂质体,一种由双层磷脂分子包裹的微小囊泡,已在药物传递、生物技术以及化妆品等领域展现出广泛的应用。
脂质体制剂的制备与性能研究

脂质体制剂的制备与性能研究脂质体制剂是一种广泛应用于药物传递系统的载体,可提高药物的溶解度和稳定性,并满足控释和靶向传递的要求。
本文将探讨脂质体制剂的制备方法及其性能研究。
一、脂质体制剂的概述脂质体制剂是由脂质组分构成的微粒或胶束结构。
其内部包裹着水溶性或油溶性的药物分子。
脂质体制剂主要由磷脂、胆固醇和表面活性剂组成。
脂质体制剂的三维结构和组分的选择对其性能有着重要影响。
二、脂质体制剂制备方法1. 薄膜溶解法薄膜溶解法是将脂质与溶剂混合后制备成薄膜,然后通过溶剂蒸发或水合处理制备成脂质体。
该方法简单易行,适用于大多数脂质体的制备。
2. 超声法超声法将溶剂与脂质体进行超声处理,使得脂质体形成微粒。
该方法可缩短制备时间,增加脂质体的稳定性和均匀性。
3. 高压均质法高压均质法使用高压机械力将药物与脂质体混合并加以处理,使其形成均匀的脂质体制剂。
该方法适用于粘度较高的药物。
4. 逆流法逆流法通过将含有脂质体的有机相与含有表面活性剂的水相逆向流动来增加脂质体的稳定性和均匀性。
该方法适用于高浓度药物的制备。
三、脂质体制剂性能研究1. 粒径和分散性脂质体粒径和分散性对其稳定性和药物释放性能有着重要影响。
常用的粒径检测方法包括激光粒度计、电子显微镜等。
2. 药物载荷量药物载荷量是指脂质体中药物的含量。
药物载荷量的高低直接关系到脂质体的药物释放性能。
可通过溶出试验等方法进行药物载荷量的测定。
3. 药物释放性能药物释放性能关系到脂质体在体内的释放速度和药物的治疗效果。
通过离体释放试验和体外仿真模型等方法进行药物释放性能的研究。
4. 稳定性脂质体制剂的稳定性受到光照、温度和储存时间等因素的影响。
可通过离心、紫外光谱和差示扫描量热等方法进行脂质体的稳定性研究。
5. 生物相容性和毒性生物相容性和毒性是评价脂质体制剂应用性能的重要指标。
可通过体内和体外毒性实验对脂质体制剂的生物相容性和毒性进行评估。
四、脂质体制剂的应用脂质体制剂已被广泛应用于药物传递系统。
脂质体实验报告

一、实验目的1. 学习脂质体的制备方法。
2. 探究不同制备方法对脂质体特性的影响。
3. 分析脂质体的稳定性及释药特性。
二、实验原理脂质体是一种由磷脂双分子层组成的球形囊泡,具有生物相容性好、靶向性强、载药量高等优点,在药物递送、基因治疗等领域具有广泛的应用前景。
本实验采用薄膜分散法、逆相蒸发法和超声波分散法制备脂质体,并对其特性进行研究。
三、实验材料1. 脂质体制备原料:大豆卵磷脂、胆固醇、二氯甲烷、橄榄油等。
2. 脂质体特性检测材料:荧光素、荧光分光光度计、紫外-可见分光光度计等。
四、实验方法1. 薄膜分散法制备脂质体(1)将大豆卵磷脂和胆固醇溶解于二氯甲烷中,形成均匀的溶液。
(2)将橄榄油加入上述溶液中,充分振荡混合。
(3)将混合液倒入蒸发皿中,于60℃水浴加热蒸发溶剂,形成薄膜。
(4)用适量磷酸盐缓冲溶液(pH 7.4)洗涤薄膜,收集脂质体。
2. 逆相蒸发法制备脂质体(1)将大豆卵磷脂和胆固醇溶解于二氯甲烷中,形成均匀的溶液。
(2)将橄榄油加入上述溶液中,充分振荡混合。
(3)将混合液倒入旋转蒸发仪中,于40℃下蒸发溶剂,形成薄膜。
(4)用适量磷酸盐缓冲溶液(pH 7.4)洗涤薄膜,收集脂质体。
3. 超声波分散法制备脂质体(1)将大豆卵磷脂和胆固醇溶解于二氯甲烷中,形成均匀的溶液。
(2)将橄榄油加入上述溶液中,充分振荡混合。
(3)将混合液倒入超声波处理仪中,于50℃下进行超声波处理,制备脂质体。
五、实验结果与分析1. 脂质体形态观察采用荧光显微镜观察不同制备方法制备的脂质体形态。
结果显示,薄膜分散法制备的脂质体呈球形,粒径分布均匀;逆相蒸发法制备的脂质体呈不规则形状,粒径分布不均匀;超声波分散法制备的脂质体呈球形,粒径分布均匀。
2. 脂质体粒径及粒径分布采用动态光散射仪测定不同制备方法制备的脂质体粒径及粒径分布。
结果显示,薄膜分散法制备的脂质体平均粒径为(100±5)nm,粒径分布范围为(50~150)nm;逆相蒸发法制备的脂质体平均粒径为(150±10)nm,粒径分布范围为(100~200)nm;超声波分散法制备的脂质体平均粒径为(120±8)nm,粒径分布范围为(80~160)nm。
脂质体的制备实验报告

脂质体的制备实验报告《脂质体的制备实验报告》摘要:本实验旨在通过脂质体的制备实验,探究脂质体在药物传递和生物医学领域的应用。
实验中使用了不同的脂质体制备方法,并通过测定其粒径、Zeta电位和荧光显微镜观察等手段,对脂质体的性质进行了分析。
实验结果表明,脂质体具有良好的稳定性和药物载荷能力,为进一步研究脂质体在药物传递领域的应用奠定了基础。
关键词:脂质体;制备;药物传递;实验报告引言:脂质体是一种由磷脂和胆固醇等成分组成的微小囊泡,具有良好的生物相容性和药物载荷能力,因此在药物传递和生物医学领域具有广泛的应用前景。
本实验旨在通过脂质体的制备实验,探究不同制备方法对脂质体性质的影响,为其在药物传递领域的应用提供实验基础。
材料与方法:1. 实验材料:卵磷脂、胆固醇、荧光标记药物等。
2. 脂质体制备方法:薄膜法、乳化法等。
3. 实验步骤:按照不同的脂质体制备方法进行实验,包括脂质体的制备、粒径测定、Zeta电位测定和荧光显微镜观察等。
结果与讨论:通过实验,我们成功制备了不同性质的脂质体,并对其进行了性质分析。
结果显示,不同制备方法得到的脂质体粒径和Zeta电位存在一定差异,薄膜法制备的脂质体粒径较小,Zeta电位较高,而乳化法制备的脂质体粒径较大,Zeta电位较低。
荧光显微镜观察结果表明,薄膜法制备的脂质体具有较好的荧光标记药物载荷能力。
这些结果表明,脂质体的性质受制备方法的影响较大,不同性质的脂质体适用于不同的药物传递需求。
结论:通过脂质体的制备实验,我们对脂质体的性质进行了初步分析,结果表明脂质体具有良好的稳定性和药物载荷能力,为其在药物传递领域的应用提供了实验基础。
然而,脂质体的制备方法对其性质有较大影响,需要根据具体需求选择合适的制备方法。
未来,我们将进一步研究脂质体在药物传递领域的应用,为其在临床治疗中发挥更大的作用。
脂质体实验报告

脂质体实验报告脂质体实验报告引言:脂质体是一种由磷脂和胆固醇等成分组成的微小球状结构,具有良好的生物相容性和生物降解性。
由于其独特的结构和性质,脂质体在药物传递、基因治疗和化妆品等领域中得到广泛应用。
本实验旨在研究脂质体的制备方法和性质,以期为进一步应用脂质体提供实验依据。
实验一:脂质体的制备方法一般来说,脂质体的制备方法主要包括薄膜溶解法、乳化法和胶束法等。
本实验选择薄膜溶解法制备脂质体。
实验材料:1. 磷脂(如卵磷脂)2. 胆固醇3. 乙醇4. 磷酸缓冲液实验步骤:1. 将磷脂和胆固醇按照一定比例称取,并加入乙醇中,制备脂质体溶液。
2. 将脂质体溶液用玻璃棒搅拌均匀,使磷脂和胆固醇充分溶解。
3. 将脂质体溶液转移到磷酸缓冲液中,使脂质体形成。
实验结果:经过制备,我们成功得到了形态规整、粒径均一的脂质体。
实验二:脂质体的性质研究为了研究脂质体的性质,我们进行了一系列实验。
实验一:脂质体的稳定性我们将制备好的脂质体溶液放置在不同温度下,观察其稳定性。
结果显示,脂质体在室温下稳定性较好,但在高温下容易发生相互融合。
实验二:脂质体的药物传递性能我们选择一种常用的抗癌药物,并将其包载到脂质体中。
通过体外释放实验发现,脂质体具有较好的药物缓释性能,能够延长药物的释放时间。
实验三:脂质体的细胞摄取能力我们将标记有荧光染料的脂质体与细胞共同培养,并观察细胞对脂质体的摄取情况。
结果表明,脂质体能够有效地被细胞摄取,并释放荧光染料。
实验四:脂质体的毒性研究为了评估脂质体的安全性,我们进行了细胞毒性实验。
结果显示,脂质体对细胞没有明显的毒性作用,具有较好的生物相容性。
结论:通过本实验,我们成功制备了形态规整、粒径均一的脂质体,并研究了其性质。
脂质体具有良好的稳定性、药物传递性能和细胞摄取能力,并且对细胞没有明显的毒性作用。
这些结果为脂质体在药物传递和其他领域的应用提供了实验基础。
未来,我们将进一步研究脂质体的制备方法和性质,以期推动其在临床和科研中的广泛应用。
脂质体制备方法的研究进展

脂质体制备方法的研究进展王 琳(苏州卫生职业技术学院,江苏苏州215009)摘要:目的 论述脂质体制备方法的研究进展。
方法 检索近年来有关制备脂质体的文献,主要介绍了几种常用的脂质体制备方法,并比较制备出的脂质体的结构及包封性能和各自的优缺点。
结果 以脂质体作药物载体,可以提高药物的溶出度和稳定性,增加药物对靶区的指向性,降低对正常细胞的毒性,提高药物的生物利用度。
结论 这几种方法制备的脂质体都不能完全满足药用脂质体要求,因此通常将这些方法联合起来应用。
关键词:脂质体;载药特性;制备方法do i:10.3969/j.issn.1004 2407.2010.05.042中图分类号:R944 文献标志码:A文章编号:1004 2407(2010)05 封2 03脂质体(Liposo me)或称类脂小球、液晶微囊,是将药物包封于类脂质双分子层形成的薄膜中间所制成的超微型球状载体制剂[1]。
1965年,英国Bang han等[2]将磷脂悬浮于水中首次制得了脂质体。
20世纪70年代初,Rahm an等[3]将脂质体作为药物载体应用。
至此,脂质体引起了世界各国医药学者的关注。
1 脂质体的载药特性由于脂质体结构的多功能性,其可传递多种药物,包括化疗药物、免疫调节剂、螯合剂、血色素和基因药物等。
脂质体作为药物载体具有如下优点[4 6]:(1)靶向作用:脂质体有药物 导弹 的美称[7]。
可被动靶向网状内皮系统(reticulo endo thelial system RES); 增加药物对淋巴系统的指向性; 对肿瘤细胞有较好的亲和力; 改变脂质体膜组成和对膜进行修饰。
(2)增效减毒作用:对脂质体表面性质进行改变,如粒径大小、表面电荷、组织特异性抗体等,使脂质体能选择性地分布于某些组织和器官,提高药物在靶部位的治疗浓度,从而也缩小了用药剂量,降低了毒性,减少了不良反应。
(3)长效作用:可延缓或控制药物在组织中的扩散,延长药物有效作用时间。
药物制剂中脂质体的制备与应用研究

药物制剂中脂质体的制备与应用研究近年来,随着药物研究的深入,脂质体作为一种重要的药物载体逐渐受到了广泛关注。
脂质体是一种由磷脂类物质组成的微囊体,具有优异的生物相容性和生物降解性,对水溶性和油溶性药物都有良好的包封效果。
本文将重点讨论脂质体的制备方法及其在药物制剂中的应用研究。
一、脂质体的制备方法1. 脂膜溶解法脂膜溶解法是一种常用的脂质体制备方法。
其主要步骤是将磷脂溶解在有机溶剂中,然后加入药物,通过溶剂蒸发或超声乳化等方法形成脂质体。
这种方法制备的脂质体具有较小的粒径和较高的药物包封率。
2. 沉淀法沉淀法是一种通过药物与磷脂的共沉淀形成脂质体的方法。
药物和磷脂在溶液中共同形成微囊体,然后通过离心等方法分离得到脂质体。
这种方法制备的脂质体结构较为稳定,能够有效保护药物免受外界环境的干扰。
3. 脂质指位法脂质指位法是一种通过指位的膨胀作用使药物与磷脂相互混合形成脂质体的方法。
该方法制备的脂质体具有较高的药物包封率和较好的稳定性,适用于疏水性药物的制备。
二、脂质体在药物制剂中的应用1. 提高药物稳定性脂质体作为一种良好的药物载体,能够有效保护药物免受外界环境的干扰。
在药物制剂中加入脂质体可以提高药物的稳定性,延长药物的有效期,并减少药物的副作用。
2. 改善药物生物利用度脂质体能够提高药物的生物利用度,增加药物的口服吸收。
脂质体由于具有与细胞膜相似的结构,能够在胃肠道中与细胞膜融合,促进药物的吸收。
因此,在口服给药制剂中加入脂质体可以提高药物的生物利用度,减少药物的剂量。
3. 改善药物的靶向性脂质体可以通过改变其表面性质,使药物能够更好地靶向到病灶部位。
例如,通过改变脂质体的表面电荷,可以增强脂质体对肿瘤细胞的亲和力,实现药物的靶向输送。
4. 提高药物的溶解度和稳定性脂质体在药物制剂中添加后,可以显著提高药物的溶解度和稳定性。
由于脂质体具有良好的生物相容性和降解性,能够与药物形成亲和性较好的结合,从而改善药物的溶解度和稳定性,提高药物的疗效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脂质体的制备方法及其研究进展作者:穆筱梅,梁世强【摘要】介绍了目前常用脂质体的两大类制备方法:被动载药法和主动载药法,并对其优缺点进行比较。
被动载药法适于脂溶性强的药物,包封率高且不易泄露;而主动载药法适于两亲性药物。
【关键词】脂质体;被动载药;主动载药脂质体作为药物载体具有提高药物疗效、减轻药物不良反应及靶向作用的特点。
三十多年来,人们就其制备方法进行了大量的研究。
脂质体是由磷脂分子在水相中通过疏水作用形成的,因此制备脂质体所强调的不是膜组装,而是如何形成适当大小、包封率高和稳定性高的囊泡。
制备的方法不同,脂质体的粒径可从几十纳米到几微米,并且结构也不尽相同。
目前,制备脂质体的方法较多,常用的有薄膜法、反相蒸发法、溶剂注入法和复乳法等,这些方法一般称为被动载药法,而pH梯度法,硫酸铵梯度法一般被称为主动载药法。
1 被动载药法脂质体常用制备方法主要有薄膜分散法、反相蒸发法、注入法、超声波分散等。
在制备含药脂质体时,首先将药物溶于水相或有机相中,然后按适宜的方法制备含药脂质体,该法适于脂溶性强的药物,所得脂质体具有较高包封率。
1.1 薄膜分散法此法最初由Bangham 等报道,是最原始但又是迄今为止最基本和应用最广泛的脂质体的制备方法。
将磷脂和胆固醇等类脂及脂溶性药物溶于有机溶剂,然后将此溶液置于一大的圆底烧瓶中,再旋转减压蒸干,磷脂在烧瓶内壁上会形成一层很薄的膜,然后加入一定量的缓冲溶液,充分振荡烧瓶使脂质膜水化脱落,即可得到脂质体。
这种方法对水溶性药物可获得较高的包封率,但是脂质体粒径在0.2~5 μm 之间,可通过超声波仪处理或者通过挤压使脂质体通过固定粒径的聚碳酸酯膜,在一定程度上降低脂质体的粒径。
1.2 超声分散法将磷脂、胆固醇和待包封药物一起溶解于有机溶剂中,混合均匀后旋转蒸发去除有机溶剂,将剩下的溶液再经超声波处理,分离即得脂质体。
超声波法可分为两种“水浴超声波法和探针超声波法”,本法是制备小脂质体的常用方法,但是超声波易引起药物的降解问题。
1.3 冷冻干燥法脂质体混悬液在贮存期间易发生聚集、融合及药物渗漏,且磷脂易氧化、水解,难以满足药物制剂稳定性的要求。
1978 年Vanleberghe 等首次报道采用冷冻干燥法提高脂质体的贮存稳定性。
目前,该法已成为较有前途的改善脂质体制剂长期稳定性的方法之一。
脂质体冷冻干燥包括预冻、初步干燥及二次干燥3 个过程。
冻干脂质体可直接作为固体剂型,如喷雾剂使用,也可用水或其它溶剂化重建成脂质体混悬液使用,但预冻、干燥和复水等过程均不利于脂质体结构和功能的稳定。
如在冻干前加入适宜的冻干保护剂,采用适当的工艺,则可大大减轻甚至消除冻干过程对脂质体的破坏,复水后脂质体的形态、粒径及包封率等均无显著变化。
单糖、二糖、寡聚糖、多糖、多元醇及其他水溶性高分子物质都可以用做脂质体冻干保护剂,其中二糖是研究最多也是最有效的,常用的有海藻糖、麦芽糖、蔗糖及乳糖。
本法适于热敏型药物前体脂质体的制备,但成本较高。
陈建明等[1]以大豆磷脂为膜材,以甘露醇为冻干保护剂,采用冻干法制备了维生素A前体脂质体,复水化后平均粒径为0.615 1 μm ,包封率98.5%。
林中方等[2]采用冻干法制备了鬼臼毒素体脂质体,复水化后平均粒径为 1.451 μm ,包封率72.3%,但是这种方法仍然存在着不足之处,例如脂质体复水化后粒径分布不够均匀。
1.4 冻融法此法首先制备包封有药物的脂质体,然后冷冻。
在快速冷冻过程中,由于冰晶的形成,使形成的脂质体膜破裂,冰晶的片层与破碎的膜同时存在,此状态不稳定,在缓慢融化过程中,暴露出的脂膜互相融合重新形成脂质体。
何文等[3]分别用反相蒸发法、乳化法和冻融法制备了甲氧沙林脂质体。
通过研究发现,冻融法制备的脂质体的包封率最高,但是粒径最大。
反复冻融可以提高脂质体的包封率,王健松[4]制备了阿奇霉素脂质体,实验发现,经3次重复冻融后,阿奇霉素脂质体的包封率从61.4% 增加到78%,但是当冻融次数增加到4次,包封率变化很小。
该制备方法适于较大量的生产,尤其对不稳定的药物最适合。
1.5 复乳法此法第1步将磷脂溶于有机溶剂,加入待包封药物的溶液,乳化得到W/O 初乳,第2步将初乳加入到10倍体积的水中混合,乳化得到W/O/W乳液,然后在一定温度下去除有机溶剂即可得到脂质体。
Kim [5]用乳化法制得脂质体的包封率比较高,但是粒径较大。
Tomoko等[6]通过研究发现,第2步乳化过程和有机溶剂的去除过程的温度对脂质体的粒径有比较大的影响,较低的温度有利于减小脂质体的粒径,通过控制温度可以制得粒径为400 nm,包封率达到90%的脂质体。
1.6 注入法将类脂质和脂溶性药物溶于有机溶剂中(油相),然后把油相均速注射到水相(含水溶性药物)中,搅拌挥尽有机溶剂,再乳匀或超声得到脂质体。
根据溶剂的不同可分为乙醇注入法和乙醚注入法。
乙醇注入法避免了使用有机溶剂,丁丽燕[5]用乙醇法制备了司帕沙星脂质体,通过研究发现慢速注入可制得具有较高包封率的脂质体,其包封率为47%。
乙醚注入法制备的脂质体大多为单室脂质体,粒径绝大多数在2 μm以下,操作过程中温度比较低(40℃),因此,该方法适用于在乙醚中有较好溶解度和对热不稳定药物,同时通过调节乙醚中不同磷脂的浓度,可以得到不同粒径且粒径分布均匀的脂质体混悬液[8]。
1.7 反相蒸发法最初由Szoka提出,一般的制法是将磷脂等膜材溶于有机溶剂中,短时超声振荡,直至形成稳定的W/O乳液,然后减压蒸发除掉有机溶剂,达到胶态后,滴加缓冲液,旋转蒸发使器壁上的凝胶脱落,然后在减压下继续蒸发,制得水性混悬液,除去未包入的药物,即得大单层脂质体脂质体。
此法可包裹较大的水容积,一般适用于包封水溶性药物、大分子生物活性物质等。
1.8 超临界法传统的脂质体制备方法,必须要使用氯仿,乙醚、甲醇等有机溶剂,这对环境和人体都是有害的。
超临界二氧化碳是一种无毒、惰性且对环境无害的反应介质。
严宾等[9]用超临界法制备了头孢唑林钠脂质体,将一定量的卵磷脂溶解于乙醇中配得卵磷酯乙醇溶液,与头孢唑啉钠溶液一起放入加入高压釜中,将高压釜放入恒温水浴中,通入CO2。
在其超临界态下孵化30min,制备脂质体。
采用超临界CO2法制备的包封率高、粒径小,稳定性增强。
2 主动载药对于两亲性药物,如某些弱酸弱碱,其油水分配系数介质pH和离子强度的影响较大,用被动载药法制得的脂质体包封率低。
主动载药是利用两亲性的药物,能以电中性的形式跨越脂质双层,但其电离形式却不能跨越的原理来实现的。
通过形成脂质体膜内、外水相的pH梯度差异,使脂质体外水相的药物自发地向脂质体内部聚集。
此法通常用脂质体包封酸性缓冲盐,然后用碱把外水相调成中性,建立脂质体内外的pH 梯度。
药物在外水相的pH环境下以亲脂性的中性形式存在,能够透过脂质体双层膜。
而在脂质体内水相中药物被质子化转为离子形式,不能再通过脂质体双层回到外水相,因而被包封在脂质体中。
主动载药法广义上就是指pH 梯度法。
人们把其细分为:(1)pH梯度法;(2)硫酸铵梯度法;(3)醋酸钙梯度法。
其中硫酸铵梯度法和醋酸钙梯度法只是pH梯度法的两种特殊形式。
2.1 pH梯度法pH梯度法通过调节脂质体内外水相的pH值,形成一定的pH梯度差,弱酸或弱碱药物则顺着pH梯度,以分子形式跨越磷脂膜而使以离子形式被包封在内水相中。
赵妍等[10]用以pH梯度法制备硫酸长春新碱脂质体,其包封率大于85%,而被动载药法制备的硫酸长春新碱脂质体的包封率最高为14.4%。
Jia等[11]用pH梯度法内水相pH 0.5%外水相pH4.0制备了卡苯达唑脂质体,包封率高于95%。
杜松等[12]用pH梯度法制备盐酸去氢骆驼蓬碱脂质体,包封率大于80%,研究表明,虽然制得的脂质体没有加强药物的抗癌活性,但是大大降低了其毒副作用。
跨膜pH梯度是影响包封率的最主要因素,通常pH梯度越大,载入脂质体内的药物越多,包封率也越高。
制备伊立替康脂质体时[13],当pH梯度≥3.7时包封率达97%以上,当pH梯度<2时,包封率不到5%;Mamyer等[14]在研究中发现通过跨膜pH梯度法制备多柔比星脂质体,pH梯度达到3.5时包封率达98%,降低内水相缓冲液的pH可增大pH梯度,但会加剧磷脂的水解,降低脂质体的稳定性。
此外,药物自身性质如油水分配系数、膜渗透性等亦可影响包封率。
Quan等[15]用pH梯度法制备多巴胺脂质体,由于多巴胺亲水性较强,无法直接克服能量壁垒穿过脂质双分子层进入内水相,但与拉沙洛西(lasalocid)结合形成复合物可暴露出亲脂性表面,即可穿过脂质膜进入脂质体,包封率提高到85%。
氧化苦参碱水溶性较大,脂溶性较弱,因此采用pH梯度法制备脂质体包封率只有50%[16]。
2.2 硫酸铵梯度法硫酸铵梯度法通过游离氨扩散到脂质体外,间接形成pH梯度,使药物积聚到脂质体内。
其方法为先将硫酸铵包与脂质体内水相,然后通过透析、凝胶色谱或超滤的方法除去脂质体外水相的硫酸铵。
由于离子对双分子层渗透系数的不同,氨分子渗透系数(0.13 cm/s)较高,能很快扩散到外水相中;H+的渗透系数远小于氨分子,因此会使脂质体内水相呈酸性,形成pH梯度,梯度大小由[NH4+]外水相/[NH4+]内水相比较决定,这样使药物逆硫酸铵梯度载入脂质体。
药物与SO42-形成的硫酸盐,对双分子层有很低渗透系数,因而使药物具有很高的包封率。
刘陶世等[17]采用硫酸铵梯度法制备马钱子碱脂质体,0.1 mol/L硫酸铵水溶液的用量为大豆卵磷脂的66.7倍,制得的马钱子碱脂质体包封率在90%以上。
米托恩醌以注入法或反相蒸发法制备的脂质体,包封率较低,但是其为弱碱性蒽醌类药物,易与硫酸根离子形成溶解性更小的硫酸盐,黄园[18]用硫酸铵梯度法制备米托蒽醌脂质体的平均粒径均在60 nm左右,包封率为93.65%。
Pan 等[19]用不同的主动载药法制备了5种多铵硼酸盐脂质体,得到较高的包封率仅为6%和15%。
研究表明,用硫酸铵梯度法制备的脂质体包封率要高于枸橼酸盐pH梯度法制得的脂质体。
Wong等[20]用此法制备了环丙沙星单室脂质体,包封率为90%。
相比较于pH梯度法,硫酸铵梯度法不需要改变外水相的pH值,控制梯度也易实现,整个过程无需缓冲液或pH滴定,内水相只有pH梯度法更有利于脂质体的稳定。
2.3 醋酸钙梯度法醋酸钙梯度法通过醋酸钙的跨膜运动产生的醋酸钙浓度梯度(内部的浓度高于外部),使得大量质子从脂质体内部转运到外部产生pH梯度。
醋酸的渗透参数(6.6×10-4cm·s-1)比Ca2+(2.5×10-11cm·s-1)大7个数量级,所以很少穿越双分子膜留在脂质体内部,醋酸分子则参与了质子转运。