第十五章分式知识点总结及复习 (1)
八年级数学上册 第十五章分式小结与复习课件1-5
第十五章分式小结与复习
要点梳理一、分式
1.分式的概念:
一般地,如果A 、B 都表示整式,且B 中含有字母,那么称
为分式.其中A 叫做分式的分子,B 为分式的分母.
2.分式有意义的条件:
对于分式:当_______
时分式有意义;当_______
时无意义.B≠0B=0
3.分式值为零的条件:
当___________
时,分式的值为零.
A =0且
B ≠04.分式的基本性质:0A A
C A A C C B B C B B C
(),.⋅÷==≠⋅÷
约分的基本步骤
(1)若分子﹑分母都是单项式,则约去系数的最大公约数,并约去相同字母的最低次幂;
(2)若分子﹑分母含有多项式,则先将多项式分解因式,然后约去分子﹑分母所有的公因式.。
八上数学第十五章知识点总结
八上数学第十五章知识点总结一、分式的概念。
1. 分式的定义。
- 一般地,如果A、B(B≠0)表示两个整式,且B中含有字母,那么式子(A)/(B)就叫做分式。
例如(x)/(x + 1),(1)/(x)等都是分式,而(3)/(5)不是分式,因为分母5是常数,不含有字母。
2. 分式有意义的条件。
- 分式(A)/(B)有意义的条件是B≠0。
例如对于分式(1)/(x - 2),当x - 2≠0,即x≠2时,该分式有意义。
3. 分式的值为零的条件。
- 分式(A)/(B)的值为零的条件是A = 0且B≠0。
比如对于分式(x - 1)/(x+1),当x - 1 = 0(即x = 1)且x+1≠0(x≠ - 1)时,分式的值为0。
二、分式的基本性质。
1. 基本性质。
- 分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。
即(A)/(B)=(A× C)/(B× C),(A)/(B)=(A÷ C)/(B÷ C)(C≠0)。
例如(2x)/(3y)=(2x×2)/(3y×2)=(4x)/(6y)。
2. 约分。
- 把一个分式的分子与分母的公因式约去,叫做分式的约分。
例如对于分式(6x^2y)/(9xy^2),分子分母的公因式是3xy,约分后得到(2x)/(3y)。
- 最简分式:分子与分母没有公因式的分式叫做最简分式。
像(x + 1)/(x^2+1)就是最简分式。
3. 通分。
- 把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
通分的关键是确定最简公分母。
例如对于分式(1)/(x)和(1)/(x + 1),最简公分母是x(x + 1),通分后分别为(x+1)/(x(x + 1))和(x)/(x(x + 1))。
三、分式的运算。
1. 分式的乘除。
- 分式的乘法法则:分式乘分式,用分子的积做积的分子,分母的积做积的分母。
即(A)/(B)·(C)/(D)=(A· C)/(B· D)。
人教版初中八年级数学上册第十五章《分式》知识点(含答案解析)(1)
一、选择题1.使分式21xx -有意义的x 的取值范围是( )A .x ≠1B .x ≠0C .x ≠±1D .x 为任意实数2.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ayy y++=--有正整数解,则所有满足条件的整数a 的值之和是( ) A .4B .5C .6D .33.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( ) A .9-B .8-C .7-D .6-4.如果关于x 的分式方程6312233ax x x x--++=--有正整数解,且关于y 的不等式组521510yy a -⎧≥-⎪⎨⎪+->⎩至少有两个整数解,则满足条件的整数a 的和为( ) A .2 B .3C .6D .115.已知分式34x x -+的值为0,则x 的值是( ) A .3B .0C .-3D .-46.如图,若x 为正整数,则表示3211327121(1)(1)543x x x x x x x x x--++--÷++++的值的点落在( ).A .段①B .段②C .段③D .段④7.下列各式中,正确的是( )A .22a a b b =B .11a ab b +=+ C .2233a b a ab b= D .232131a ab b ++=--8.已知2340x x --=,则代数式24xx x --的值是( )A .3B .2C .13D .129.若2x 11x x 1+--的值小于3-,则x 的取值范围为( ) A .x 4>- B .x 4<-C .x 2>D .x 2<10.若分式()22222x y x y a x a yax ay+-÷-+的值等于5,则a 的值是( )A .5B .-5C .15D .15-11.2222x y x y x y x y -+÷+-的结果是( ) A .222()x y x y ++B .222()x y x y +-C .222()x y x y -+D .222()x y x y ++12.020*******)(0.125)8+⨯的结果是( )A B 2C .2D .013.下列各式中,无论x 取何值,分式都有意义的是( ). A .132x - B .213x + C .231x x+ D .21xx + 14.当1x 0-<<时, 1x -,0x ,2x 的大小顺序是( ) A .102x x x -<< B .012x x x -<<C .021x x x -<<D .120x x x -<<15.计算a ba b a÷⨯的结果是() A .aB .2aC .2b aD .21a二、填空题16.已知5a b +=,6ab =,b aa b+=______. 17.已知3m n +=.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是_________. 18.已知5,3a b ab -==,则b aa b+的值是__________. 19.新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店抓住商机购进甲、乙、丙三种口罩进行销售.已知销售每件甲种口罩的利润率为30%,每件乙种口罩的利润率为20%,每件丙种口罩的利润率为5%.当售出的甲、乙、丙口罩件数之比为1:3:2时,药店得到的总利润率为20%;当售出的甲、乙、丙口罩件数之比为3:2:2时,药店得到的总利润率为24%.因丙种口罩利润较低,现药店准备只购进甲、乙两种口罩进行销售,若该药店想要获得的总利润率为28%,则该药店应购进甲、乙两种口罩的数量之比是______.20.某班在“世界读书日”当天开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍,则第一组的人数为_________人.21.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg ,甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等.问乙型机器人每小时搬运多少kg 产品? 根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运xkg 产品,可列方程为______小惠同学设甲型机器人搬运800kg 所用时间为y 小时,可列方程为____________. (2)乙型机器人每小时搬运产品_______________kg .22.计算:2120192-⎛⎫-= ⎪⎝⎭______. 23.如图,将形状大小完全相同的“□”按照一定规律摆成下列图形,第1幅图中“□”的个数为1a ,第2幅图中“□”的个数为2a ,第3幅图中“□”的个数为3a ,……,以此类推,若123201922222020n a a a a +++⋅⋅⋅+=(n 为正整数),则(1)5a =________;(2)n 的值为________.24.已知(3)1a a -=,则整数a 的值为______. 25.方程11212x x =+-的解是x =_____. 26.方程22020(1)1x x x ++-=的整数解的个数是_____.三、解答题27.雪梨是石家庄市某地的特色时令水果.雪梨上市后,水果店的老板用2400元购进一批雪梨,很快售完;老板又用3750元购进第二批雪梨,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)求第一批雪梨每件进价是多少元?(2)老板以每件225元的价格销售第二批雪梨,售出80%后,为了尽快售完,剩下的决定打折促销,要使得第二批雪梨的销售利润为2460元,剩余的雪梨每件售价应该打几折?(利润=售价-进价) 28.计算:(1)化简:()()22n m n m n -++;(2)解分式方程:2132163x x x -=---. 29.分式计算与解方程:(1)21211a a a a ----; (2)121221xx x +=-+. 30.先化简,再求值:22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭,其中5x =.。
八年级数学上册第十五章分式基础知识点归纳总结(带答案)
八年级数学上册第十五章分式基础知识点归纳总结单选题1、若数a使关于x的分式方程2x−1+a1−x=4的解为正数,则a的取值正确的是()A.a<6且a≠2B.a>6且a≠1C.a<6D.a>6答案:A分析:表示出分式方程的解,由解为正数确定出a的范围即可.解:分式方程整理得:2x−1−ax−1=4,去分母得:2−a=4x−4,解得:x=6−a4,由分式方程的解为正数,得到6−a4>0,且6−a4≠1,解得:a<6且a≠2.故选:A.小提示:此题考查了分式方程的解,始终注意分母不为0这个条件.2、若关于x的分式方程m+4x−3=3xx−3+2有增根,则m的值为()A.2B.3C.4D.5答案:D分析:根据分式方程有增根可求出x=3,方程去分母后将x=3代入求解即可.解:∵分式方程m+4x−3=3xx−3+2有增根,∴x=3,去分母,得m+4=3x+2(x−3),将x=3代入,得m+4=9,解得m=5.故选:D.小提示:本题考查了分式方程的无解问题,掌握分式方程中增根的定义及增根产生的原因是解题的关键.3、若把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值( )A .扩大到原来的3倍B .扩大到原来的6倍C .缩小为原来的13D .不变 答案:D分析:根据分式的基本性质即可求出答案.解:∵2×3x 3x+3y =2×3x 3(x+y )=2xy x+y ,∴把分式2x x+y 中的x 和y 同时扩大为原来的3倍,则分式的值不变,故选:D .小提示:本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.4、计算x x+1+1x+1的结果是( )A .x x+1B .1x+1C .1D .−1答案:C分析:根据同分母分式的加法法则,即可求解.解:原式=x+1x+1=1, 故选C .小提示:本题主要考查同分母分式的加法法则,掌握”同分母分式相加,分母不变,分子相加“是解题的关键.5、若a +b =5,则代数式(b 2a ﹣a )÷(a−b a )的值为( )A .5B .﹣5C .﹣15D .15 答案:B分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.∵a +b =5,∴原式=b 2−a 2a ⋅a a−b =−(a+b )(a−b )a ⋅a a−b =−(a +b )=−5, 故选:B .小提示:考查分式的化简求值,掌握减法法则以及除法法师是解题的关键,注意整体代入法在解题中的应用.6、某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x件电子产品,可列方程为()A.300x =200x+30B.300x−30=200xC.300x+30=200xD.300x=200x−30答案:C分析:乙工人每小时搬运x件电子产品,则甲工人每小时搬运(x+30)件电子产品,根据300÷甲的工效= 200÷乙的工效,列出方程即可.乙工人每小时搬运x件电子产品,则甲工人每小时搬运(x+30)件电子产品,依题意得:300x+30=200x,故选C.小提示:本题考查了分式方程的应用,弄清题意,根据关键描述语句找到合适的等量关系是解决问题的关键..7、若关于x的分式方程2x−a −3x=0的解为x=3,则常数a的值为()A.a=2B.a=−2C.a=−1D.a=1答案:D分析:根据题意将原分式方程的解x=3代入原方程求出a的值即可.解:∵关于x的分式方程2x−a −3x=0解为x=3,∴23−a−1=0,∴2=3−a,∴a=1,经检验,a=1是方程23−a−1=0的解,故选:D.小提示:本题主要考查了利用分式方程的解求参数,熟练掌握相关方法是解题关键.8、解方程2x−13=x+a2−1时,小刚在去分母的过程中,右边的“-1”漏乘了公分母6,因而求得方程的解为x=2,则方程正确的解是( )A .x =−3B .x =−2C .x =13D .x =−13答案:A分析:先按此方法去分母,再将x=-2代入方程,求得a 的值,然后把a 的值代入原方程并解方程.解:把x =2代入方程2(2x -1)=3(x +a )-1中得:6=6+3a -1,解得:a =13,正确去分母结果为2(2x -1)=3(x +13)-6, 去括号得:4x -2=3x +1-6,解得:x =-3.故选:A小提示:本题考查了一元一次方程的解的定义以及解一元一次方程.使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.9、下列运算正确的是( )A .2a +3b =5abB .(−ab)2=a 2bC .a 2⋅a 4=a 8D .2a 6a 3=2a 3答案:D分析:根据合并同类项法则,同底数幂的乘法、幂的乘方与积的乘方以及单项式除以单项式法则解答. 解:A 、2a 与3b 不是同类项,不能合并,故本选项错误;B 、原式=a 2b 2,故本选项错误;C 、原式=a 6,故本选项错误;D 、原式=2a 3,故本选项正确.故选D .小提示:本题考查了同底数幂的乘法的性质与同类项合并同类项法则,熟练掌握性质和法则是解题的关键.10、下列分式中是最简分式的是( )A .2x 2B .42xC .x−1x 2−1D .x−1(x−1)2答案:A分析:一个分式的分子分母无公因式或公因数叫最简分式,四个选项逐个分析排除,只有选项A是最简分式,选项B、C、D中分子分母分别有公因数2、公因式x−1、公因式x−1,都不是最简分式.选项A不能约分,是最简分式;选项B中分子分母有公因数2,可约分,不是最简分式;选项C中x−1x2−1=x−1(x+1)(x−1),分子分母有公因式x−1,可约分,不是最简分式;选项D中分子分母有公因式x−1,可约分,不是最简分式;故选:A.小提示:本题主要考查了最简分式的概念,最简分式指的是分子分母无无公因式或公因数的分式,有时需要将分子分母进行因式分解再判断.填空题11、计算2m−2−mm−2的结果是 ____.答案:−1分析:根据分式的减法法则即可得.解:原式=2−mm−2=−(m−2) m−2=−1,所以答案是:−1.小提示:本题考查了分式的减法,熟练掌握运算法则是解题关键.12、若实数m使得关于x的不等式组{2x>23x<m+1无解,则关于y的分式方程yy−1=4−m2y−2的最小整数解是_________.答案:2分析:先求出每个不等式的解集,然后根据不等式组无解求出m的取值范围,再解分式方程从而确定y的取值范围即可得到答案.解:解不等式2x>2得:x>1,解不等式3x <m +1得:x <m+13, ∵不等式组无解,∴m+13≤1,∴m ≤2;y y −1=4−m 2y −2去分母得2y =4−m ,解得y =4−m 2,∵m ≤2,∴4−m ≥2∴y =4−m 2≥1,又∵y −1≠0,∴y >1,∴y 的最小整数解为2,所以答案是:2小提示:本题主要考查了根据不等式组的解集情况求参数,解分式方程,熟知相关计算法则是解题的关键.13、方程22x−1+x 1−2x =1的解是________.答案:x =1分析:原方程去分母得到整式方程,求解整式方程,最后检验即可.解:22x−1+x 1−2x =1, 22x−1﹣x 2x−1=1, 方程两边都乘2x ﹣1,得2﹣x =2x ﹣1,解得:x =1,检验:当x =1时,2x ﹣1≠0,所以x =1是原方程的解,即原方程的解是x=1,所以答案是:x=1.小提示:本题考查了解分式方程,把分式方程转化为整式方程是解答本题的关键,注意解分式方程不一定要检验.14、若|a|=2,且(a−2)0=1,则2a的值为_______.##0.25答案:14分析:根据绝对值的意义得出a=±2,根据(a−2)0=1,得出a−2≠0,求出a的值,即可得出答案.解:∵|a|=2,∴a=±2,∵(a−2)0=1,∴a−2≠0,即a≠2,∴a=−2,∴2a=2−2=1.4所以答案是:1.4小提示:本题主要考查了绝对值的意义,零指数幂有意义的条件,根据题意求出a=−2,是解题的关键.15、用科学记数法将﹣0.03896保留两位有效数字为____.答案:﹣3.9×10﹣2分析:先根据科学记数法表示该数,再保留两个有效数字即可.解:﹣0.03896=﹣3.896×10﹣2≈﹣3.9×10﹣2,所以答案是:﹣3.9×10﹣2.小提示:此题考查了科学记数法的表示方法,有效数字的概念,正确理解各知识点是解题的关键.解答题16、为推动家乡学校篮球运动的发展,某公司计划出资12000元购买一批篮球赠送给家乡的学校.实际购买时,每个篮球的价格比原价降低了20元,结果该公司出资10000元就购买了和原计划一样多的篮球,每个篮球的原价是多少元?答案:每个篮球的原价是120元.分析:设每个篮球的原价是x 元,则每个篮球的实际价格是(x ﹣20)元,根据“该公司出资10000元就购买了和原计划一样多的篮球”列出方程并解答.解:设每个篮球的原价是x 元,则每个篮球的实际价格是(x ﹣20)元,根据题意,得12000x =10000x−20.解得x =120.经检验x =120是原方程的解.答:每个篮球的原价是120元.小提示:本题考查了分式方程的应用,根据题意列出方程是解题的关键.17、若a ,b 为实数,且(a−2)2+|b 2−16|b+4=0,求3a ﹣b 的值. 答案:2分析:根据题意可得{a −2=0b 2−16=0b +4≠0,解方程组可得a,b,再代入求值.解:∵(a−2)2+|b 2−16|b+4=0,∴{a −2=0b 2−16=0b +4≠0,解得{a =2b =4, ∴3a ﹣b=6﹣4=2.故3a ﹣b 的值是2.小提示:本题考核知识点:分式性质,非负数性质.解题关键点:理解分式性质和非负数性质.18、阅读材料:对于非零实数a ,b ,若关于x 的分式(x−a)(x−b)x 的值为零,则解得x 1=a ,x 2=b .又因为(x−a)(x−b)x =x 2−(a+b)x+ab x=x +ab x ﹣(a +b ),所以关于x 的方程x +ab x =a +b 的解为x 1=a ,x 2=b . (1)理解应用:方程x 2+2x =3+23的解为:x 1= ,x 2= ;(2)知识迁移:若关于x 的方程x +3x =5的解为x 1=a ,x 2=b ,求a 2+b 2的值;(3)拓展提升:若关于x 的方程4x−1=k ﹣x 的解为x 1=t +1,x 2=t 2+2,求k 2﹣4k +2t 3的值. 答案:(1)3,23;(2)19;(3)12. 分析:(1)根据题意可得x =3或x =23;(2)由题意可得a +b =5,ab =3,再由完全平方公式可得a 2+b 2=(a +b )2-2ab =19;(3)方程变形为x -1+4x−1=k -1,则方程的解为x -1=t 或x -1=t 2+1,则有t (t 2+1)=4,t +t 2+1=k -1,整理得k =t +t 2+2,t 3+t =4,再将所求代数式化为k 2-4k +2t 3=t (t 3+t )+4t 3-4=4(t 3+t )-4=12.(1)解:∵x +ab x =a +b 的解为x 1=a ,x 2=b ,∴x 2+2x =x +2x =3+23的解为x =3或x =23,所以答案是:3,23;(2)解:∵x +3x =5,∴a +b =5,ab =3,∴a 2+b 2=(a +b )2-2ab =25-6=19; (3)解:4x−1=k -x 可化为x -1+4x−1=k -1,∵方程4x−1=k -x 的解为x 1=t +1,x 2=t 2+2,则有x -1=t 或x -1=t 2+1,∴t (t 2+1)=4,t +t 2+1=k -1, ∴k =t +t 2+2,t 3+t =4, k 2-4k +2t 3=k (k -4)+2t 3=(t+t2+2)(t+t2-2)+2t3=t4+4t3+t2-4=t(t3+t)+4t3-4=4t+4t3-4=4(t3+t)-4=4×4-4=12.小提示:本题考查了分式方程的解,理解题意,灵活求分式方程的解,并结合完全平方公式对代数式求值是解题的关键.。
最新人教版八年级上册数学第十五章分式知识点复习
返回目录
谢
谢
返回目录
子相加减;
②异分母分式相加减:先通分,变为同分母的分式,再
加减
整数指数幂的运算性质可以归纳为:(1)am·an=am+n
(m,n是整数);(2)(am) n=amn(m,n是整数);(3)
(ab)n=anbn(n是整数);(4)am÷an=am-n(a≠0,m,
1
n是整数,m>n);(5)当a≠0时,a0=1;(6)a-n=
约去分式的分子与分母的公因式,不改变分式的值,这样
分式的基 的分式变形叫做分式的约分.
确定公因式要分为系数、字母、字母的指数来分别确定:①
本性质
分式约分的结果可能是最简分式,也可能是整式;②当分子
或分母含有负号时,一般把负号提到分式本身的前面;③约
分时,分子与分母都必须是乘积式,如果是多项式的,必须
先分解因式.
一个分式的分子与分母没有公因式时,叫最简分式
返回目录
把几个异分母的分式分别化为与原来的分式相等的同
分母的分式,这样的分式变形叫做分式的通分.通分
分式的基 的关键是确定最简公分母:①最简公分母的系数取各
本性质
分母系数的最小公倍数;②最简公分母的字母因式取
各分母所有字母的最高次幂的积;③若各分式的分母
第十五章分式
本章知识结构图
返回目录
核心内容
一般地,如果A,B表示两个整式,并且B中含有
字母,那么式子 叫做分式
分式的概念 分式有意义的条件是分母不等于零,分式无意义
的条件是分母等于零
分式值为零的条件是分子等于零且分母不等于零
返回目录
(完整版)第十五章分式知识点归纳与整理
第十五章分式知识点归纳与整理§15.1分式1.分式的概念形如BA(A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母 整式和分式统称有理式。
特别注意:1π不是分式。
2.分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
MB MA MB M A B A ÷÷=••=(其中0,0≠≠B M ,且M B A ,,均表示的是整式) 【分式的约分】首先要找出分子与分母的公因式,再把分子与分母的公因式约去。
【分式的通分】通分的关键是确定几个分式的公分母,通常取各分母所有因式的最高次幂的积作为公分母(叫做最简公分母)。
§15.2 分式的运算1.分式的乘除【乘法法则】分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
注意:如果得到的不是最简分式,应该通过约分进行化简。
【除法法则】分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
2.分式的加减法同分母的分式相加减,分母不变,把分子相加减;异分母的分式想加减,先通分,变为同分母的分式,再把分子相加减。
3.分式的乘方【乘方法则】n n nb a b a =⎪⎭⎫⎝⎛【零指数幂】任何不等于零的数的零次幂都等于1。
【负整指数幂】任何不等于零的数的-N (N 为正整数)次幂,等于这个数的N 次幂的倒数。
【正整数指数幂运算性质】注意:这些性质在整数指数幂中同样适用。
4.科学记数法:把一个数表示成的形式10n a ⨯(其中101<≤a ,n 是整数)的记数方法叫做科学记数法。
(1)用科学记数法表示绝对值大于1的数时,应当表示为10n a ⨯的形式, 其中1≤︱a ︱<10,n 为原整数部分的位数减1;(2)用科学记数法表示绝对值小于1的数时,则可表示为10n a -⨯的形式,其中n 为原数第1个不为0的数字前面所有0的个数(包括小数点前面的那个0),1≤︱a ︱<10。
人教版八年级上册数学 第十五章 分式方程 知识点及考点
第十五章分式方程知识点及考点一、知识点1.分式方程的概念分母中含有未知数的方程叫做分式方程.注意:“分母中含有未知数”是分式方程与整式方程的根本区别,也是判定一个方程为分式方程的依据.2.分式方程的解法(1)解分式方程的基本思路是将分式方程化为整式方程,具体做法是去分母,即方程两边同乘以各分式的最简公分母.(2)解分式方程的步骤:①找最简公分母,当分母是多项式时,先分解因式;②去分母,方程两边都乘最简公分母,约去分母,化为整式方程;③解整式方程;④验根.易错提醒:解分式方程过程中,易错点有:①去分母时要把方程两边的式子作为一个整体,记得不要漏乘整式项;②忘记验根,最后的结果还要代回方程的最简公分母中,只有最简公分母不是零的解才是原方程的解.3.增根在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根.由于可能产生增根,所以解分式方程要验根,其方法是将根代入最简公分母中,使最简公分母为零的根是增根,否则是原方程的根.温馨提示:增根虽然不是方程的根,但它是分式方程去分母后变形而成的整式方程的根.若这个整式方程本身无解,当然原分式方程就一定无解.4.分式方程的应用(1)分式方程的应用主要涉及工程问题,有工作量问题、行程问题等.每个问题中涉及到三个量的关系,如:工作时间=工作量工作效率,时间=路程速度等.(2)列分式方程解应用题的一般步骤:①设未知数;②找等量关系;③列分式方程;④解分式方程;⑤检验(一验分式方程,二验实际问题);⑥答.二、考试方向(一)解分式方程分式方程的解法:①能化简的应先化简;②方程两边同乘以最简公分母,化为整式方程; ③解整式方程;④验根. 例题:1、解分式方程:312242x x x -=--. 【解析】去分母得:6-x =x -2,解得:x =4,经检验x =4是分式方程的解.【名师点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.2、方程33122x x x-+=--的解为_______________. 【答案】1x =【解析】方程两边同乘以(2)x -,得(32)3x x -+-=-,解得1x =,检验:1x =时,20x -≠,所以1x =是原分式方程的解. 故填1x =.【名师点睛】分式方程的解题步骤:去分母,去括号,移项,合并同类项,系数化为1.同时应注意分式方程必须检验.(二)分式方程的解(1)求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根.(2)验根时把整式方程的根代入最简公分母,如果最简公分母等于0,这个根就是增根;否则这个根就是原分式方程的根,若解出的根都是增根,则原方程无解.(3)如果分式本身约分了,也要代入进去检验.(4)一般地,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为零,因此要将整式方程的解代入最简公分母,如果最简公分母的值不为零,则是方程的解.例题:3、 若关于x 的方程3111ax x x -=++的解为整数解,则满足条件的所有整数a 的和是 A .6 B .0 C .1 D .9【答案】D【解析】分式方程去分母得:ax -1-x =3,解得:x =41a -, 由分式方程的解为整数解,得到a -1=±1,a -1=±2,a -1=±4, 解得:a =2,0,3,-1,5,-3(舍去),则满足条件的所有整数a 的和是9, 故选D .【名师点睛】此题考查了分式方程的解,熟练掌握运算法则是解本题的关键.4、若关于x 的分式方程121k x -=+的解为负数,则k 的取值范围为_______________. 【答案】3k <且1k ≠【解析】分式方程去分母转化为整式方程,去分母得122k x -=+,解得32x k =-,由分式方程的解为负数,可得203k -<且10x +≠,即213k -≠-,解得3k <且1k ≠. (三)分式方程的应用分式方程解实际问题的求解步骤:审题、设未知数、列方程、解方程、检验、写出答案,检验时要注意从方程本身和实际问题两个方面进行.例题:5、某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为A .2010154x x +=+ B .2010154x x -=+ C .201015x x += D .201015x x -= 【答案】A 【解析】由题意可知原计划每天生产x 个零件,则实际每天生产了(4)x +个零件,实际15天共生产了(200)1x +个零件,因此根据题意可列分式方程为2010154x x +=+. 故选A . 6、元旦假期即将来临,某旅游景点超市用700元购进甲、乙两种商品260个,其中甲种商品比乙种商品少用100元,已知甲种商品单价比乙种商品单价高20%,那么乙种商品单价是A .2元B .2.5元C .3元D .5元【答案】B【解析】设乙种商品单价为x 元,则甲种商品单价为(1)20%x +元,由题易得,甲种商品花费300元,乙种商品花费400 解得 2.5x =元.故选B .。
人教版八年级数学上册第十五章 分式知识点总结和题型归纳
人教版八年级数学上册第十五章分式知识点总结和题型归纳分式知识点总结和题型归纳第一部分分式的运算一)分式的定义及有关题型考查分式的定义:一般地,如果A,B表示两个整数,并且B中含有字母,那么式子A/B为分式。
例1:下列代数式中是分式的有:(x- y)/(2x+ y),π/(2x- y),(x+ y)/(a+ b)。
考查分式有意义的条件:分式有意义:分母不为0 (B≠0)分式无意义:分母为0 (B=0)例1:当x有何值时,下列分式有意义:1) (x-4)/(13x2-6x)2) 2/x3) 2/(x-4)4) (x+4|x|-3x+2)/(x-1)5) x/(x2-2x-3)考查分式的值为的条件:分式值为:分子为A且分母不为0 (A/B) 例1:当x取何值时,下列分式的值为0.1) (x-1)/(x+3)2) |x|-23) (x2-2x-3)/(x-5)(x+6)例2:当x为何值时,下列分式的值为零:1) 5-|x-1|/(x+4)2) (25-x2)/(x-6)(x+5)考查分式的值为正、负的条件:分式值为正或大于0:分子分母同号 (A/B>0) 分式值为负或小于0:分子分母异号 (A/B<0) 例1:(1) 当x为何值时,分式4/(8-x)为正;2) 当x为何值时,分式5-x/(5+x)为负;3) 当x为何值时,分式(x-2)/(x+3)为非负数.例2:解不等式|x|-2≤(x+1)/(x+5)考查分式的值为1,-1的条件:分式值为1:分子分母值相等 (A/B=1)分式值为-1:分子分母值互为相反数 (A+B=0)例1:若分式|x-2|/(x+2)的值为1,-1,则x的取值分别为3和-1.思维拓展练题:1、若a>b>0,a2+b2-6ab=0,则(a+b)/(a-b)=9/5.2、一组按规律排列的分式:-b/2.5/b。
-8/b。
11/b。
则第n 个分式为(3n-1)/b。
2022年初二数学八上第十五章分式知识点总结复习和常考题型练习
第十五章分式一、知识框架:二、知识概念:1.分式:形如AB,A B、是整式,B中具有字母且B不等于0旳整式叫做分式.其中A叫做分式旳分子,B叫做分式旳分母.2.分式故意义旳条件:分母不等于0.3.分式旳基本性质:分式旳分子和分母同步乘以(或除以)同一种不为0旳整式,分式旳值不变.4.约分:把一种分式旳分子和分母旳公因式(不为1旳数)约去,这种变形称为约分.5.通分:异分母旳分式可以化成同分母旳分式,这一过程叫做通分.6.最简分式:一种分式旳分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一种分式化为最简分式.7.分式旳四则运算:⑴同分母分式加减法则:同分母旳分式相加减,分母不变,把分子相加减.用字母表达为:a b a b c c c±±=⑵异分母分式加减法则:异分母旳分式相加减,先通分,化为同分母旳分式,然后再按同分母分式旳加减法法则进行计算.用字母表达为:a c ad cbb d bd±±=⑶分式旳乘法法则:两个分式相乘,把分子相乘旳积作为积旳分子,把分母相乘旳积作为积旳分母.用字母表达为:a c acb d bd ⨯=⑷分式旳除法法则:两个分式相除,把除式旳分子和分母颠倒位置后再与被除式相乘.用字母表达为:a c a d adb d bc bc÷=⨯=⑸分式旳乘措施则:分子、分母分别乘方.用字母表达为:nn n a a b b ⎛⎫= ⎪⎝⎭8.整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数) ⑵()nm mn aa =(m n 、是正整数)⑶()nn n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >)⑸nn n a a b b ⎛⎫= ⎪⎝⎭(n 是正整数)⑹1n na a -=(0a ≠,n 是正整数) 9.分式方程旳意义:分母中具有未知数旳方程叫做分式方程.10.分式方程旳解法:①去分母(方程两边同步乘以最简公分母,将分式方程化为整式方程);②按解整式方程旳环节求出未知数旳值;③验根(求出未知数旳值后必须验根,由于在把分式方程化为整式方程旳过程中,扩大了未知数旳取值范畴,也许产生增根).常考例题精选1.(·宜昌中考)若分式2a+1故意义,则a 旳取值范畴是 ( ) A.a=0 B.a=1 C.a ≠-1D.a ≠02.(·丽水中考)把分式方程2x+4=1x 转化为一元一次方程时,方程两边需同乘以 ( ) A.xB.2xC.x+4D.x(x+4)3.(·宜宾中考)分式方程12x 2−9-2x−3=1x+3旳解为 ( ) A.3 B.-3 C.无解 D.3或-34.(·海南中考)今年我省荔枝喜获丰收,有甲、乙两块面积相似旳荔枝园,分别收获荔枝8 600kg 和9 800kg ,甲荔枝园比乙荔枝园平均每亩少60kg ,问甲荔枝园平均每亩收获荔枝多少kg?设甲荔枝园平均每亩收获荔枝xkg ,根据题意,可得方程 ( ) A.8 600x=9 800x+60B.8 600x=9 800x−60C.8 600x−60=9 800xD.8 600x+60=9 800x5.(·河池中考)若分式2x−1故意义,则x 旳取值范畴是 .6.(·白银中考)若代数式2x−1-1旳值为零,则x= ________.7.(·齐齐哈尔中考)若有关x 旳分式方程xx−1=3a2x−2-2有非负数解,则a 旳取值范畴是 .8.(·呼和浩特中考)化简:(a −1a )÷a 2−2a+1a.9.(·连云港中考)先化简,再求值: (1m −1n )÷m 2−2mn+n 2mn,其中m=-3,n=5.10.(·凉山州中考)某车队要把4000t 货品运到雅安地震灾区(方案定后,每天旳运量不变).(1)从运送开始,每天运送旳货品吨数n(单位:t)与运送时间t(单位:天)之间有如何旳函数关系式?(2)因地震,到灾区旳道路受阻,实际每天比原筹划少运20%,则推迟1天完毕任务,求原筹划完毕任务旳天数.11.(·重庆中考)先化简,再求值:(x+2x−x−1x−2)÷x−4x 2−4x+4,其中x 是不等式3x+7>1旳负整数解.12.(·玉溪中考)某学校为鼓励学生积极参与体育锻炼,派王教师和李教师去购买某些篮球和排球.回校后,王教师和李教师编写了一道题:同窗们,祈求出篮球和排球旳单价各是多少元?13.(·娄底中考)为了创立全国卫生都市,某社区要清理一种卫生死角内旳垃圾,租用甲、乙两车运送,两车各运12趟可完毕,需支付运费4 800元.已知甲、乙两车单独运完此垃圾,乙车所运趟数是甲车旳2倍,且乙车每趟运费比甲车少200元.(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?(2)若单独租用一台车,租用哪台车合算?1.(·黔西南州)分式1x-1故意义,则x旳取值范畴是( )A .x>1B .x ≠1C .x<1D .一切实数2.下列各分式与ba 相等旳是( ) A .b 2a 2 B .b +2a +2C .ab a 2D .a +b 2a3.下列分式旳运算对旳旳是( ) A .1a +2b =3a +bB .(a +b c )2=a 2+b 2c 2 C .a 2+b 2a +b =a +b D .3-a a 2-6a +9=13-a4.(·泰安)化简(a +3a -4a -3)(1-1a -2)旳成果等于( ) A .a -2c B .a +2 C .a -2a -3 D .a -3a -25.若x =3是分式方程a -2x -1x -2=0旳根,则a 旳值是( )A .5B .-5C .3D .-36.已知a =-0.32,b =-3-2,c =(-13)-2,d =(-13)0,比较a ,b ,c ,d 旳大小关系,则有( )A .a <b <c <dB .a <d <c <bC .b <a <d <cD .c <a <d <b7.学完分式运算后,教师出了一道题“化简:x +3x +2+2-xx 2-4”. 小明旳做法是:原式=(x +3)(x -2)x 2-4-x -2x 2-4=x 2+x -6-x -2x 2-4=x 2-8x 2-4;小亮旳做法是:原式=(x+3)(x-2)+(2-x)=x2+x-6+2-x=x2-4;小芳旳做法是:原式=x+3x+2-x-2(x+2)(x-2)=x+3x+2-1x+2=x+3-1x+2=1.其中对旳旳是( )A.小明B.小亮C.小芳D.没有对旳旳8.已知有关x旳分式方程mx-1+31-x=1旳解是非负数,则m旳取值范畴是( )A.m>2 B.m≥2C.m≥2且m≠3 D.m>2且m≠39.(·鄂尔多斯)小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样旳笔记本,每本比上月便宜1元,成果小明只比上次多用了4元钱,却比上次多买了2本.若设她上月买了x本笔记本,则根据题意可列方程( )A.24x+2-20x=1 B.20x-24x+2=1 C.24x-20x+2=1 D.20x+2-24x=110.如果a,b,c是非零实数,且a+b+c=0,那么a|a|+b|b|+c|c|+abc|abc|旳所有也许旳值为( )A.0 B.1或-1 C.2或-2 D.0或-211.已知空气旳单位体积质量是0.001 239 g/cm3,则用科学记数法表达该数为.12.当x=1时,分式x-bx+a无意义;当x=2时,分式2x-b3x+a旳值为0,则a+b=.13.计算:(a2b)-2÷(2a-2b-3)-2=(成果只具有正整数指数幂).14.(·长沙)方程5x=7x-2旳解是x=.15.若ba-b=12,则3a2-5ab+2b22a2+3ab-6b2旳值是.16.若(x-y-2)2+|xy+3|=0,则(3xx-y-2xx-y)÷1y旳值是.17.轮船在顺流中航行64 km与在逆流中航行34 km一共用去旳时间,等于该船在静水中航行180 km所用旳时间.已知水流旳速度是每小时3 km,求该船在静水中旳速度.设该船在静水中旳速度为x km/h,依题意可列方程.18.(·黑龙江)有关x旳分式方程mx2-4-1x+2=0无解,则m=.19.计算或化简:(1)38-2-1+|2-1|;(2)2xx2-4-1x-2;(3)3-a2a-4÷(a+2-5a-2).20.解分式方程:(1)1x-x-2x=1; (2)12x-1=12-34x-2.21.化简求值:(1)(·淮安)先化简(1+1x-2)÷x-1x2-4x+4,再从1,2,3三个数中选一种合适旳数作为x旳值,代入求值;(2)已知x 2x 2-2=3,求(11-x -11+x )÷(xx 2-1+x)旳值.22.当x 取何值,式子3(2x -3)-1与12(x -1)-1旳值相等.23. (·宜宾)近年来,国内逐渐完善养老金保险制度,甲、乙两人筹划用相似旳年数分别缴纳养老保险金15万元和10万元,甲筹划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人筹划每年分别缴纳养老保险金多少万元?24.小明去离家2.4 km旳体育馆看球赛,进场时,发现门票还放在家中,此时离比赛尚有45 min,于是她立即步行(匀速)回家取票,在家取票用时 2 min,取到票后,她立即骑自行车(匀速)赶往体育馆.已知小明骑自行车从家赶往体育馆比从体育馆步行回家所用时间少20 min,骑自行车旳速度是步行速度旳3倍.(1)小明步行旳速度是多少?(2)小明能否在球赛开始前赶到体育馆?25.某开发商要建一批住房,经调查理解,若甲、乙两队分别单独完毕,则乙队完毕旳天数是甲队旳1.5倍;若甲、乙两队合伙,则需120天完毕.(1)甲、乙两队单独完毕各需多少天?(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付旳总费用不超过选乙队旳,则甲队每天旳施工费最多为多少元?(总费用=施工费+工程师食宿费)。
八年级数学上册第十五章分式易错知识点总结(带答案)
八年级数学上册第十五章分式易错知识点总结单选题 1、解分式方程x 2x−1+21−2x=3时,去分母化为一元一次方程,正确的是( )A .x+2=3B .x ﹣2=3C .x ﹣2=3(2x ﹣1)D .x+2=3(2x ﹣1) 答案:C分析:最简公分母是2x ﹣1,方程两边都乘以(2x ﹣1),即可把分式方程便可转化成一元一次方程. 方程两边都乘以(2x ﹣1),得 x ﹣2=3(2x ﹣1), 故选C .小提示:本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.2、下列各式中,当m <2时一定有意义的是( ) A .1m−3B .1m−1C .1m+1D .1m+3 答案:A分析:根据分式有意义的条件是分母不等于0判断即可. 解:A .当m <2时,m ﹣3<﹣1,故分式1m−3一定有意义,故本选项符合题意;B .m <2,当m =1时,分式1m−1没有意义,故本选项不符合题意; C .m <2,当m =﹣1时,分式1m+1没有意义,故本选项不符合题意; D .m <2,当m =﹣3时,分式1m+3没有意义,故本选项不符合题意;故选:A .小提示:本题主要考查的是分式有意义的条件,即分母不等于0. 3、某桑蚕丝的直径用科学记数法表示为1.6×10-5米,则这个数的原数是 A .0.0000016B .0.000016C .0.00016D .0.0016 答案:B分析:根据科学记数法的定义,科学记数法的表示形式为a×10 n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.根据科学记数法的定义1.6×10﹣5=0.000016.故选 B小提示:本题考核知识点:科学记数法.解题关键点:理解科学记数法的定义.4、下列式子:−5x,1a+b ,12a2−12b2,310m,2π,其中分式有()A.1个B.2个C.3个D.4个答案:B分析:根据分母中含有字母的式子是分式,可得答案.解:1a+b ,310m的分母中含有字母,属于分式,共有2个.故选:B.小提示:本题考查了分式的定义,熟悉相关性质,注意π是常数,是解题的关键.5、下列分式x2−2x2y−xy ,x+1x2+1,−2a2−2a,12xy9z3中,最简分式有()A.1个B.2个C.3个D.4个答案:B分析:根据最简分式的定义(分式的分子和分母除1以外没有其它的公因式,叫最简分式)逐个判断即可.解:x2−2x2y−xy =x(x−2)y(2−x)=−xy,故原式不是最简分式;x+1x2+1是最简分式,−2a2−2a是最简分式,12xy 9z3=4xy3z3,故原式不是最简分式,最简分式有2个故选:B小提示:本题考查了最简分式的定义,能熟记最简分式的定义是解此题的关键.6、关于x的分式方程2x−ax+1=1的解为正数,则字母a的取值范围为()A.a≥﹣1B.a>﹣1C.a≤﹣1D.a<﹣1答案:B分析:先求出带有a的分式方程的解,然后再根据解为正数求出a的取值范围即可. 解:分式方程去分母得:2x-a=x+1,解得:x=a+1.根据题意得:a+1>0且a+1+1≠0,解得:a>-1且a≠-2.即字母a的取值范围为a>-1.故选B.小提示:本题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为0.7、已知8a3b m÷28a n b2=27b2,则m、n的值为()A.m=4,n=3B.m=4,n=1C.m=1,n=3D.m=2,n=3答案:A分析:先运用单项式除法法则运算,然后令a的次数为0,b的次数为2解答即可.解:8a3b m÷28a n b2=27b28a3b m÷28a n b2=27a3−n b m−2令3-n=0,m-2=2,解得n=3,m=4.故答案为A.小提示:本题考查了单项式除法,灵活运用单项式除法法则是解答本题的关键.8、在一段坡路,小明骑自行车上坡的速度为每小时v1千米,下坡时的速度为每小时v2千米,则他在这段路上、下坡的平均速度是每小时()A.v1+v22千米B.v1v2v1+v2千米C.2v1v2v1+v2千米D.无法确定答案:C平均速度=总路程÷总时间,题中没有单程,可设单程为1,那么总路程为2.依题意得:2÷(1v1+1v2)=2÷ v1+v2v1v2= 2v1v2v1+v2千米.故选C.小提示:解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.当题中没有一些必须的量时,为了简便,可设其为1.9、方程12x =2x+3的解为()A.x=﹣1B.x=0C.x=35D.x=1答案:D分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:x+3=4x,解得:x=1,经检验x=1是分式方程的解,故选D.点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.10、若x≠y,则下列分式化简中,正确的是()A.x+2y+2=xyB.x−2y−2=xyC.3x3y=xyD.x2y2=xy答案:C分析:根据分式的基本性质即可求出答案.解:A. ∵当x=1,y=2时,x+2y+2=34,xy=12,∴x+2y+2≠xy,故不正确;B. ∵当x=1,y=3时,x−2y−2=−1,xy=13,∴x−2y−2≠xy,故不正确;C. 3x3y =xy,正确;D. ∵当x=1,y=2时,(x)2(y)2=14,xy=12,∴x2y2≠xy,故不正确;故选C.小提示:本题考查了分式的基本性质,把分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.填空题11、若方程3x+3=2x+k的根为负数,则k的取值范围是______。
人教版数学八年级上册 第十五章 分式(小结与复习)课件
ab
4.计算:
(1)
x
2
4
4
x
1
2
原式=
4 ( x 2) x2 4
= 1
x2
(2)
x
2
x2
y2 2x
1
3x2 x
3 xy 1
原式= ( x y)( x y)· x 1
( x 1)2
3x( x y)
=
x y 3x( x 1)
= x y
3x2 3x
解得 : x 1 2
经检验,x 1
2
是原原分式方程的解;
练一练
(2)某市为进一步缓解交通拥堵现象,决定修建一条从市中心到机场 的轻轨铁路.实际施工时,每月的工效比原计划提高了20%,结果提 前5个月完成这一工程.求原计划完成这一工程的时间是多少个月.
解:设原计划完成这一工程的时间为x个月,则
练一练
1.
已知
x y
2 3
,
求 x2
x2 y2 2xy
y2
xy y2 2x2 2xy
的值.
解:
由
x2 y3
,得
x2y 3
,
x2 y2 xy y2 x2 2xy y2 2x2 2xy
(x
y)(x (x y)2
y)
2x(x y) y(x y)
本题还可以由已知 条件x=2m, y=3m.
(1 20%) 1 1 x x5
,解得: x=30.
经检验,x=30是原方程的根.
答:原计划完成这一工程的时间是30个.
专题复习
专题五 本章数学思想和解题方法
主元法
例5.(1)已知: 2a b 3 a 2b 14
人教版八年级数学上册第15章 分式 小结与复习
因为 ( 3)2 ( 3)2 3,所以小玲的计算结果也正确.
例4
解析:本题若先求出 a 的值,再代入求值,显
然比较复杂;但是如果将分式
的分子、
分母颠倒过来,即求
的值,
再利用完全平方公式变形求解就简单多了.
归纳总结 利用 A 和 1 互为倒数的关系,构造已知
A
条件与所求式子的关系,并运用整体代换,可使一 些分式求值问题的思路豁然开朗,简化解题过程.
第十五章 分 式
小结与复习
一、分式 1. 分式的概念:
一般地,如果 A、B 都表示整式,且 B 中含有
字母,那么称 为分式. 其中 A 叫做分式的分子,
B 叫做分式的分母. 2. 分式有意义的条件:
对于分式 :当__B_≠__0__时分式有意义; 当__B__=_0__时分式无意义.
3. 分式值为零的条件: 当 A = 0 且 B≠0 时,分式
的值为零.
4. 分式的基本性质:
A A C , A A C(C 0). B BC B BC
5. 分式的约分: 约分的定义
根据分式的基本性质,把一个分式的分子与分母
的公因式约去,叫做分式的约分.
最简分式的定义 分子与分母没有公因式的分式,叫做最简分式.
注意:分式的约分,一般要约去分子和分母所有 的公因式,使所得的结果成为最简分式或整式.
此方法是在众多未知元之中选取某一元为主元, 其余视为辅元,并将辅元用含有主元的式子表示,从 而达到减元的目的,最终实现化繁为简,化难为易.
针对训练
9.
已知
x y
2 3
,求
x2
x2 y2 2xy
y2
xy 2x2
y2 2xy
初二上册数学第十五章分式重点知识梳理
初二上册数学第十五章分式重点知识梳理一、分式的概念分式啊,就像是数学世界里的一种特殊存在。
分式就是用A、B表示两个整式,A÷B就可以表示成A/B的形式,如果B中含有字母,式子A/B就叫做分式啦。
比如说1/x,这就是一个分式,这里的x就是那个让分式变得特别的字母哦。
分式的分母不能为0哦,要是分母为0的话,这个分式就没有意义啦,就像你不能把一个东西分成0份一样奇怪呢。
二、分式的基本性质1. 分式的分子和分母都乘以(或除以)同一个不等于0的整式,分式的值不变。
这就像是给分式变个装,但它本质上还是那个分式呢。
比如说2/3这个分数,如果分子分母同时乘以2,就变成4/6啦,值还是一样的。
分式也是这样,像(a/b)=(ac/bc)(c≠0)。
2. 约分和通分约分呢,就是把分式的分子和分母的公因式约去。
就像是把多余的东西去掉,让分式变得更简洁。
比如(6x/9x),分子分母都有3x这个公因式,约掉之后就变成2/3啦。
通分则是把几个异分母的分式化成与原来的分式相等的同分母的分式。
这就像是把不同的东西放在同一个标准下比较。
比如1/x和1/y,通分后就变成y/xy和x/xy啦。
三、分式的运算1. 分式的乘除法分式乘分式,用分子的积做积的分子,分母的积做积的分母。
就像(a/b)×(c/d)=(ac/bd)。
比如说(2/3)×(4/5)=(2×4)/(3×5)=8/15。
分式除法呢,就是把除式的分子分母颠倒位置后再与被除式相乘,像(a/b)÷(c/d)=(a/b)×(d/c)=(ad/bc)。
2. 分式的加减法同分母的分式相加减,分母不变,把分子相加减就好啦。
比如(a/c)+(b/c)=(a + b)/c。
异分母的分式相加减,要先通分,变成同分母的分式,然后再按照同分母分式加减法的法则进行计算。
像(1/x)+(1/y),通分后变成(y/xy)+(x/xy)=(x + y)/xy。
八年级上册第十五章-分式知识梳理
八年级数学第十五章--分式知识梳理知识点一、分式1、一般地,如果A,B 表示两个整式,并且B 中含有字母,那么式子 叫做分式。
分式 中,A 叫做分子,B 叫做分母。
2、分式的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式 才有意义。
3、分式的基本性质:分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变。
即: 其中A,B,C 是整式。
4、根据分式的基本性质,把一个分式的分子与分母的公因式约分,叫做分式的约分。
经过约分后的分式,分子与分母没有公因式的分式,叫做最简分式。
5、根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
6、通分时,要先确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,它叫做最简公分母知识点二、分式的运算7、分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母即 8、分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
即 9、分式乘方要把分子、分母分别乘方。
即 10、同分母分式相加减,分母不变,把分子相加减。
即 cb ac b c a ±=± 11、异分母分式相加减,先通分,变为同分母的分式,再加减。
即 12、一般地,当n 是正整数时,B A B A B A CB C A B A ⋅⋅=)0(≠÷÷=C C B C A B A db c a d c b a ⋅⋅=⋅cb d acd b a d c b a ⋅⋅=⨯=÷n n n b a b a =⎪⎭⎫ ⎝⎛bdbc ad bd bc bd ad d c b a +=±=±)0(1≠=-a a a n n nn b a a b )(=-)(知识点三、分式方程13、分母中含有未知数的方程叫做分式方程14、解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边乘最简公分母。
初二数学八上第十五章分式知识点总结复习和常考题型练习
第十五章 分式一、知识框架 :二、知识概念:1.分式:形如AB,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式有意义的条件:分母不等于0.3.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a bc c c±±=⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a c ad cbb d bd±±=⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c acb d bd⨯=⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d adb d bc bc÷=⨯=⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b ⎛⎫= ⎪⎝⎭8.整数指数幂:⑴m n m na a a +⨯=(m n 、是正整数)⑵()nm mn aa =(m n 、是正整数)⑶()nn n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >)⑸nn n a a b b ⎛⎫= ⎪⎝⎭(n 是正整数)⑹1n na a -=(0a ≠,n 是正整数) 9.分式方程的意义:分母中含有未知数的方程叫做分式方程.10.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).常考例题精选1.(2015·宜昌中考)若分式有意义,则a 的取值范围是 ( ) A.a=0 B.a=1 C.a ≠-1D.a ≠02.(2015·丽水中考)把分式方程=转化为一元一次方程时,方程两边需同乘以 ( ) A.xB.2xC.x+4D.x(x+4)3.(2015·宜宾中考)分式方程 - =的解为 ( ) A.3B.-3C.无解D.3或-34.(2015·海南中考)今年我省荔枝喜获丰收,有甲、乙两块面积相同的荔枝园,分别收获荔枝8 600kg和9 800kg,甲荔枝园比乙荔枝园平均每亩少60kg,问甲荔枝园平均每亩收获荔枝多少kg?设甲荔枝园平均每亩收获荔枝xkg,根据题意,可得方程( )A.=B.=C.=D.=5.(2015·河池中考)若分式有意义,则x的取值范围是.6.(2015·白银中考)若代数式-1的值为零,则x= ________.7.(2015·齐齐哈尔中考)若关于x的分式方程=-2有非负数解,则a的取值范围是.8.(2015·呼和浩特中考)化简:÷.9.(2015·连云港中考)先化简,再求值:÷,其中m=-3,n=5.10.(2015·凉山州中考)某车队要把4000t货物运到雅安地震灾区(方案定后,每天的运量不变).(1)从运输开始,每天运输的货物吨数n(单位:t)与运输时间t(单位:天)之间有怎样的函数关系式?(2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成任务,求原计划完成任务的天数.11.(2015·重庆中考)先化简,再求值:÷,其中x是不等式3x+7>1的负整数解.12.(2015·玉溪中考)某学校为鼓励学生积极参加体育锻炼,派王老师和李老师去购买一些篮球和排球.回校后,王老师和李老师编写了一道题:同学们,请求出篮球和排球的单价各是多少元?13.(2015·娄底中考)为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4 800元.已知甲、乙两车单独运完此垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.(1)求甲、乙两车单独运完此堆垃圾各需运多少趟? (2)若单独租用一台车,租用哪台车合算?1.(2015·黔西南州)分式1x -1有意义,则x 的取值范围是( )A .x>1B .x ≠1C .x<1D .一切实数2.下列各分式与ba 相等的是( )A .b 2a 2B .b +2a +2C .aba 2 D .a +b 2a3.下列分式的运算正确的是( )A .1a +2b =3a +b B .(a +bc )2=a 2+b 2c 2C .a 2+b 2a +b =a +bD .3-a a 2-6a +9=13-a4.(2015·泰安)化简(a +3a -4a -3)(1-1a -2)的结果等于( )A .a -2cB .a +2C .a -2a -3D .a -3a -25.若x =3是分式方程a -2x -1x -2=0的根,则a 的值是( )A .5B .-5C .3D .-36.已知a=-0.32,b=-3-2,c=(-13)-2,d=(-13)0,比较a,b,c,d的大小关系,则有( )A.a<b<c<d B.a<d<c<bC.b<a<d<c D.c<a<d<b7.学完分式运算后,老师出了一道题“化简:x+3x+2+2-xx2-4”.小明的做法是:原式=(x+3)(x-2)x2-4-x-2x2-4=x2+x-6-x-2x2-4=x2-8x2-4;小亮的做法是:原式=(x+3)(x-2)+(2-x)=x2+x-6+2-x=x2-4;小芳的做法是:原式=x+3x+2-x-2(x+2)(x-2)=x+3x+2-1x+2=x+3-1x+2=1.其中正确的是( )A.小明B.小亮C.小芳D.没有正确的8.已知关于x的分式方程mx-1+31-x=1的解是非负数,则m的取值范围是( )A.m>2 B.m≥2C.m≥2且m≠3 D.m>2且m≠39.(2015·鄂尔多斯)小明上月在某文具店正好用20元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜1元,结果小明只比上次多用了4元钱,却比上次多买了2本.若设他上月买了x 本笔记本,则根据题意可列方程( )A.24x+2-20x=1 B.20x-24x+2=1 C.24x-20x+2=1 D.20x+2-24x=110.如果a,b,c是非零实数,且a+b+c=0,那么a|a|+b|b|+c|c|+abc|abc|的所有可能的值为( )A.0 B.1或-1 C.2或-2 D.0或-211.已知空气的单位体积质量是0.001 239 g/cm3,则用科学记数法表示该数为.12.当x =1时,分式x -b x +a 无意义;当x =2时,分式2x -b3x +a的值为0,则a+b = .13.计算:(a 2b)-2÷(2a -2b -3)-2= (结果只含有正整数指数幂).14.(2015·长沙)方程5x =7x -2的解是x = .15.若b a -b =12,则3a 2-5ab +2b 22a 2+3ab -6b 2的值是 .16.若(x -y -2)2+|xy +3|=0,则(3x x -y -2x x -y )÷1y的值是 .17.轮船在顺流中航行64 km 与在逆流中航行34 km 一共用去的时间,等于该船在静水中航行180 km 所用的时间.已知水流的速度是每小时3 km ,求该船在静水中的速度.设该船在静水中的速度为x km /h ,依题意可列方程 .18.(2015·黑龙江)关于x 的分式方程m x 2-4-1x +2=0无解,则m= .19.计算或化简:(1)38-2-1+|2-1|; (2)2x x 2-4-1x -2;(3)3-a2a-4÷(a+2-5a-2).20.解分式方程:(1)1x-x-2x=1; (2)12x-1=12-34x-2.21.化简求值:(1)(2015·淮安)先化简(1+1x-2)÷x-1x2-4x+4,再从1,2,3三个数中选一个合适的数作为x的值,代入求值;(2)已知x2x2-2=3,求(11-x-11+x)÷(xx2-1+x)的值.22.当x 取何值,式子3(2x -3)-1与12(x -1)-1的值相等.23. (2015·宜宾)近年来,我国逐步完善养老金保险制度,甲、乙两人计划用相同的年数分别缴纳养老保险金15万元和10万元,甲计划比乙每年多缴纳养老保险金0.2万元.求甲、乙两人计划每年分别缴纳养老保险金多少万元?24.小明去离家2.4 km 的体育馆看球赛,进场时,发现门票还放在家中,此时离比赛还有45 min ,于是他立即步行(匀速)回家取票,在家取票用时2 min ,取到票后,他马上骑自行车(匀速)赶往体育馆.已知小明骑自行车从家赶往体育馆比从体育馆步行回家所用时间少20 min ,骑自行车的速度是步行速度的3倍.(1)小明步行的速度是多少?(2)小明能否在球赛开始前赶到体育馆?25.某开发商要建一批住房,经调查了解,若甲、乙两队分别单独完成,则乙队完成的天数是甲队的1.5倍;若甲、乙两队合作,则需120天完成.(1)甲、乙两队单独完成各需多少天?(2)施工过程中,开发商派两名工程师全程监督,需支付每人每天食宿费150元.已知乙队单独施工,开发商每天需支付施工费为10000元.现从甲、乙两队中选一队单独施工,若要使开发商选甲队支付的总费用不超过选乙队的,则甲队每天的施工费最多为多少元?(总费用=施工费+工程师食宿费)。
八年级数学上册“第十五章分式”必背知识点
八年级数学上册“第十五章分式”必背知识点一、分式的定义与意义1. 分式的定义:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式,A为分子,B为分母。
整式是分母中没有字母的代数式,而分式是分母中含有字母的代数式。
2. 分式有意义的条件:分母不能为0,即B≠0时,分式A/B才有意义。
3. 分式无意义的条件:分母为0,即B=0时,分式A/B无意义。
二、分式的基本性质基本性质:分式的分子与分母同乘 (或除以)一个不等于0的整式,分式的值不变。
用式子表示为:若C≠0,则A/B = A×C / B×C。
约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
分子与分母没有公因式的分式叫做最简分式。
通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。
最简公分母是取各分母所有因式的最高次幂的积作公分母。
三、分式的运算1. 乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。
即:(a/b) ×(c/d) = ac/bd。
2. 除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
即:(a/b) ÷(c/d) = (a/b) ×(d/c) = ad/bc。
3. 乘方法则:分式乘方要把分子、分母分别乘方。
即:(a/b)^n = a^n/b^n (其中n为正整数)。
4. 加减法法则:同分母分式相加减,分母不变,把分子相加减。
即:(a/c) ±(b/c) = (a±b)/c。
异分母分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算。
四、分式方程的解法定义:分母中含有未知数的方程叫做分式方程。
解法步骤:1. 去分母:把方程两边同乘以各分母的最简公分母,得到整式方程。
2. 解整式方程:解这个整式方程,得到整式方程的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。