荷载横向分布的计算
第三章23荷载横向分布系数的计算铰接法ppt课件
![第三章23荷载横向分布系数的计算铰接法ppt课件](https://img.taocdn.com/s3/m/b6da359bc0c708a1284ac850ad02de80d5d80659.png)
11g1 12 g2 13 g3 14 g4 1 p 0 21g1 22 g2 23 g3 24 g4 2 p 0
b 2
变形协调条件 31g1 32 g2 33 g3 34 g4 3 p 0
41g1 42 g2 43 g3 44 g4 4 p 0
x
l
GIT ''( x)
mT
(x)
b 2
psin x
l
(x)
pbl 2
2 2GIT
x
sin l
pi1 p1i
5.8 I ( b )2
IT l
例题6:
如图为 l 12.60m的铰接空心板桥的横截面布置,桥面净空为净 7 2 0.75m人行道。全桥由9块预应力混凝土空心板组成,分别计算 1、3、5号板汽车荷载和人群荷载作用下的跨中荷载横向分布系数。
➢ 假定2:采用半波正弦荷载分析跨中荷载横向分布的规律。
3. 计算原理
p( x) 1 sin x l x
p( x) p0 sin l
x gi ( x) gi sin l
p11 p21 p31 p41 p51
回顾:铰接板法
p11 1 g1 p21 g1 g2 p31 g2 g3 p41 g3 g4 p51 g4
刚度参数: b 2
✓ 板块数目 n = 3 ~ 10,根据γ值查附录:《铰接板荷载横向分布影
响线竖标表》(P216-226)
有了跨中荷载横向影响线,就可计算各类荷载的跨中横向分布系数mc。
5. 刚度参数的计算
b 2
偏心正弦荷载作用下,跨中的竖 扭向 角挠度
(1) 跨 中 挠 度w 的 计 算
(1)
✓ “力法”求解铰接力峰值。变形协调条件 :相邻板块在铰缝处竖向相对位移为零
2020D1JB2荷载横向分布计算(刚性横梁法)(模板)
![2020D1JB2荷载横向分布计算(刚性横梁法)(模板)](https://img.taocdn.com/s3/m/d88d0a237e21af45b207a810.png)
第三章 荷载横向分布计算由于本桥各T 梁之间采用混凝与湿接缝刚性连接,故其荷载横向分布系数,在梁端可按“杠杆原理法”计算(m 0),在跨中按“修正刚性横梁法”计算(m c )。
(一)梁端的横向分布系数m 0根据桥规规定,在横向影响线确定荷载沿横向最不利的布置位置。
例如,对于汽车荷载,规定的汽车横向轮距为1.8m ,两列汽车车轮的横向最小间距为1.30m,车轮距离人行道缘石最少为0.50m 。
求出相应于荷载位置的影响线竖标值后,就可得到横向所有荷载分布给1号梁的最大荷载值为: 式子中:q P —汽车荷载轴重;q η—汽车车轮的影响线竖标。
由此可得:1号梁在汽车荷载作用下最不利荷载横向分布系数为654.001=m 同理有:904.002=m ;904.003=m ;904.004=m ;904.005=m ;654.006=m(二)跨中的横向分布系数m c 1.计算I 和I T求主梁截面中心位置a x (距梁顶)翼板的换算平均厚度 cm h 19224141=+=马蹄形下翼缘换算厚度 cm h 5.34228412=+=S ≈ (260-18)×19×19/2+245×18×245/2=583906cm 3 A ≈(260-18)×19+245×18=9008cm 2 重心距离 a x =S/A=583906/9008=64.82cm 主梁抗弯惯性矩:I ≈1/12×(260-18)×193+(260-18)×19×(64.82-19/2)2+1/12×18×2453 +18×245×(245/2-64.82)2=cm 4=0.5094m 4 翼板主梁抗扭惯性矩b 1/t 1=260/19=13.68>10, 查表得c 1=0.33梁肋b 2=245-19=226cmb 2/t 2=226/18=12.6>10, 查表得c 2=0.33 I T =∑c i b i t i 3=0.33×260×193+0.33×226×183=1023452cm 4=0.0102m 42.计算抗扭修正系数β本桥各主梁的横截面均相等,梁数n=6,梁间距为2.6m ,则 其中:E —混凝土弹性模量;G —混凝土剪切模量,E G 43.0=。
荷载横向分布计算
![荷载横向分布计算](https://img.taocdn.com/s3/m/ce8c3f8977a20029bd64783e0912a21614797f39.png)
由平衡条件得
两式相等:
当p=1作用在跨中k点时,任一板条的荷载峰值为:
荷载作用在任意位置i时,k点的挠度值与同一荷载下平均挠度之比定义为影响系数Kki
01
ηki——p=1作用在任意位置i时分配至k点的荷载,即对k点的荷载影响线坐标。
02
Kki——计算板条位置k、荷载位置I、扭弯参数α及纵横向抗弯刚度之比θ的函数。
T梁、工字梁, α=0~1
(四)应用图表计算荷载的横向分布
1、绘制荷载横向影响线 纵横向单宽惯矩为 的简支比拟板 板上任意位置k作用单位正弦荷载,板在跨中产生弹性挠曲 全桥按横向不同位置分成纵向单位宽板条,沿x方向挠度:
1
跨中荷载挠度成正比
1
弯曲刚度参数θ θ<=0.3时为窄桥, θ>0.3时为宽桥
2
校核K值
计算截面抗弯、抗扭刚度 抗弯惯矩 Ix——按翼板宽为b的T形截面计算
λ值——查表 P455
Iy——按翼板宽为有效宽度为(2λ+δ)的T形截面计算
独立的宽扁矩形截面b>>h: 连续桥面板:
抗扭惯矩
连续桥面板的整体式梁桥、翼板刚性连结的装配式梁桥在应用“G-M法”时,可用下式计算α:
板梁的典型受力图式
第二章 简支板、梁桥-4
式中, 铰缝k内作用单位正弦铰接力,在铰缝i处引起 的竖向相对位移
01
求 、 ,用 表示,
03
可由刚度参数、板块数、荷载作用位置确定gi,并由gi得到荷载作用下分配到各块板的竖向荷载的峰值。
05
3
表示:
铰接板桥计算图式
第二章 简支板、梁桥-4
求单位正弦荷载作用在1号梁上时(n-1)条铰缝的铰接力峰值gi 各板分配的竖向荷载峰值pi1为: 1号板 p11=1-g1 2号板 p21=g1-g2 3号板 p31=g2-g3 4号板 p41=g3-g4 5号板 p51=g4
第五节荷载横向分布计算
![第五节荷载横向分布计算](https://img.taocdn.com/s3/m/f0b573da52d380eb63946da2.png)
一、杠杆原理法 ㈠按杠杆原理法进行荷载横向分布计算的基本假定:
是忽略主梁之间横向结构的联系作用,即假设桥面 板在主梁梁肋处断开,而当作沿横向支承在主梁上 的简支梁或悬臂梁来考虑,如图所示。
㈡杠杆原理法适用条件:
1、荷载位于靠近主梁支点时的荷载横向分布计算。 此时,主梁的支承刚度远大于主梁间横向联系
的刚度,荷载作用于某处时,基本上由相邻的两片 梁分担,并传递给支座,其受力特性与杠杆接近。 2、可用于双主梁桥(图5—44),或横向联系很弱的 无中间横隔梁的桥梁。
为了求主梁所受的最大荷载,通常可利用反力 影响线来进行,在此情况下,它也就是计算荷载横
2、考虑主梁抗扭刚度的修正偏心压力法
1、根据平衡条件:
2、由材料力学知,简支梁考虑自由扭转时跨中截 面扭矩与扭角以及竖向力与挠度的关系为:
式中:J---- 为简支梁的跨度 ITj---- 梁的抗扭惯矩 G----- 材料的剪切模量
3、由几何关系[图5—49b)] 4、将式(5—43)代入, 5、则将上式代入与MTi的关系式,就得
由前述的偏心压力法知,荷载横向影响线坐标 的公式为:
上式中等号右边第一项是由中心荷载P=1引起 的,此时各主梁只发生挠度而无转动,显然它与主 梁的抗扭无关。算式中没有计入主梁的抗扭作用。
等号右边第二项是由偏心力矩M=1*e作用所引起, 此时由于截面的转动,各主梁不仅发生竖向挠度, 而且还必然同时引起扭转,但在计算式中没有计入 主梁的抗扭作用。因此,要计入主梁的抗扭影响, 只需对等式第二项给予修正。
第五节、荷载横向分布计算
ቤተ መጻሕፍቲ ባይዱ
(1)杠杆原理法,为把横向结构(桥面板和横隔粱)视 作在主梁上断开而简支在其上的简支梁。 (2)偏心压力法,为把横隔梁视作刚性极大的梁,当 计及主梁抗扭刚度影响时,此法又称为修正偏心压 力法。 (3)横向铰接板(梁)法,为把相邻板(梁)之间视作饺 接,只传递剪力。 (4)横向刚接梁法,为把相邻主梁之间视作刚性连 接,即传递剪力和弯短。 (5)比拟正交异性板法,为将主梁和横隔梁的刚度换 算成正交两个方向刚度不同的比拟弹性平板来求解。
桥梁工程荷载横向分布计算简介
![桥梁工程荷载横向分布计算简介](https://img.taocdn.com/s3/m/8f5a4e954128915f804d2b160b4e767f5acf80e9.png)
•由于跨中截面车轮加载值占总荷载的绝大多 数, 近似认为其它截面的横向分布系数与跨中 相同 •对于剪力
从影响线看跨中与支点均占较大比例 从影响面看近似影响面与实际情况相差较大
计算剪力时横向分布沿桥纵向的变化
与铰接板、梁的区别: 未知数增加一倍, 力法方程数增加一倍
5 .铰接板桥计算m举例:
如图所示,l=12.60m的铰接空心板桥横截面布置。 桥面净空为净-7+2x0.75m人行道。全桥由9块预应力混凝 土空心板组成,欲求1、3.5号板的公路-I级和人群荷载作用 的跨中横向分布系数?
分析: 荷载横向分布影响线竖标值与刚度参数γ ,板 块数n以及荷载作用位置有关。 5.8 I (b)2
4.目前常用的荷载横向分布计算方法: (1)梁格系模型
①杠杆原理法
②偏心压力法
③横向铰接梁(板)法
④ 横向刚接梁法 (2)平板模型——比拟正交异性板法(简称G—M法) 各计算方法的共同点: (1)横向分布计算得m (2)按单梁求主梁活载内力值
二、杠杆原理法 (一)计算原理 1.基本假定:
忽略主梁间横向结构的联系作用,假设桥面 板在主梁上断开,当作沿横向支承在主梁上的简 支梁或悬臂梁来考虑。
荷载横向分布计算
一、概述
荷载: 恒载: 均布荷载(比重×截面积)
活载: 荷载横向分布
1.活载作用下,梁式桥内力计算特点:
(1)单梁 (平面问题)
P
S=P·η1(x)
x
L/4
1
(2)梁式板桥或由多片主梁组成的梁桥(空间问题): S=P·η(x,y) 实际中广泛使用方法: 将空间问题转化成平面问题
S P (x, y) P 2 (y) 1(x)
为求1号梁的荷载 假设: a、P=1作用于1号梁梁轴, 跨中,偏心距为e; b、 各主梁惯性矩Ii不相等; c、横隔梁刚度无穷大。 则由刚体力学: 偏心力P=1 <====> 中心荷载 P=1+偏心力矩M=1·e
桥梁工程荷载横向分布计算简介
![桥梁工程荷载横向分布计算简介](https://img.taocdn.com/s3/m/c31c2625453610661ed9f44f.png)
2、横向分布系数(m)的概念:
• 多片式梁桥,在横向分布影响线上用规范规定的车轮 横向间距按最不利位置加载
说明:1)近似计算方法,但对直线梁桥,误差不大
2)不同梁,不同荷载类型,不同荷载纵向位置, 不同横向连接刚度,m不同。
3、横向连结刚度对荷载横向分布的影响
结论:横向分布的规律与结构横向连结刚度关系密切,
根据表中的横向影响线坐 标值绘制影响线图
公路-I级
七、横向分布系数沿桥纵向的变化
•对于弯矩
由于跨中截面车轮加载值占总荷载的绝大多数,近 似认为其它截面的横向分布系数与跨中相同
•对于剪力
从影响线看跨中与支点均占较大比例 从影响面看近似影响面与实际情况相差较大
计算剪力时横向分布沿桥纵向的变化
横向分布系数
横向分布系数 :在横向分布影响线上加载
3. 铰接梁法
假定各主梁除刚体 位移外,还存在截 面本身的变形
与铰接板法的区别:变位系数中增加桥面板变形项
4.刚接梁法
假定各主梁间除传递剪力外,还传递弯矩
与铰接板、梁的区别: 未知数增加一倍,力法方程数增加一倍
5 .铰接板桥计算m举例:
如图所示,l=12.60m的铰接空心板桥横截面布置。 桥面净空为净-7+2x0.75m人行道。全桥由9块预应力混凝 土空心板组成,欲求1、3、5号板的公路-I级和人群荷载作用 的跨中横向分布系数?
值(ki)
1 ai ak 若各梁截面尺寸相同: ki Rki Rik n n 2 ai
i 1
(三) 计算举例
例2-5-3: 已知:l=19.50m,荷载位于跨中 试求:1#边梁,2#中梁的mcq,mcr
作业
已知:l=29.16m, 38.88m,荷载位于跨中时 试求:2#中梁的mcq,mcr
荷载横向分布系数的计算杠杆法
![荷载横向分布系数的计算杠杆法](https://img.taocdn.com/s3/m/fd0747c750e79b89680203d8ce2f0066f5336481.png)
(
y
)
:单位荷载沿横向作用在不同位置时,对某梁所分配旳荷载 比值变化曲线,也称为对于某梁旳荷载横向分布影响线。
一、概述
P3 P3 22
P2 P2 22 P1 P1 22
x
m3 P3
m1P1
m2 P2 K
问题?
计算 3 号梁 k 点截面内力。
123 45
y
3
S P 2(y)1 (x) P'1(x) P' P 2 ( y)
1
160
2
160
3
160
4
160
5
105
表 各根主梁旳荷载横向分布系数
梁号
m0q
m0r
1、5号梁
0.438
1.422
2、4号梁
0.5
0
3号梁
0.594
0
二、杠杆原理法 The End
疑问?
(1)把空间问题转化为平面问题:近似处理措施。近似处理旳实质是什 么?
实质:在一定旳误差范围内,谋求一种近似旳内力影响面替代精 确旳内力影响面。
的荷载横向影响线坐标。
1
2号梁
图 杠杆原理法计算横向分布系数
假定荷载横向分布影响线旳坐 标为η ,车辆荷载轴重为 Pq ,轮重为 Pq/2,按最不利情 况布载,则分布到某主梁旳最 大荷载为:
则P'汽max车荷载P2横向 分(布12 系数 )为 P:
人群荷载横向分布系数为:
1
m0q 2
q
m0r r
一、概述
梁桥由承重构造(主梁)及传力构造(横梁、桥面板)两大部分构成。多 片主梁依托横梁和桥面板连成空间整体构造。 主梁内力:与桥梁横截面形式、荷载类型、荷载作用位置有关。 精确旳空间构造分析措施:有限元理论
荷载横向分布计算
![荷载横向分布计算](https://img.taocdn.com/s3/m/97be7063a6c30c2258019e03.png)
R R1 R2
1
P 2
2
P 2
i P 2
m q P
P/2
P/2
1
2
3
R1 R2
η1
η2
支座反力影响线
10
3、计算实例 见教材P115
11
(二)偏心压力法
1、基本假设
横梁刚性极大,刚性横梁的微小变形可以忽略不计
PP
P/2
P/2
L f f >>f’
B f f’
12
2、基本假设的适用范围 试验证明,当B/L<0.5(称为窄桥)及具有多道横隔梁时, 刚性横隔梁假设是成立的。
i1
i1
P w
说明只需要对上式中的第二项
φ
Pe
进行修正
28
3、修正偏心压力法原理
偏心力矩M=Pe=e作用下, 弯矩静力平衡:
M=Pe=e
5
5
Ri''ai MTi1e
i1
i1
ai wi’’
φ
MT1 R1’’
R2’’ MT2 MT3
R4’’ R5’’ MT4 MT5
29
材料力学关于简支梁跨中的 扭矩与扭转角的关系
各梁竖向挠度:
M=Pe=e
wi'' aitg
根据位移与荷载的关系,
Ri'' Iiwi''
ai wi’’
φ
R1’’ R2’’
R i''Iiw i''Iia itg a iIi
R4’’ R5’’
18
弯矩静力平衡:
M=Pe=e
5
5
Ri''ai ai2Ii 1e
荷载横向分布计算详细总结(全)
![荷载横向分布计算详细总结(全)](https://img.taocdn.com/s3/m/796d955af7ec4afe04a1dfc5.png)
将式(a)与式(b)相加后,与式7-2联立,可得如下方程组:
= 式(7-2)
(式7-2)的具体推导过程见下图:
图6.6
⑦解上述方程组,解得:
(式7-3)
—第 片主梁的抗扭惯性矩。
G—材料的剪切模量,对于混凝土结构,G=0.425E。
注:修正偏心压力法作出的荷载横向分布影响线是一条直线。
5.铰接板(梁)法:(①中梁和边梁抗弯刚度相等或者接近②跨中)
☆适用条件:现浇砼纵向企口缝连结的装配式桥、仅在翼板间用钢板或钢筋连接的无中间横隔梁的装配式T梁桥。此类桥横向有一定连结构造,但刚性弱,板(梁)之间的连接可以看成是铰接。
矩阵B是 阶三对角方阵,其组成规律为:主对角线上的元素均为 ,剩余两条对角线元素均为 。
矩阵C为 阶方阵,组成规律为:主对角线上元素均为0,主对角线上侧第一条对角线上元素均为 ,主对角线下册第一条对角线上元素均为 (可以将矩阵C看成是一个主对角线元素为0的特殊三对角矩阵)。具有n片主梁时,矩阵C的一般形式见下图6.2:
注:铰接板(梁)法作出的荷载横向分布影响线是一条光滑曲线。
6.刚接板(梁)法:(①中梁和边梁抗弯刚度相等或者接近;②跨中)
☆适用条件:各种桥面板刚接的肋梁桥。对于整体式板桥,使用刚接梁法计算时,把整体式板划分成 块等宽度 的板(一般 ),当做彼此之间刚接的板桥来计算其荷载的横向分布。需要注意的是,将整体式板划分成 块等宽度为 的板时,每一块板的宽跨比 不宜大于1/4。
其中: —每片主梁的抗弯惯性矩。
—每片主梁的抗扭惯性矩。
—单位宽度翼缘板的抗弯惯性矩。
—梁(板)截面宽度。
—翼缘板的悬出长度。
荷载横向分布系数的计算
![荷载横向分布系数的计算](https://img.taocdn.com/s3/m/4a7782d101f69e3142329414.png)
2、荷载横向分布系数的计算方法 ▪ 荷载横向分布影响线:P=1在梁上横向移动时,
某主梁所相应分配到的不同的荷载作用力。 ▪ 对荷载横向分布影响线进行最不利加载Pi,
可求得某主梁可行最大荷载力
▪ 荷载横向分布系数:将Pi除以车辆轴重。
2、荷载横向分布系数的计算方法 (1)杠杆分配法
基本假定:忽略主梁之间横向结构的联系,假设桥面 板在主梁上断开并与主梁铰接,把桥面板视作横向支 承在主梁上的简支板或带悬臂的简支板
'' i
ai
tan
由 Ri '' Iii ''
Ri '' tanai Ii ai Ii
n
有
Ri ''ai ai2Ii 1 e
i 1
Ri ''
ai Iie
n
ai2Ii
i 1
(2)刚性横梁法
则偏心力P作用下,每片主梁分配的荷载为:
Ri Ri' Ri''
Ii
n
Ii
i 1
▪ 计算假设: ①铰式键只传递竖
荷载横向分布影响线为三角形
适用情况 ①只有邻近两根主梁参与受力 ②虽为多主梁,但计算梁端支承处荷载 ③无中间横隔梁
2、荷载横向分布系数的计算方法
(1)杠杆分配法
作业1:画 及出单3车、辆4荷号载梁作的用荷下载3横、向4分号布梁影荷响载线横,向
0.75m
分布系数 7m
0.75m
1
2 2m
3
4
(2)刚性横梁法(偏心受压法) 假定 ①横梁是刚性的:宽跨比B/l≤0.5 ②忽略主梁抗扭刚度
P/2
P/2 P/2
第三章24-荷载横向分布系数的计算-比拟法
![第三章24-荷载横向分布系数的计算-比拟法](https://img.taocdn.com/s3/m/e7e9046e9b6648d7c1c74646.png)
ki
K ki ki 2B
得P 1作用在任意位置 i时分配到 k号板条的荷载为 : 即为k号板条的荷载横向影响 线的坐标值。
主梁宽度为 (全桥共n根),则某根主梁的荷载横 b 向影响线坐标值:
Rki ki b
K ki 2 B K ki 2B n n
3. 利用附图绘制荷载横向影响线
G ( J Tx J Ty ) (4)计算考虑扭弯参数 的各梁的K 值 2E Jx Jy
一般肋式结构比拟的正交异性板, 在0 ~ 1之间,K由下式内插求得:
影响系数:K K 0 ( K 1 K 0 )
(5)计算主梁荷载横向影响线的竖标值:
在0 ~ 1之间变化;箱梁 1。
2. 原理分析
1946年 法 国 的 居 翁 ( yon 引 用 正 交 异 性 板 的 论 解 决 了 无 扭 梁 格 Gu ) 理 ( 0) 的 荷 载 横 向 分 布 计 问 题 。 算 1950年 麦 桑 纳 特 ( Masson n e) 在 保 留 参 数 的 情 况 下 使 居 翁 的 理 论 t 得到推广。 因 此 , 习 惯 地 把 这 两 方 法 合 称 为 “ M” 法 。 个 G 应 用 图 表 计 算 荷 载 的向 分 布 。 横
实际结构: (如果 梁肋间距 a 和 b 相比桥跨结构的长度或宽度很 ) 小,并且桥面板与梁肋具有完善的结合。
纵向主梁:间距 ,每根主梁的截面抗弯 b 惯矩I x、抗扭惯矩 Tx I 横隔梁:间距 ,截面抗弯惯矩 y、抗扭惯矩 Ty a I I
(设想) 换算方法:
将主梁的截面惯矩 x 和ITx 平均分摊于宽度 I b 将横隔梁的截面惯矩 y 和ITy 平均分摊于宽度 I a
荷载横向分布系数
![荷载横向分布系数](https://img.taocdn.com/s3/m/d5d8e6add5d8d15abe23482fb4daa58da1111c56.png)
荷载横向分布系数
荷载横向分布系数是指荷载和梁的宽度的比例关系的系数,它表明梁上的荷载是如何均匀地分布的。
它对于对梁及其抗压力能力的计算非常重要,主要决定着梁弯矩的大小。
另外,它还可以预测梁的变形程度以及梁的整体稳定性和结构安全性。
荷载横向分布系数可以通过梁的中心轴线来计算,可以用梁的节点距离来代表宽度,从而可以得到荷载横向分布系数的计算公式。
「b」和「h」分别代表梁的宽度和高度,而「P」代表点荷载,其公式如下:
荷载横向分布系数= (b/h) × (P/σ)
其中,「σ」是指梁应力,通常为允许应力。
荷载横向分布系数是梁的静健度和强度的重要决定因素。
正确的横向分布系数可以帮助梁承载最大的荷载,从而使梁受更少的变形和破坏。
荷载横向分布系数可以帮助梁充分利用载荷承受能力,可以有效减少结构成本。
荷载横向分布系数的计算-杠杆法
![荷载横向分布系数的计算-杠杆法](https://img.taocdn.com/s3/m/58a2c64dba68a98271fe910ef12d2af90242a8f7.png)
02 杠杆法的计算步骤
确定计算跨度
计算跨度是桥梁横向分布系数计算的关键参数, 它决定了荷载在各片梁之间的分布情况。
计算跨度应考虑桥梁的结构形式、材料特性、施 工方法等因素,并根据桥梁设计规范进行确定。
在实际工程中,也可以通过实测和经验公式等方 法来确定计算跨度。
感谢您的观看
THANKS
案例三:其他工程领域中的应用
总结词
除桥梁和房屋建筑外,杠杆法还可应用于其他工程领域,如大型工业厂房、大跨度结构 等。
详细描述
在这些工程领域中,杠杆法同样通过将结构简化为一系列简支梁,利用杠杆原理计算各 简支梁的弯矩和剪力,从而得到结构的荷载横向分布系数。这种方法为这些复杂结构的
承载能力评估和设计提供了重要的技术支持。
荷载横向分布系数的 计算-杠杆法
目录
CONTENTS
• 杠杆法概述 • 杠杆法的计算步骤 • 杠杆法的优缺点 • 杠杆法与其他方法的比较 • 杠杆法的实际应用案例
01 杠杆法概述
杠杆法的定义
01
杠杆法是一种计算桥梁荷载横向 分布系数的方法,通过将桥梁的 总荷载分配到各个主梁上,以确 定各主梁所承受的荷载比例。
案例二:房屋建筑中的应用
总结词
况,以确保楼面承载能力满足设 计要求。
详细描述
在房屋建筑中,杠杆法通过将楼面简化为一系列简支梁,利用杠杆原理计算各简支梁的弯矩和剪力, 从而得到楼面荷载横向分布系数。这种方法在计算楼面活荷载、均布荷载等不同类型荷载作用下的楼 面承载能力时具有广泛的应用价值。
根据弯矩和剪力的计 算结果,可以进一步 分析梁的受力性能和 稳定性。
荷载横向分布计算(铰接板法)
![荷载横向分布计算(铰接板法)](https://img.taocdn.com/s3/m/e9d0c703cc17552707220830.png)
b = − (ω − φ ⋅ ) 2
且
δ ( i −1) i = δ i (、 i −1)
δ ( i +1) i = δ i ( i +1)
Байду номын сангаас
在铰缝( 在铰缝(i -2)和铰缝(i +2)处: )和铰缝( ) 外荷载P在铰接缝 处引起的竖向位移: 外荷载 在铰接缝 i 处引起的竖向位移:
′′ ′′′ w1 ( x) w1 ( x) w1 ( x ) p1 ( x) = = = = 常数 (1) ) ′′ ′′′ w2 ( x ) w2 ( x ) w2 ( x ) p2 ( x )
实际上, 作用下的② 实际上,在P作用下的②号梁和在 (x)作用下的 作用下的 号梁和在g 作用下的 号梁是在不同性质的荷载( 和 ①号梁是在不同性质的荷载(P和g (x) )作用下的 两片梁,所以( )式的比例关系是不成立的。 两片梁,所以(1)式的比例关系是不成立的。 如果引入一种半波正弦荷载 P进行分析计算,那么(1)式成立、计算误差较小。 进行分析计算,那么( )式成立、计算误差较小。 进行分析计算 ∴各根板梁的挠曲线将是半波正弦曲线,所分配到的 各根板梁的挠曲线将是半波正弦曲线, 挠曲线 荷载是具有不同峰值的 荷载是具有不同峰值的半波正弦荷载 是具有不同峰值 波正弦荷载来分析跨中荷载横向分布的规律。 波正弦荷载来分析跨中荷载横向分布的规律。 这 样能很好地模拟板间荷载的传递关系。 i ( x ) = pi sin p 样能很好地模拟板间荷载的传递关系。所以采用半
w1 ( x) M 1 ( x) Q1 ( x) P ( x) = = = 1 = 常数 w2 ( x) M 2 ( x) Q2 ( x) P2 ( x)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、荷载横向分布的计算
2、荷载横向分布系数的计算方法 常用的计算方法: ◆ 杠杆原理法 ◆ 刚性横梁法 ◆ 修正的刚性横正交异性板法(G-M法) 从分析荷载在桥上的横向分布出发,求得各梁 的荷载横向分布影响线,再通过横向最不利加载来 计算荷载横向分布系数
多主梁桥的内力计算
S P ( x, y) P 2 ( y) 1 ( x)
三、荷载横向分布的计算
1、荷载横向分布系数的概念
荷载横向分布系数表示某根主梁所承担的最大荷载与轴 重的比值
车轮荷载的横向分布
三、荷载横向分布的计算
1、荷载横向分布系数的概念 荷载横向分布系数与各主梁之间的横向联系有直 接关系。
三、荷载横向分布的计算
2、荷载横向分布系数的计算方法 荷载横向分布影响线:P=1在梁上横向移动时,某 主梁所相应分配到的不同的荷载作用力。 对荷载横向分布影响线进行最不利加载Pi,可 求得某主梁可行最大荷载力
荷载横向分布系数:将Pi除以车辆轴重。
三、荷载横向分布的计算
2、荷载横向分布系数的计算方法 (1)杠杆分配法
二、行车道板的计算
1、车辆活载在板上的分布 公路汽车荷载
轮压一般作为分布荷载处理 车轮着地面积:a1×b1
桥面板荷载压力面:a2×b2
荷载在铺装层内按45°扩散 沿纵向:a2=a1 +2h
沿横向:b2=b1+2h
桥面板的轮压局部分布荷载:
公路桥面板上车轮荷载的扩散
P p 2a2b2
三、荷载横向分布的计算
1、荷载横向分布系数的概念 公路桥梁桥面较宽,主梁片数往往较多并与桥 面板和横隔梁联结在一起。当桥上车辆处于横向不 同位置时,各主梁参与受力的程度不同,属空间问 题,求解难度大。 应将空间问题简化为平面问题。
三、荷载横向分布的计算
三、荷载横向分布的计算
1、荷载横向分布系数的概念
②荷载在板支承处 ③荷载靠近板支承处
a a' a2 t a1 2h t
a ax a' 2x a1 2h t 2x
二、行车道板的计算
3、板的有效工作宽度
单向板的荷载有效分布宽度
(2)悬臂板
二、行车道板的计算
a a2 2c a1 2h 2c
荷载靠近板边的情况:
a a2 2c a1 2h 2c
悬臂板的有效工作宽度
二、行车道板的计算
4、行车道板的内力计算
行车道板通常由弯矩控制设计,常取沿桥长 方向1m宽板条,按梁式板计算。 根据板的有效宽度可得梁式板计算荷载, 即荷载除以相应的板有效工作宽度得到每米板 宽荷载。
二、行车道板的计算 4、行车道板的内力计算 (1)连续单向板:先计算同跨简支板跨中弯
矩M0,再修正。
主梁扭转刚度对行车道板的影响
t 1 h 4 t 1 h 4
M中 0.7M 0 M 支 0.7M 0
M中 0.5M 0
M支 0.7M 0
M 0 M 0q M 0 g
二、行车道板的计算 4、行车道板的内力计算
(1)连续单向板 1m宽简支板的跨中活载弯矩
3、板的有效工作宽度
(1)单向板
a m x max mx dy M
板的有效工作宽 度或荷载有效分 布宽度
M a mx max
二、行车道板的计算
3、板的有效工作宽度
(1)单向板 ①荷载在跨中 l l 2 a a2 a1 2h l 单个荷载
3
3
3
多个荷载
l l 2 a a2 d a1 2h d l d 3 3 3
M Aq (1 ) pb2 (l0
b2 P b ) (1 ) (l0 2 ) 2 2a 2
恒载弯矩
M Ag
1 2 gl 0 2
1m宽板条的最大设计弯矩
M A M Ag M Aq
三、荷载横向分布的计算
1、荷载横向分布系数的概念
荷载横向分布是指作用在桥上的车辆荷载如何在各 主梁间进行分配,或者说各主梁如何共同分担车辆活载。
学习情境一
桥梁结构设计
混凝土简支梁桥的计算
一、概述
计算过程 开始
拟定尺寸
荷载计算
内力计算 截面配筋验算 裂缝挠度验算
否 是否通过 是
计算结束
一、概述
简支梁桥设计计算的项目一般有: 主梁:主要承重构件 桥面板:直接承受车辆荷载,又 是主梁的受压翼缘 横隔梁:主要增强梁桥的横向刚 性,起分布荷载作用 支座:将主梁支点反力传递至墩 台
二、行车道板的计算
3、板的有效工作宽度 板有效工作宽度(或荷载有效分布宽度):除轮压 局部分布荷载直接作用板带外,其邻近板也参与共 同分担荷载。 板有效工作宽度影响因素:板支承条件、荷载性 质、荷载位置
二、行车道板的计算
3、板的有效工作宽度
(1)单向板
行车道板的受力和变形状态
二、行车道板的计算
基本假定:忽略主梁之间横向结构的联系,假设桥面 板在主梁上断开并与主梁铰接,把桥面板视作横向支 承在主梁上的简支板或带悬臂的简支板
荷载横向分布影响线为三角形 适用情况 ①只有邻近两根主梁参与受力 ②虽为多主梁,但计算梁端支承处荷载 ③无中间横隔梁
M 0q P b1 (1 ) (l ) 8a 2
1m宽简支板的跨中恒载弯矩
M 0g 1 2 gl 8
单向板计算图式
二、行车道板的计算 4、行车道板的内力计算
(2)悬臂板内力
悬臂板计算图式
(2)悬臂板内力
二、行车道板的计算
(b2 l0 时)
( b2 l0 时)
或
p 2 P 2 M Aq (1 ) l 0 (1 ) l0 2 4ab1
二、行车道板的计算
2、行车道板分类 按行车道板支承情况,可分为:单边支承、两边支承、三 边支承和四边支承等四种情况
行车道板的支承情况
二、行车道板的计算
2、行车道板分类 按受力情况分: 单向板:长边/短边≥2 荷载绝大部分沿短跨方向传递 可视为单由短跨承载的单向板; 双向板:长边/短边<2 悬臂板:如翼板端边自由(即三边支承板),可作为 沿短跨一端嵌固,而另一端自由的悬臂板来分析 铰接悬臂板:相邻翼缘板在端部做成铰接接缝的情况, 按一端嵌固,一端铰接的悬臂板计算