高等数学微积分ppt视频教程课件
合集下载
《微积分》(上下册) 教学课件 01.第1章 函数、极限、连续 高等数学第一章第9-10节
12
定义 2 设函数 f ( x)在U(x0, )内有定义,如果
y
lim f (x) f (x ),
x x0
0
y f (x)
称函数 f ( x)在点 x 连续. 0
如 f ( x) x2,
0
x0
x
lim f ( x) lim x2 4 f (2),
x2
x2
f ( x) x2在x 2点连续.
说明 y f (x)在x x0点连续 下列三条同时成立 (1) f (x0)有定义;
(2) lim f (x)存在; xx0
(3)lim x x0
f
(x)
f (x0 ).
13
例1
试证函数
f
ห้องสมุดไป่ตู้
(
x)
x
sin1 x
,
0,
处连续.
证 lim x sin 1 0,
x0
x
又 f (0) 0, lim f ( x) f (0), x0
3、反函数函数的连续性
严格单调的连续函数必有严格单调的连续反函数. 例如, y sin x在[ , ]上单调增加且连续,
22 故 y arcsinx 在[1,1]上也是单调增加且连续.
同理 y arccosx 在[1,1]上单调减少且连续;
y arctanx, y arccot x 在(,)上单调且连续.
§1.9 无穷小量的比较与等价代换
例如, 当x 0时, x, x2,sin x, x2 sin 1 都是无穷小.
x2
lim 0,
观
x0 x
x x2比x要快得多;
察 各 极 限
lim sin x x0 x
定义 2 设函数 f ( x)在U(x0, )内有定义,如果
y
lim f (x) f (x ),
x x0
0
y f (x)
称函数 f ( x)在点 x 连续. 0
如 f ( x) x2,
0
x0
x
lim f ( x) lim x2 4 f (2),
x2
x2
f ( x) x2在x 2点连续.
说明 y f (x)在x x0点连续 下列三条同时成立 (1) f (x0)有定义;
(2) lim f (x)存在; xx0
(3)lim x x0
f
(x)
f (x0 ).
13
例1
试证函数
f
ห้องสมุดไป่ตู้
(
x)
x
sin1 x
,
0,
处连续.
证 lim x sin 1 0,
x0
x
又 f (0) 0, lim f ( x) f (0), x0
3、反函数函数的连续性
严格单调的连续函数必有严格单调的连续反函数. 例如, y sin x在[ , ]上单调增加且连续,
22 故 y arcsinx 在[1,1]上也是单调增加且连续.
同理 y arccosx 在[1,1]上单调减少且连续;
y arctanx, y arccot x 在(,)上单调且连续.
§1.9 无穷小量的比较与等价代换
例如, 当x 0时, x, x2,sin x, x2 sin 1 都是无穷小.
x2
lim 0,
观
x0 x
x x2比x要快得多;
察 各 极 限
lim sin x x0 x
4-3[1]高等数学 微积分 ppt视频教程
分部积分公式
例1 求积分 x cos xdx .
1 2 解(一) 令 u = cos x , xdx = dx = dv 2 2 2 x x ∫ x cos xdx = 2 cos x + ∫ 2 sin xdx 显然, u 选择不当,积分更难进行. 显然, , v ′ 选择不当,积分更难进行 解(二) 令 u = x , cos xdx = d sin x = dv
例5 求积分 sin(ln x )dx . 解
∫
∫ sin(ln x)dx = x sin(ln x ) ∫ xd [sin(ln x )]
1 = x sin(ln x ) ∫ x cos(ln x ) dx x
= x sin(ln x ) x cos(ln x ) + ∫ xd [cos(ln x )] = x[sin(ln x ) cos(ln x )] ∫ sin(ln x )dx
∫
∫ x cos xdx = ∫ xd sin x = x sin x ∫ sin xdx
= x sin x + cos x + C .
x 2e x dx x2,
e x dx = de x = dv ,
2
∫x e
2
x
dx = x e 2 ∫ xe dx
x x
(再次使用分部积分法)u = x , e x dx = dv 再次使用分部积分法)
= 1 + x arctan x ∫
2
1 1+ x dx 2 1+ x
2
= 1 + x arctan x ∫
2
1 dx 2 1+ x 令 x = tant
∫
1 1 dx = ∫ sec 2 tdt = ∫ sec tdt 1 + x2 1 + tan 2 t
例1 求积分 x cos xdx .
1 2 解(一) 令 u = cos x , xdx = dx = dv 2 2 2 x x ∫ x cos xdx = 2 cos x + ∫ 2 sin xdx 显然, u 选择不当,积分更难进行. 显然, , v ′ 选择不当,积分更难进行 解(二) 令 u = x , cos xdx = d sin x = dv
例5 求积分 sin(ln x )dx . 解
∫
∫ sin(ln x)dx = x sin(ln x ) ∫ xd [sin(ln x )]
1 = x sin(ln x ) ∫ x cos(ln x ) dx x
= x sin(ln x ) x cos(ln x ) + ∫ xd [cos(ln x )] = x[sin(ln x ) cos(ln x )] ∫ sin(ln x )dx
∫
∫ x cos xdx = ∫ xd sin x = x sin x ∫ sin xdx
= x sin x + cos x + C .
x 2e x dx x2,
e x dx = de x = dv ,
2
∫x e
2
x
dx = x e 2 ∫ xe dx
x x
(再次使用分部积分法)u = x , e x dx = dv 再次使用分部积分法)
= 1 + x arctan x ∫
2
1 1+ x dx 2 1+ x
2
= 1 + x arctan x ∫
2
1 dx 2 1+ x 令 x = tant
∫
1 1 dx = ∫ sec 2 tdt = ∫ sec tdt 1 + x2 1 + tan 2 t
大学微积分课件(PPT幻灯片版)pptx
高阶导数计算
高阶导数的计算一般采用归纳法 或莱布尼茨公式等方法进行求解。 需要注意的是,在计算过程中要 遵循求导法则和运算顺序。
应用举例
高阶导数在物理学、工程学等领 域有着广泛的应用。例如,在物 理学中,加速度是速度的一阶导 数,而速度是位移的一阶导数; 在工程学中,梁的挠度是荷载的 一阶导数等。
03 一元函数积分学
VS
几何意义
函数$y = f(x)$在点$x_0$处的导数 $f'(x_0)$在几何上表示曲线$y = f(x)$在点 $(x_0, f(x_0))$处的切线的斜率。
求导法则与技巧总结
基本求导法则
包括常数的导数、幂函数的导数、指数函数的导数、对数函数的导 数、三角函数的导数、反三角函数的导数等。
求导技巧
连续性与可微性关系
连续性
函数在某一点连续意味着函数在 该点有定义,且左右极限相等并 等于函数值。连续性是函数的基 本性质之一。
可微性
函数在某一点可微意味着函数在 该点的切线斜率存在,即函数在 该点有导数。可微性反映了函数 局部变化的快慢程度。
连续性与可微性关
系
连续不一定可微,但可微一定连 续。即函数的连续性是可微性的 必要条件,但不是充分条件。
历史发展
微积分起源于17世纪,由牛顿和莱布尼 茨独立发展。经过数百年的完善,已成 为现代数学的重要基础。
极限思想与运算规则
极限思想
极限是微积分的基本概念,表示函数在某一点或无穷远处的变 化趋势。通过极限思想,可以研究函数的局部和全局性质。
运算规则
极限的运算包括极限的四则运算、复合函数的极限、无穷小量 与无穷大量的比较等。这些规则为求解复杂函数的极限提供了 有效方法。
高等数学(微积分)ppt课件
,且f'(x0)=0,则可通过二阶导数 f''(x0)的符号来判断f(x)在x0处取得极大值还是极小值。
曲线的凹凸性与拐点
凹凸性
若函数f(x)在区间I上二阶可导,且 f''(x)>0(或<0),则称曲线y=f(x)在 I上是凹的(或凸的)。
拐点
拐点的判定
若函数f(x)在点x0处二阶可导,且 f''(x0)=0,则可通过三阶导数f'''(x0) 的符号来判断点(x0,f(x0))是否为曲线 的拐点。
THANKS
感谢观看
非线性微分方程
通过变量替换、积分等方法求解,或 利用数值方法近似求解
级数的概念与性质
级数的定义 无穷序列的部分和序列
级数的性质 加法、减法、乘法、除法、重排等性
质
级数的收敛与发散 部分和序列有极限则级数收敛,否则 发散
常见级数及其敛散性 等差级数、等比级数、调和级数、交 错级数等,通过比较法、比值法、根 值法等方法判断其敛散性
VS
极限的性质
唯一性、局部有界性、保号性、保不等式 性、迫敛性等。
极限的运算法则
极限的四则运算法则
若两个函数的极限存在,则它们的和、差、积、商(分母不为零)的极限也存在,且等于这两 个函数极限的和、差、积、商。
复合函数的极限运算法则
设函数$y=f[g(x)]$是由函数$u=g(x)$与函数$y=f(u)$复合而成,若$lim_{x
无穷小量的定义
如果函数$f(x)$当$x to x_0$(或$x to infty$)时的极限为零,那么称函数$f(x)$为当$x to x_0$(或$x to infty$)时 的无穷小量。
曲线的凹凸性与拐点
凹凸性
若函数f(x)在区间I上二阶可导,且 f''(x)>0(或<0),则称曲线y=f(x)在 I上是凹的(或凸的)。
拐点
拐点的判定
若函数f(x)在点x0处二阶可导,且 f''(x0)=0,则可通过三阶导数f'''(x0) 的符号来判断点(x0,f(x0))是否为曲线 的拐点。
THANKS
感谢观看
非线性微分方程
通过变量替换、积分等方法求解,或 利用数值方法近似求解
级数的概念与性质
级数的定义 无穷序列的部分和序列
级数的性质 加法、减法、乘法、除法、重排等性
质
级数的收敛与发散 部分和序列有极限则级数收敛,否则 发散
常见级数及其敛散性 等差级数、等比级数、调和级数、交 错级数等,通过比较法、比值法、根 值法等方法判断其敛散性
VS
极限的性质
唯一性、局部有界性、保号性、保不等式 性、迫敛性等。
极限的运算法则
极限的四则运算法则
若两个函数的极限存在,则它们的和、差、积、商(分母不为零)的极限也存在,且等于这两 个函数极限的和、差、积、商。
复合函数的极限运算法则
设函数$y=f[g(x)]$是由函数$u=g(x)$与函数$y=f(u)$复合而成,若$lim_{x
无穷小量的定义
如果函数$f(x)$当$x to x_0$(或$x to infty$)时的极限为零,那么称函数$f(x)$为当$x to x_0$(或$x to infty$)时 的无穷小量。
2024年度大学微积分课件PPT大纲
2024/2/2
定积分的换元法
通过变量代换,将复杂的被积函数转化为简单的被 积函数,便于计算。
定积分的分部积分法
将被积函数拆分为两个函数的乘积,通过分部积分 公式进行计算。
换元法与分部积分法的综合应用
结合换元法和分部积分法,解决更复杂的定积分计 算问题。
30
定积分在几何与物理中的应用
定积分在几何中的应用
第二类换元法
利用三角代换、根式代换等方法,将不定积分转化为更易于求解的 形式。
常用的换元技巧
三角恒等变换、倒代换等。
24
分部积分法
2024/2/2
分部积分法的原理
利用乘积的求导法则,将复杂的不定积分转化为更简单的形式。
分部积分法的应用
适用于被积函数为两个函数乘积的情况,特别是其中一个函数为多 项式时。
100%
连续性的判定方法
介绍判定函数连续性的方法及步 骤,包括直接法、定义法、极限 法等。
80%
间断点及其分类
讨论函数不连续点的概念、分类 及判定方法。
2024/2/2
11
03
导数与微分
2024/2/2
12
导数的概念与几何意义
导数的定义
导数描述了函数在某一点的变 化率,即函数值随自变量变化 的快慢程度。
大学微积分课件PPT大纲
2024/2/2
1
目
CONTENCT
录
2024/2/2
• 引言 • 极限与连续 • 导数与微分 • 微分中值定理与导数的应用 • 不定积分 • 定积分及其应用 • 多元函数微积分
2
01
引言
2024/2/2
3
微积分的起源与发展
早期微积分思想的萌芽
高等数学(微积分)课件--§7.1常数项级数的概念与性质
请利用几何级数计算: 1: ( ) 3 n 1 2 :
n 1
2
n
( 1) 2 3
n 1
n 1
3 : ( ) n2 4
n
8
例题(证明级数发散)
例 证明
证明级数 1 2 3 n 是发散的
n(n 1) 2
.
这级数的部分和为
sn 1 2 3 n
3 3
( 1)
n
8 9
n n
;
(2)
1 3
1 6
1 9
1 3n
; q 8 9 , 1 q
解
( 1 ) 因为级数是等比级数且
故原级数收敛
.
( 2 ) 因为级数
n1
1 n
是调和级数
, 它是发散的,
故由级数的性质知级数
1 3
1 6
1 9
1 3n
第七章
无穷级数
§7.1常数项级数的概念与性质 §7.2正项级数敛散性的判别 §7.3任意项级数敛散性的判别 §7.4*广义积分敛散性的判别 §7.5*幂级数 §7.6*函数的幂级数展开
1
§7.1常数项级数的概念与性质
一、常数项级数的概念 二、级数的基本性质 三、习题
2
一、常数项级数的概念
解
因为级数
n1
1 2
n
和
n1
1 3
n
都是收敛的等比级数
,
故由级数的性质知级数
1 1 1 1 1 1 2 2 n n 3 2 3 3 2 2
n 1
2
n
( 1) 2 3
n 1
n 1
3 : ( ) n2 4
n
8
例题(证明级数发散)
例 证明
证明级数 1 2 3 n 是发散的
n(n 1) 2
.
这级数的部分和为
sn 1 2 3 n
3 3
( 1)
n
8 9
n n
;
(2)
1 3
1 6
1 9
1 3n
; q 8 9 , 1 q
解
( 1 ) 因为级数是等比级数且
故原级数收敛
.
( 2 ) 因为级数
n1
1 n
是调和级数
, 它是发散的,
故由级数的性质知级数
1 3
1 6
1 9
1 3n
第七章
无穷级数
§7.1常数项级数的概念与性质 §7.2正项级数敛散性的判别 §7.3任意项级数敛散性的判别 §7.4*广义积分敛散性的判别 §7.5*幂级数 §7.6*函数的幂级数展开
1
§7.1常数项级数的概念与性质
一、常数项级数的概念 二、级数的基本性质 三、习题
2
一、常数项级数的概念
解
因为级数
n1
1 2
n
和
n1
1 3
n
都是收敛的等比级数
,
故由级数的性质知级数
1 1 1 1 1 1 2 2 n n 3 2 3 3 2 2
《微积分》(上下册) 教学课件 02.第2章 导数与微分 高等数学第一章第3-5节
1
记作
f
(
x),
y,
d2y dx2
或
d
2 f (x) dx2
.
二阶导数的导数称为三阶导数,记作
f ( x),
y,
d3y dx3 .
三阶导数的导数称为四阶导数, 记作
f (4)(x),
y(4) ,
d4y dx4 .
一般地, 函数f ( x)的n 1阶导数的导数称为
函数f ( x)的n阶导数, 记作
f (n)(x),
10
一、微分的概念
实例 半径为 x的0 金属圆板受热后面积的改变量.
设半径由x0变到x0 x,
圆板的面积 A x02,
A (x0 x)2 x02
2x0 x (x)2.
(1)
(2)
(1) x的线性函数,且为A的主要部分;
(2) x的高阶无穷小,当x 很小时可忽略.
11
再例如
设函数 y x3在点 x0处的改变量为x时, 求函数的 改变量 y.
§2.3 高阶导数
问题 变速直线运动的加速度.
设 s s(t), 则瞬时速度为v(t) s(t);
因为加速度a是速度v对时间t的变化率,所以
a(t) v(t) s(t).
定义 如果f (x)的导函数f (x)在点x处可导,即
( f (x)) lim f (x x) f (x)
x0
x
存在,则称( f (x))为f (x)在点x处的二阶导数.
dt dx
3a sin2 t cost 3a cos2 t(sint
)
tan t,
dt
d2y dx2
d (dy) dx dx
d ( tan t ) dx
微积分基本公式ppt课件
热力学
温度与热量,熵与绝热过程,热力学第二定律
微积分在经济中的应用实例
01
总结词
边际分析,最优化问题,经济增长 模型
最优化问题
最大利润,最小成本,最优解
03
02
边际分析
边际成本,边际收益,边际利润
经济增长模型
索洛模型,哈罗德-多马模型,内生 增长模型
04
THANKS
感谢观看
微积分基本公式的应用实例
总结词
微积分基本公式在解决实际问题中有着广泛 的应用,例如求解变速直线运动的位移、求 解曲线的面积等。
详细描述
通过微积分基本公式,我们可以求解变速直 线运动的位移。例如,假设一个物体以速度 v(t)运动,那么物体在时间t到时间t+Δt之间 的位移就是∫(v(t)dt),通过微积分基本公式 可以求得该物体的位移。此外,微积分基本 公式还可以用于求解曲线的面积,例如求解
要点二
高阶导数的几何意义
掌握高阶导数的计算方法,例如利用莱布尼茨公式计算二 阶、三阶等高阶导数。
理解高阶导数在几何上的意义,例如二阶导数表示曲线的 凹凸性,三阶导数表示曲线的拐点等。
05
定积分的计算
定积分的计算方法与技巧
积分公式
掌握积分公式是进行定积分计算的基础,包括 幂函数的积分公式、三角函数的积分公式等。
微积分基本公式
微积分基本公式的内容与证明
总结词
微积分基本公式是微积分学的基础,它描述 了函数在某一点处的导数与该函数在该点附 近的变化率之间的关系。
详细描述
微积分基本公式通常表示为∫(f'(x))dx = f(b) - f(a),其中∫代表积分,f'(x)代表函数f 在点x处的导数,b和a分别代表积分的上限 和下限。这个公式在理解函数的积分和导数 之间关系上起着关键作用。
温度与热量,熵与绝热过程,热力学第二定律
微积分在经济中的应用实例
01
总结词
边际分析,最优化问题,经济增长 模型
最优化问题
最大利润,最小成本,最优解
03
02
边际分析
边际成本,边际收益,边际利润
经济增长模型
索洛模型,哈罗德-多马模型,内生 增长模型
04
THANKS
感谢观看
微积分基本公式的应用实例
总结词
微积分基本公式在解决实际问题中有着广泛 的应用,例如求解变速直线运动的位移、求 解曲线的面积等。
详细描述
通过微积分基本公式,我们可以求解变速直 线运动的位移。例如,假设一个物体以速度 v(t)运动,那么物体在时间t到时间t+Δt之间 的位移就是∫(v(t)dt),通过微积分基本公式 可以求得该物体的位移。此外,微积分基本 公式还可以用于求解曲线的面积,例如求解
要点二
高阶导数的几何意义
掌握高阶导数的计算方法,例如利用莱布尼茨公式计算二 阶、三阶等高阶导数。
理解高阶导数在几何上的意义,例如二阶导数表示曲线的 凹凸性,三阶导数表示曲线的拐点等。
05
定积分的计算
定积分的计算方法与技巧
积分公式
掌握积分公式是进行定积分计算的基础,包括 幂函数的积分公式、三角函数的积分公式等。
微积分基本公式
微积分基本公式的内容与证明
总结词
微积分基本公式是微积分学的基础,它描述 了函数在某一点处的导数与该函数在该点附 近的变化率之间的关系。
详细描述
微积分基本公式通常表示为∫(f'(x))dx = f(b) - f(a),其中∫代表积分,f'(x)代表函数f 在点x处的导数,b和a分别代表积分的上限 和下限。这个公式在理解函数的积分和导数 之间关系上起着关键作用。
高等数学(微积分)课件--§6.1定积分的概念与性质
y = f (x)
O a
b x
3
无限细分、无限求和
处理该类问题的基本思路: 无限细分(化曲为直)、无限求和!
y y= f (x)
O
a
b
x
4
曲边梯形的面积计算—分割
设函数在区间[a,b]上连续, y=f(x)≥0 y 分割:
任意插入n-1个分点:
a x0 x1 xn 1 xn b
T1 t0 t1 t n 1 t n T2
把[T1,T2]分成n小段[ti-1, ti] (i=1,2,…,n),每小段 时间长度∆ti= ti- ti-1 ;相应地,位移也分成n段∆si v ②取近似: ∆siv(i)∆ti (i=1,2,…,n) v vt ③求和:
浙江财经学院本科教学课程 ----经济数学(一)
微积分
第六章 定积分
§6.1定积分的概念与性质 §6.2微积分基本定理 §6.3定积分计算方法 §6.4定积分的应用 §6.5广义积分初步
1
§6.1定积分的概念与性质
一、曲边梯形的面积 二、定积分的定义 三、定积分的几何意义 四、定积分的基本性质 在本节中我们将从一些实际问题的计算里 提炼出一类关于“和式极限”计算的数学问 题,从而引申出定积分的概念,并探讨它的性 质、几何意义。
s v i ti
i 1 n
④取极限: 所求位移为
s lim
0
T1
T2
v t (其中 maxt )
i i i 1
1i n i
n
O
t 0 ... ti 1 t i ... t n
t
10
解决此类求和问题的数学模式
吉林大学微积分(高等数学) PPT课件
例如实数集R中集合 A {x 0 x 1}的 补集是
AC A {x x 0 或 x 1 }.
9
二、集合的基本运算
1. 集合的并、交、差
设 A、B 是两个集合,由所有属于A 或者属 于B 的元素组成的集合, 称为A 与 B 的并集(简称 并), 记作 A B,
即 A B {x x A 或 x B};
[a,b] {x a x b}.
oa
b
x
a 和 b 称为闭区间[a, b]的端点, a [a, b], b [a, b].
16
类似地可定义半开区间:
[a,b) { x a x b},(a,b] { x a x b}. 有限区间 [a, b]、(a, b)、(a, b]、[a, b).
a
a
a
点 a 叫做这个邻域的中心,
叫做这个邻域的半径.
x
19
去心邻域的定义:
点 a 的 邻域去掉中心a 后, 称为a 的去心
o
邻域, 记作U (a, ),即
o
U(a, ) { x 0 x a }.
开区间(a ,a) 称为a 的左 邻域, 开区间 (a, a ) 称为a 的右 邻域.
(,) {x x R} R
ob x
18
4.邻域的定义
设 是任一正数, 则开区间(a ,a ) 是 a 的一个邻域, 称为点a 的 邻域, 记作U(a, ). U(a, ) {x x a } {x a x a }.
22
按 照 定 义 , 如 果 数 集E有 界 , 则 存 在 常 数l与L(l L), 使 得 对 一 切x E, 都 有
AC A {x x 0 或 x 1 }.
9
二、集合的基本运算
1. 集合的并、交、差
设 A、B 是两个集合,由所有属于A 或者属 于B 的元素组成的集合, 称为A 与 B 的并集(简称 并), 记作 A B,
即 A B {x x A 或 x B};
[a,b] {x a x b}.
oa
b
x
a 和 b 称为闭区间[a, b]的端点, a [a, b], b [a, b].
16
类似地可定义半开区间:
[a,b) { x a x b},(a,b] { x a x b}. 有限区间 [a, b]、(a, b)、(a, b]、[a, b).
a
a
a
点 a 叫做这个邻域的中心,
叫做这个邻域的半径.
x
19
去心邻域的定义:
点 a 的 邻域去掉中心a 后, 称为a 的去心
o
邻域, 记作U (a, ),即
o
U(a, ) { x 0 x a }.
开区间(a ,a) 称为a 的左 邻域, 开区间 (a, a ) 称为a 的右 邻域.
(,) {x x R} R
ob x
18
4.邻域的定义
设 是任一正数, 则开区间(a ,a ) 是 a 的一个邻域, 称为点a 的 邻域, 记作U(a, ). U(a, ) {x x a } {x a x a }.
22
按 照 定 义 , 如 果 数 集E有 界 , 则 存 在 常 数l与L(l L), 使 得 对 一 切x E, 都 有
4-4[1]高等数学 微积分 ppt视频教程
x 2
3 tan 8
x 2
1 24
tan
x 2
3
C.
解(二)修改万能置换公式, 令 u tan x
u
sin x
,
1 u2
dx
1
1 u2
du,
1 sin4
x
dx
1
1 u u2
4
1
1 u2
du
1
u2 u4
du
1 3u3
(1)分母中若有因式 ( x a)k ,则分解后为
(x
A1 a)k
A2 ( x a)k1
Ak , xa
其中A1 , A2 , , Ak 都是常数. 特殊地:k 1, 分解后为 A ;
xa
(2)分母中若有因式 ( x2 px q)k ,其中 p2 4q 0 则分解后为
A 2B 0,
B 2C 0, A C 1,
1
(1 2x)(1
A x2 )
1
4, B 5 4
5 2x
2,C 5
2x1 55 1 x2
1 5
.
,
例4
求积分
1 x( x 1)2dx.
解
1 x(x
1)2dx
一、有理函数的积分
有理函数的定义:
两个多项式的商表示的函数称之.
P(x) Q( x)
a0 x n a1 x n1 b0 x m b1 x m1
高等数学(微积分学)教学课件
三、两个重要极限
重要极限Ⅰ lim sin x 1 x0 x
它可以拓展为 lim sin[ f (x)] 1 f (x)0 f (x)
sin 2x
例:lim x 2x
1
1 cos x
lim
x0
x2
lim
x0
2 sin 2 x 2
4 x2 4
lim
1
sin
x 2
x0 2 x
2
2
1 2
判断:lim sin x 1
叫做因变量.
数集 D 称为这个函数的定义域.
全体函数值的集合称为函数的值域.
2. 函数的表示法
解析法(公式法):用解析表达式(或公式)表示函数关系.
y x 1
表格法:用列表的方法来表示函数关系.
x123456789 y 1 4 9 16 25 36 49 64 81
图示法:用平面直角坐标系 xoy 上的曲线来表示函数关系.
x
x
1 0
x
x
1
1
1 lim( x0 1
x
)
1 x
x
lim
x0
(1 (1
x) x
1
x) x
lim x0
(1 x) x
1 (1)
[1 (x)] x
e e1
e2
一类特殊极限
若f
(x)
a0 xm a1xm1 a2 xm2 b0 xn b1xn1 b2 xn2
am1x am bn1x bn
x 果对于定义区间的任意点 , 恒有 f (x) f (x) , 则称f (x)
为 D 内的偶函数;如果恒有 f (x) f (x) , 则称 f (x)为D
《高等数学微积分》课件
实际应用
极值问题在经济学、物理学等领域有广泛应 用,如成本最小化、利润最大化等。
曲线的长度
曲线长度公式
利用微积分计算曲线的长度。
参数方程
通过参数方程将曲线表示为参数的函数,便于计算长度。
实际应用
在工程、地理等领域,需要计算各种曲线的长度,如河流长度、 道路长度等。
面积和体积
面积和体积公式
利用微积分计算平面图形的面积和空间图形的体积。
结合律
微积分运算还具有结合律,即函数的微积分运算顺序不影响结果。
交换律
此外,微积分运算还满足交换律,即函数的微积分运算满足交换律 。
微积分运算的法则
分部积分法
分部积分法是微积分运算中的一 种重要方法,它将两个函数的乘 积的导数转化为两个函数的导数 的乘积,从而简化了计算过程。
换元法
换元法是微积分运算中的另一种 重要方法,它通过引入新的变量 来简化计算过程。
如何提高微积分的计算能力?
总结词:掌握计算方法 总结词:细心谨慎 总结词:多做练习题
详细描述:提高微积分的计算能力需要熟练掌握各种计 算方法,如极限的计算、导数的计算和积分的计算等。 掌握这些方法可以更快更准确地完成计算。
详细描述:在微积分的计算过程中,需要细心谨慎,避 免因粗心大意而导致的错误。仔细检查每一步的计算过 程,确保准确性。
微分
微分的定义与性质
微分是函数在某一点附近的小变化量,它描述了函数在该点附近的变化趋势。微分具有一些重要的性质,如线性性、 可加性和可乘性。
微分的计算方法
包括微分的四则运算法则、复合函数的微分法则、隐函数的微分法则等。这些方法可以帮助我们快速准确地计算函数 的微分。
微分的应用
微分在许多领域都有广泛的应用,如近似计算、误差估计、优化问题等。例如,在近似计算中,微分可 以用来估计函数在某一点的近似值;在优化问题中,微分可以用来寻找函数的极值点。
高等数学(微积分)课件--§6.2微积分基本定理
2
o
1
2
x
原式
0 2
x dx
2
1
xdx
0
2
1
x dx
2
11 2
.
17
小结
1.积分上限函数 ( x ) 3.微积分基本公式
a
x
f ( t ) dt .
2.积分上限函数的导数 ( x ) f ( x ).
a
b
f ( x )dx F ( b ) F ( a ).
t 0
x
2
[解答]
19
x 0
0
x
te
2t
2
dt
练习(续)
4 计算下列定积分 (1 ) : x ) dx ; ( 2 )
4
9
x (1
0
2
dx 4 x
2
[解答]
5 计算下列定积分 (1 )
:
0
2
| cos x |dx ;
2
(2)
0
f ( x ) dx , 其中 f ( x )
a
F (b) F (a) F ( x)a ———— 牛顿—莱布尼茨公式
b
14
微积分基本公式的意义
⑴一个连续函数在区间[a,b]上的定积分等于它 的任意一个原函数在区间[a,b]上的增量。 ⑵求定积分问题转化为求原函数的问题。
当 a b 时 , f ( x )dx F ( b ) F ( a ) 仍 成 立 .
a
证:
x
a f t dt 是 f x 的一个原函数