常系数齐次线性微分方程组

合集下载

齐次线性方程组的解

齐次线性方程组的解

齐次线性方程组的解
齐次线性方程组是一类特殊的常系数线性微分方程组.它的特点是由相
同的形式的n个方程和相应的n个未知数组成.齐次线性方程组解可以由三
种解法来解决:主元消去法、特征根法和势能法。

主元消去法是一种简单而有效的方法,它使用矩阵形式的表示法,将
齐次线性方程组转换成矩阵形式,其中每一行都有一个主元。

首先,将系
数矩阵分解为三角形矩阵,然后使用向前代替法使解变成一维向量,最后
用逆序求解,从而得到解。

该方法消耗较多的计算阵列,如果有大量的变量,需要大量的存储空间。

另一种常用的算法是特征根法,它采用特征矩阵的思想,将系数矩阵
视为变换矩阵,并以变换矩阵特征来分析计算限制条件,从而得到齐次线
性方程组的解。

该方法精确,不用反复计算,但是如果系数矩阵变换后形
成不完备特征矩阵,则会使原表示变得复杂,在求解时会出现问题,除此
之外,这种方法也需要大量的计算量才能得到解,在有大量的变量的情况
下并不实用。

最后,势能法是一种综合的分析方法,它结合分析学和计算机科学这
两个学科,从分析的角度出发,把线性微分方程写成一个势能函数,然后
用特定的算法求解出势能函数的最小值,从而得到该齐次线性方程组的解。

这种方法有很好的精度,而且不受解空间大小限制,但是计算量很大,速度很慢。

总之,齐次线性方程组可以由主元消去法、特征根法和势能法这三种解法来求解,但是每种方法有各自的优缺点,在变量多的情况下,需要根据实际情况选取合理的解法来求解齐次线性方程组,以达到最优的效果。

常微分方程课件:4_2常系数齐次线性微分方程的解法

常微分方程课件:4_2常系数齐次线性微分方程的解法

█ 常系数齐次线性微分方程
本节先讨论aj(t)= aj(1≤ j ≤n)时的方程 L[x]=0 … … (1)
下面介绍求它的基本解组的一个经典方法-Euler待定指数函数法(特征根法).
试求形如x=eλt的解,λ∈C为待定常数.将 x=eλt代入L[x]=0得 L[eλt]=(λn+a1λn-1+…+an-1λ+an)eλt=0. 显然,x=eλt是(1)的解等价于F(λ)≡ λn+a1λn-1+…+an-1λ+an=0.
]
(dn y dtn
b1
dn1 y d t n1
b n1
dy dt
bn y)e1t
L1[ y]e1t .
因此方程(1)可化为 L1[y]=0 … … (2) bj仍为常数,而相应的特征方程是
G(μ)≡ μ n+b1 μ n-1+…+bn-1 μ +bn=0.
的复值解. 性质
定理1 设a1(t),…,an(t)均为实函数,z(t)=
φ(t)+iψ(t)是(4.2)的复值解,那么Re{z(t)}=
φ(t),Im{z(t)}=ψ(t)及 z(t)=φ(t)-iψ(t)都
是(4.2)的解.
定理2 设x=z(t)=φ(t)+iψ(t)是 L[x]=u(t)+iv(t)的复值解,u(t),v(t), aj(t) (j=1,2,…n)均为实函数,那么 x=Re{z(t)}=φ(t) 是L[x]=u(t)的解, x=Im{z(t)}=ψ(t)是L[x]=v(t)的解.
ekt≡e αt(cos β t+isin βt).
(或者用 ekt (kt)n 来定义)

常系数齐次线性微分方程解法

常系数齐次线性微分方程解法

第六节 二阶常系数齐次线性微分方程教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐次线性微分方程的解法教学重点:二阶常系数齐次线性微分方程的解法教学过程:一、二阶常系数齐次线性微分方程二阶常系数齐次线性微分方程: 方程y ′′+py ′+qy =0称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数.如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解.我们看看, 能否适当选取r , 使y =e rx 满足二阶常系数齐次线性微分方程, 为此将y =e rx 代入方程y ′′+py ′+qy =0得(r 2+pr +q )e rx =0.由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx 就是微分方程的解.特征方程: 方程r 2+pr +q =0叫做微分方程y ′′+py ′+qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式2422,1q p p r −±+−= 求出.特征方程的根与通解的关系:(1)特征方程有两个不相等的实根r 1、r 2时, 函数、是方程的两个线性无关的解.x r e y 11=x r e y 22= 这是因为,函数、是方程的解, 又x r e y 11=x r e y 22=x r r x r x r e ee y y )(212121−==不是常数. 因此方程的通解为.x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1=r 2时, 函数、是二阶常系数齐次线性微分x r e y 11=x r xe y 12=方程的两个线性无关的解.这是因为, 是方程的解, 又x r e y 11=x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+′+′′ ,0)()2(121111=++++=q pr r xe p r e x r x r 所以也是方程的解, 且xr xe y 12=x e xe y y x r x r ==1112不是常数. 因此方程的通解为.x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2=α±i β时, 函数y =e (α+i β)x 、y =e (α−i β)x 是微分方程的两个线性无关的复数形式的解. 函数y =e αx cos βx 、y =e αx sin βx 是微分方程的两个线性无关的实数形式的解. 函数y 1=e (α+i β)x 和y 2=e (α−i β)x 都是方程的解, 而由欧拉公式, 得y 1=e (α+i β)x =e αx (cos βx +i sin βx ),y 2=e (α−i β)x =e αx (cos βx −i sin βx ),y 1+y 2=2e αx cos βx , )(21cos 21y y x e x +=βα, y 1−y 2=2ie αx sin βx , )(21sin 21y y ix e x −=βα. 故e αx cos βx 、y 2=e αx sin βx 也是方程解.可以验证, y 1=e αx cos βx 、y 2=e αx sin βx 是方程的线性无关解.因此方程的通解为y =e αx (C 1cos βx +C 2sin βx ).求二阶常系数齐次线性微分方程y ′′+py ′+qy =0的通解的步骤为:第一步 写出微分方程的特征方程r 2+pr +q =0第二步 求出特征方程的两个根r 1、r 2.第三步 根据特征方程的两个根的不同情况, 写出微分方程的通解.例1 求微分方程y ′′−2y ′−3y =0的通解.解 所给微分方程的特征方程为r 2−2r −3=0, 即(r +1)(r −3)=0.其根r 1=−1, r 2=3是两个不相等的实根, 因此所求通解为y =C 1e −x +C 2e 3x .例2 求方程y ′′+2y ′+y =0满足初始条件y |x =0=4、y ′| x =0=−2的特解.解所给方程的特征方程为r2+2r+1=0,即(r+1)2=0.其根r1=r2=−1是两个相等的实根,因此所给微分方程的通解为y=(C1+C2x)e−x.将条件y|x=0=4代入通解,得C1=4,从而y=(4+C2x)e−x.将上式对x求导,得y′=(C2−4−C2x)e−x.再把条件y′|x=0=−2代入上式,得C2=2.于是所求特解为x=(4+2x)e−x.例 3 求微分方程y′′−2y′+5y= 0的通解.解所给方程的特征方程为r2−2r+5=0.特征方程的根为r1=1+2i,r2=1−2i,是一对共轭复根,因此所求通解为y=e x(C1cos2x+C2sin2x).n阶常系数齐次线性微分方程:方程y(n) +p1y(n−1)+p2 y(n−2) +⋅⋅⋅+p n−1y′+p n y=0,称为n阶常系数齐次线性微分方程,其中p1,p2 ,⋅⋅⋅,p n−1,p n都是常数.二阶常系数齐次线性微分方程所用的方法以及方程的通解形式,可推广到n阶常系数齐次线性微分方程上去.引入微分算子D,及微分算子的n次多项式:L(D)=D n+p1D n−1+p2 D n−2 +⋅⋅⋅+p n−1D+p n,则n阶常系数齐次线性微分方程可记作(D n+p1D n−1+p2 D n−2 +⋅⋅⋅+p n−1D+p n)y=0或L(D)y=0.注: D叫做微分算子D0y=y, D y=y′, D2y=y′′, D3y=y′′′,⋅⋅⋅,D n y=y(n).分析:令y=e rx,则L(D)y=L(D)e rx=(r n+p1r n−1+p2 r n−2 +⋅⋅⋅+p n−1r+p n)e rx=L(r)e rx.因此如果r是多项式L(r)的根,则y=e rx是微分方程L(D)y=0的解.n阶常系数齐次线性微分方程的特征方程:L(r)=r n+p1r n−1+p2 r n−2 +⋅⋅⋅+p n−1r+p n=0称为微分方程L(D)y=0的特征方程.特征方程的根与通解中项的对应:单实根r对应于一项:Ce rx;一对单复根r 1, 2=α ±i β 对应于两项: e αx (C 1cos βx +C 2sin βx );k 重实根r 对应于k 项: e rx (C 1+C 2x + ⋅ ⋅ ⋅ +C k x k −1);一对k 重复根r 1, 2=α ±i β 对应于2k 项:e αx [(C 1+C 2x + ⋅ ⋅ ⋅ +C k x k −1)cos βx +( D 1+D 2x + ⋅ ⋅ ⋅ +D k x k −1)sin βx ].例4 求方程y (4)−2y ′′′+5y ′′=0 的通解.解 这里的特征方程为r 4−2r 3+5r 2=0, 即r 2(r 2−2r +5)=0,它的根是r 1=r 2=0和r 3, 4=1±2i .因此所给微分方程的通解为y =C 1+C 2x +e x (C 3cos2x +C 4sin2x ).例5 求方程y (4)+β 4y =0的通解, 其中β>0.解 这里的特征方程为r 4+β 4=0. 它的根为)1(22,1i r ±=β, )1(24,3i r ±−=β. 因此所给微分方程的通解为)2sin 2cos (212x C x C e y x βββ+=)2sin 2cos (432 x C x C e x βββ++−.二、二阶常系数非齐次线性微分方程简介二阶常系数非齐次线性微分方程: 方程y ′′+py ′+qy =f (x )称为二阶常系数非齐次线性微分方程, 其中p 、q 是常数.二阶常系数非齐次线性微分方程的通解是对应的齐次方程的通解y =Y (x )与非齐次方程本身的一个特解y =y *(x )之和:y =Y (x )+ y *(x ).当f (x )为两种特殊形式时, 方程的特解的求法:一、 f (x )=P m (x )e λx 型当f (x )=P m (x )e λx 时, 可以猜想, 方程的特解也应具有这种形式. 因此, 设特解形式为y *=Q (x )e λx , 将其代入方程, 得等式Q ′′(x )+(2λ+p )Q ′(x )+(λ2+p λ+q )Q (x )=P m (x ).(1)如果λ不是特征方程r 2+pr +q =0 的根, 则λ2+p λ+q ≠0. 要使上式成立, Q (x )应设为m 次多项式:Q m (x )=b 0x m +b 1x m −1+ ⋅ ⋅ ⋅ +b m −1x +b m ,通过比较等式两边同次项系数, 可确定b 0, b 1, ⋅ ⋅ ⋅ , b m , 并得所求特解y *=Q m (x )e λx .(2)如果λ是特征方程 r 2+pr +q =0 的单根, 则λ2+p λ+q =0, 但2λ+p ≠0, 要使等式 Q ′′(x )+(2λ+p )Q ′(x )+(λ2+p λ+q )Q (x )=P m (x ).成立, Q (x )应设为m +1 次多项式:Q (x )=xQ m (x ),Q m (x )=b 0x m +b 1x m −1+ ⋅ ⋅ ⋅ +b m −1x +b m ,通过比较等式两边同次项系数, 可确定b 0, b 1, ⋅ ⋅ ⋅ , b m , 并得所求特解 y *=xQ m (x )e λx .(3)如果λ是特征方程 r 2+pr +q =0的二重根, 则λ2+p λ+q =0, 2λ+p =0, 要使等式 Q ′′(x )+(2λ+p )Q ′(x )+(λ2+p λ+q )Q (x )=P m (x ).成立, Q (x )应设为m +2次多项式:Q (x )=x 2Q m (x ),Q m (x )=b 0x m +b 1x m −1+ ⋅ ⋅ ⋅ +b m −1x +b m ,通过比较等式两边同次项系数, 可确定b 0, b 1, ⋅ ⋅ ⋅ , b m , 并得所求特解y *=x 2Q m (x )e λx .综上所述, 我们有如下结论: 如果f (x )=P m (x )e λx , 则二阶常系数非齐次线性微分方程y ′′+py ′+qy =f (x )有形如y *=x k Q m (x )e λx的特解, 其中Q m (x )是与P m (x )同次的多项式, 而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的的重根依次取为0、1或2.例1 求微分方程y ′′−2y ′−3y =3x +1的一个特解.解 这是二阶常系数非齐次线性微分方程, 且函数f (x )是P m (x )e λx 型(其中P m (x )=3x +1, λ=0). 与所给方程对应的齐次方程为y ′′−2y ′−3y =0,它的特征方程为r 2−2r −3=0.由于这里λ=0不是特征方程的根, 所以应设特解为y *=b 0x +b 1.把它代入所给方程, 得−3b 0x −2b 0−3b 1=3x +1,比较两端x 同次幂的系数, 得, −3b ⎩⎨⎧=−−=−13233100b b b 0=3, −2b 0−3b 1=1.由此求得b 0=−1, 311=b . 于是求得所给方程的一个特解为 31*+−=x y .例2 求微分方程y ′′−5y ′+6y =xe 2x 的通解.解 所给方程是二阶常系数非齐次线性微分方程, 且f (x )是P m (x )e λx 型(其中P m (x )=x , λ=2). 与所给方程对应的齐次方程为y ′′−5y ′+6y =0,它的特征方程为r 2−5r +6=0.特征方程有两个实根r 1=2, r 2=3. 于是所给方程对应的齐次方程的通解为 Y =C 1e 2x +C 2e 3x .由于λ=2是特征方程的单根, 所以应设方程的特解为 y *=x (b 0x +b 1)e 2x .把它代入所给方程, 得−2b 0x +2b 0−b 1=x .比较两端x 同次幂的系数, 得, −2b ⎩⎨⎧=−=−0212100b b b 0=1, 2b 0−b 1=0. 由此求得210−=b , b 1=−1. 于是求得所给方程的一个特解为 x e x x y 2)121(*−−=. 从而所给方程的通解为 x x x e x x e C e C y 223221)2(21+−+=.提示:y *=x (b 0x +b 1)e 2x =(b 0x 2+b 1x )e 2x ,[(b 0x 2+b 1x )e 2x ]′=[(2b 0x +b 1)+(b 0x 2+b 1x )⋅2]e 2x ,[(b 0x 2+b 1x )e 2x ]′′=[2b 0+2(2b 0x +b 1)⋅2+(b 0x 2+b 1x )⋅22]e 2x .y *′′−5y *′+6y *=[(b 0x 2+b 1x )e 2x ]′′−5[(b 0x 2+b 1x )e 2x ]′+6[(b 0x 2+b 1x )e 2x ] =[2b 0+2(2b 0x +b 1)⋅2+(b 0x 2+b 1x )⋅22]e 2x −5[(2b 0x +b 1)+(b 0x 2+b 1x )⋅2]e 2x +6(b 0x 2+b 1x )e 2x =[2b 0+4(2b 0x +b 1)−5(2b 0x +b 1)]e 2x =[−2b 0x +2b 0−b 1]e 2x .方程y ′′+py ′+qy =e λx [P l (x )cos ωx +P n (x )sin ωx ]的特解形式应用欧拉公式可得e λx [P l (x )cos ωx +P n (x )sin ωx ]]2)(2)([ ie e x P e e x P e x i x i n x i x i l x ωωωωλ−−−++= x i n lx i n l e x iP x P e x iP x P )()()]()(21)]()([21ωλωλ−+++−= x i x i e x P e x P )()()()(ωλωλ−++=, 其中)(21)(i P P x P n l −=, )(21)(i P P x P n l +=. 而m =max{l , n }. 设方程y ′′+py ′+qy =P (x )e (λ+i ω)x 的特解为y 1*=x k Q m (x )e (λ+i ω)x , 则)(1)(*ωλi m k e x Q x y −=必是方程)()(ωλi e x P qy y p y −=+′+′′的特解, 其中k 按λ±i ω不是特征方程的根或是特征方程的根依次取0或1. 于是方程y ′′+py ′+qy =e λx [P l (x )cos ωx +P n (x )sin ωx ]的特解为 x i m k x i m k e x Q x e x Q x y )()()()(*ωλωλ−++= )sin )(cos ()sin )(cos ([x i x x Q x i x x Q e x m m x k ωωωωλ−++= =x k e λx [R (1)m (x )cos ωx +R (2)m (x )sin ωx ].综上所述, 我们有如下结论:如果f (x )=e λx [P l (x )cos ωx +P n (x )sin ωx ], 则二阶常系数非齐次线性微分方程 y ′′+py ′+qy =f (x )的特解可设为y *=x k e λx [R (1)m (x )cos ωx +R (2)m (x )sin ωx ],其中R (1)m (x )、R (2)m (x )是m 次多项式, m =max{l , n }, 而k 按λ+i ω (或λ−i ω)不是特征方程的根或是特征方程的单根依次取0或1.例3 求微分方程y ′′+y =x cos2x 的一个特解.解 所给方程是二阶常系数非齐次线性微分方程, 且f (x )属于e λx [P l (x )cos ωx +P n (x )sin ωx ]型(其中λ=0, ω=2, P l (x )=x , P n (x )=0). 与所给方程对应的齐次方程为y ′′+y =0,它的特征方程为r 2+1=0.由于这里λ+i ω=2i 不是特征方程的根, 所以应设特解为 y *=(ax +b )cos2x +(cx +d )sin2x .把它代入所给方程, 得(−3ax −3b +4c )cos2x −(3cx +3d +4a )sin2x =x cos2x . 比较两端同类项的系数, 得 31−=a , b =0, c =0, 94=d . 于是求得一个特解为 x x x y 2sin 942cos 31*+−=. 提示:y *=(ax +b )cos2x +(cx +d )sin2x .y *′=a cos2x −2(ax +b )sin2x +c sin2x +2(cx +d )cos2x ,=(2cx +a +2d )cos2x +(−2ax −2b +c )sin2x ,y *′′=2c cos2x −2(2cx +a +2d )sin2x −2a sin2x +2(−2ax −2b +c )cos2x =(−4ax −4b +4c )cos2x +(−4cx −4a −4d )sin2x .y *′′+ y *=(−3ax −3b +4c )cos2x +(−3cx −4a −3d )sin2x .由, 得⎪⎩⎪⎨⎧=−−=−=+−=−0340304313d a c c b a 31−=a , b =0, c =0, 94=d .。

一阶常系数线性齐次微分方程组求解探析

一阶常系数线性齐次微分方程组求解探析

一阶常系数线性齐次微分方程组求解探析
本文探讨了一阶常系数线性齐次微分方程组的求解方法,以此为基础探讨了许多有关如何解决这一类问题的理论概念与实际应用等。


一阶常系数线性齐次微分方程组是指形如$ax^{'}+bx=0$($a,b$为常数)的无限维微分方程组,它的解可以用下面求解过程求得:
(1)当$a=0$时,
若$b\neq 0$,则原方程有唯一解,为$x(t)= \frac{C}{b}$;
若$b=0$,则原方程有无穷多解,为$x(t)=C$,其中$C$为任意常数;
(2)当$a\neq 0$时,
原方程有唯一解,为$x(t)=e^{-\frac{b}{a}t}C$,其中$C$为任意常数。

因此,一阶常系数线性齐次微分方程组的解存在唯一解或者无穷多解,
具体视系数而定。

要求解这类微分方程组,我们要简化原方程,一般可以先将原方程分拆成$ax^{'}=f(t)-bx$的形式,然后再用积分因子$u=e^{\int{-\frac{b}{a}}dt}$解之,最后求得它的解即可。

第七节 常系数齐次线性微分方程

第七节  常系数齐次线性微分方程
r42–x 2r3 + 5r2 = 0 ,
第第七七节节 常常系系数数第齐齐七次次第节线线七性性节常微微常系分分系数数方方齐齐程程次次线线性微性分微方程分方程
例例55* 在在第第六六节节 例1 设有中一,设个物弹体簧只,受它弹的性上恢端复固固力定定,,f 下下
的作用,且在初量瞬为t m= 0的时物的体位. 置当为物体x =处x于0 ,静初止始状速态度时,,作作
dx dt
t 0
v0
.
求反的映重物力体与运弹动性规力律大的小函相数等x、、=方方x(向向t).相相反反.. 这这个个 位置就是物体的平衡位置. 建立如图所示的
解 由于不计的阻坐力标,系所,以原第点六O节为例平1衡中位的置方.程变为
设dd在2t 2x振 动k 2 x过程0 ,中,物体的位置函数为为
该方程叫做无阻x 尼= x自(t)由. 振下动面的来微求分振方动程规.律其. 通解为
两个复根 r1,2 = i
通解
y C1er1x C2er2x y (C1 C2 x)erx y e x ( C 1 c o s x C 2 s in x ) .
第七节 常系数齐次线性微分方程
三、 举第例七节 常系数齐次线性微分方程
例1 求微分方程 y – 2y – 3y = 0 的通解. 解 特征第方七程节为常系数齐次线性微分方程 例例22 求求微微分分方方r2程程– 2yyr–––344=yy0++,44yy == 00 的的通通解解.. 特征解根为特征r第1方=七–程节1为,常r2 系= 3数,齐是次两线个性不微相分等方的程实根,
所以例通3解求为微分方r2 程– 4yr+–44y= 0+,13y = 0 的通解. 特征解根为特征r第1方=七r程y节2 =为C2常1,e系-x是数+ 两C齐2个e次3x相线. 等性的微实分根方,程所以通解为

4.2.1常微分方程-线性齐次常系数方程

4.2.1常微分方程-线性齐次常系数方程

x
(n)
a1 x
( n 1)

an1 x an x 0
1、复值函数 定义
z (t ) (t ) i (t ) t [a, b],
(t ), (t )是定义在 [ a , b ] 上的实函数。
极限
lim z (t ) lim (t ) i lim (t ) t0 [a, b],
z (t ) z (t0 ) dz d lim z (t0 ) t t0 t t0 dt t t0 dt
t t0
d i dt
t t0
易验证
d dz1 (t ) dz2 (t ) ( z1 (t ) z2 (t )) dt dt dt d dz1 (t ) [cz1 (t )] c dt dt d dz1 (t ) dz2 (t ) ( z1 (t ) z2 (t )) z2 (t ) z1 (t ) dt dt dt
()
F ( ) n a1n1 an1 an 0
① 特征根为实根 I. 设 1 0 是 k 重特征根 方程 ( ) 有 k 个线性无关的解 II. 设
1, t , t 2 ,
, t k 1
1 0 是 k 重特征根
e1t , te1t , t 2e1t , , t k 1e1t
性质1
e e
t
t
性质2
性质3 性质4
det et dt
e
( 1 2 ) t
e e
1t 2t
d n et n t e n dt
3、复值解 定义 如果定义在 [a, b] 上的实变量的复值函数
x z (t ) 满足方程

常微分方程4.4常系数齐线性方程组

常微分方程4.4常系数齐线性方程组
常微分方程4.4常系数 齐线性方程组
目录
• 常系数齐线性方程组的定义 • 常系数齐线性方程组的解法 • 常系数齐线性方程组的应用 • 常系数齐线性方程组的扩展
01
常系数齐线性方程组的 定义
定义与特性
定义
常系数齐线性方程组是由n个一阶常微分方程组成的方程组,形如$y' = f(x) = a_{1}y + a_{2}y' + ldots + a_{n}y^{(n-1)}$,其中$a_{1}, a_{2}, ldots, a_{n} FOR WATCHING
感谢您的观看
02
常系数齐线性方程组的 解法
特征值与特征向量
特征值
对于常系数齐线性方程组,其特征值是方程组的解,对应于特征值的线性无关的解称为特征向量。
特征向量的求解
通过将特征值代入方程组,可以得到特征向量。
方程组的解法
代数解法
通过对方程组进行代数运算,求解出方 程组的解。
VS
微分方程解法
通过对方程组进行微分运算,求解出方程 组的解。
04
常系数齐线性方程组的 扩展
高阶线性方程组
01
高阶线性方程组是指微分方程中未知数的导数次数 高于一次的方程组。
02
高阶线性方程组在物理、工程和经济学等领域有广 泛应用。
03
解决高阶线性方程组的方法包括分离变量法、幂级 数法等。
非线性方程组
01 非线性方程组是指微分方程中包含未知数及其导 数的非线性项的方程组。
解的稳定性与不稳定性
要点一
稳定性
当方程组的解在时间变化过程中保持稳定时,称为稳定。
要点二
不稳定性
当方程组的解在时间变化过程中发生振荡或发散时,称为 不稳定。

常系数高阶齐次线性微分方程

常系数高阶齐次线性微分方程

总结词
通过幂级数展开来求解高阶线性微分方 程的一种方法。
VS
详细描述
幂级数法的基本思想是将未知函数表示为 一个幂级数,然后利用微分方程的性质, 将原方程转化为一个递推关系式,求解这 个递推关系式可以得到幂级数的系数,从 而得到原方程的解。这种方法适用于具有 特定形式的未知函数的高阶线性微分方程 。
积分因子法
计算
根据求解方法,通过计算得到通解的具体形 式。
05 方程的应用实例
在物理问题中的应用
量子力学
常系数高阶齐次线性微分方程在 量子力学中用于描述粒子的波函 数随时间的变化。例如,在求解 氢原子能级问题时,需要用到此 类方程。
波动问题
在研究波动问题,如声波、电磁 波等时,常系数高阶齐次线性微 分方程可以用来描述波的传播和 演化。
热传导问题
在求解热传导问题时,常系数高 阶齐次线性微分方程可以用来描 述温度随时间和空间的变化。
在工程问题中的应用
控制系统
在控制系统的分析和设计中,常系数高阶齐次线性微分方程用于描述系统的动态特性。例如,在航空航天、化工等领 域中,此类方程被广泛应用于各种控制系统的建模和仿真。
信号处理
在信号处理中,常系数高阶齐次线性微分方程用于描述信号的滤波、预测和补偿等过程。例如,在通信、雷达和图像 处理等领域中,此类方程被广泛应用于信号处理算法的设计和实现。
02 方程的解法
特征方程法
总结词
通过解特征方程来求解高阶线性微分方程的一种方法。
详细描述
特征方程法的基本思想是将高阶线性微分方程转化为多个一阶线性微分方程来求解。首先,我们对方程进行整理, 得到一个关于未知函数和其导数的多项式方程,然后令其为0,得到一个关于未知函数的多项式方程,即特征方 程。求解特征方程,可以得到一组根,对应于原方程的一组解。

常系数齐次线性微分方程

常系数齐次线性微分方程
2
定理4 (解的叠加原理)
设y P x y Q x y f1 x +f 2 x
而y x 与y x 分别是方程
* 1 * 2
y P x y Q x y f1 x
和 y P x y Q x y f2 x 的特解,
2.非齐次线性方程解的性质
y P x y Q x y f x 0
定理3 (通解的结构)
*
2
设y x 是二阶非齐次线性方程 2的一个特解,
Y x 是与 2 对应的齐次线性方程 1的通解,
那么,非齐次线性方程 2的通解为
其中C1 , C2是任意常数. 问题:
定理1 (解的叠加原理) 如果y1 x 与y2 x 是方程 1的两个解,
y C1 y1 x C 2 y2 x 一定是方程 1 的通解?
问题: y C1 y1 x C2 y2 x 一定是方程1的通解? C 回顾二阶微分方程通解的概念 y1 若 =常数k , 则解y C1ky2 C2 y2 C1k C2 y2 y2 仅有一个任意常数,故不是通解.
2x
C2e
x
xe
x
(3) 将初始条件
2x
y 0 7, y 0 6
x x
x
代入通解及其导数式:
y 2C1e C2e e xe
2x x x
y C1e C2e xe
解得 C1 4, C2 3 从而特解为
2x
y 4e 3e xe
y1 若 常数即函数y1和y2没有倍数关系 y2 则C1和C 2不可能合并, 是通解.

工科数学分析常系数线性微分方程组

工科数学分析常系数线性微分方程组
解: 从(2)中解出 x1(dyy), 2 dt
ddxt12(dd2t2yddyt) 1 2(d d22 ytd d)y t1 2(d d y ty)3y
1dy 2 dt
5 2
ydd2t2y5y
0
r2 5 0 , r 1 ,25 i
y ( t) C 1 co 5 t C s 2 si5 tn x (t) 1 2 [5 C 1 si5 n t5 C 1 co 5 t]s
x0 I
二.常系数微分方程组的解法
常系数线性微分方程组 微分方程组中的每一 个微分方程都是常系数线性微分方程叫做常 系数线性微分方程组.
dy1 dx
a11y1
a12y2
a1n yn
f1( x)
dy2
dx
a21y1 a22y2
a2n yn
f2 ( x)
ddyxn an1 y1 an2 y2 annyn fn(x)
解: 为了 y (t)可 ,消 (2 )两 对 去 t边 求 2 次 对 导,得
d d33 xtd d22 yt3d d22 xt0
(3)
(3 ) ( 1 ) 式 得 : d d 3 tx 3 4 d d 2 tx 2 5 d d x t 0 (4 )
r 3 4 r 2 5 r 0 ,r 1 0 ,r 2 ,3 2 i . (4 ) 的通 x (t) C 解 1 e 2 t(C 为 2 cto C : 3 s sti)n
D x(D 21)y0
(1) 用代数方法 (2) 消元自作
根据解线性方程组的克莱姆法则, 有
D2 1
D
D2 1 et y
D D2 1
D0

(D 4D 21 )y et

关于常系数齐次线性微分方程组的解法研究

关于常系数齐次线性微分方程组的解法研究

= . Y茸 = I
t‘一 e e + 1
Y ( D( 一 1 2 … , 一 1 , k+ j ', )
a 2一 — —广

d ye, .
= ^ .
代 入 的表达式 得 :
1 一 £ 2e e+ 一 2 t 一 e + 1 e
eA = t
l l


Yk l Yk 2
【 a , ・ e 。 0
解 之 得
“ 0
。l 一

●__一

● Leabharlann 出 : 1


e = 1, 。


丑 对 每 一 个 k一 1 2 … , 有 p , , 5郡
一 e + 2 ‘ 2 ‘ e一
— — — 一 ’
●_一
岁1 d 岁 1
d t




于是 有
e r— r £ , e () r= /( ) e £ , 。一 r O , ( )



即得 方程组
rf e at 2 。+ “l t+ ao, e 一 2 2 + a1 at ,
于是
yk l
由此解 出

0 O
一 £‘ e e + ‘ — t e
t e t + e e

Cb t n

Y( 1 k )一 ( ‘ l+ ^ ) , G u】 te
以下说 明如 何利 用循 环公 式求 方程 组 的通解 .
先 来 推 导 循 环 公 式 Ⅲ . 于 方 程 对
于是 其 中

常微分方程4.2n阶常系数线性齐次方程解法

常微分方程4.2n阶常系数线性齐次方程解法

Y
C1e1xT1
C2e2xT2





Cne
n
Tx 3n
§ 4.2 Solving Method of Constant Coefficients Linear Homogenous ODE
高阶线性方程
y(n) a1(x) y(n1) an1(x) y an (x) y f x (4.5)

c2 e 2 x


c enx n 11
§ 4.2 Solving Method of Constant Coefficients Linear Homogenous ODE
例1 求方程 y 8y 7 y 0 的通解。
解 第一步:特征方程及特征根
P() 2 8 7 0 1 1, 2 7
P() 0 满足
特征根
特征方程
结论: y e x 是方程的解的充要条件 满足 P() 0
9
§ 4.2 Solving Method of Constant Coefficients Linear Homogenous ODE
下面根据特征根的不同情况分别进行讨论。
P() n a1n1 an1 an 0
复习内 容
一阶常系数线性齐次方程组的解法 高阶线性方程
高阶线性方程的通解结构
2
§ 4.2 Solving Method of Constant Coefficients Linear Homogenous ODE
一阶常系数线性齐次方程组的解法
dY AY dx
第一步:写出方程组的系数矩阵A
y e x

常系数齐次线性微分方程

常系数齐次线性微分方程

常系数齐次线性微分方程常系数齐次线性微分方程是研究微分方程的一个重要类别。

它是指形如dy/dx=f(x)或者F(x,y,yy...,y^(n))=0,其中f(x)和F(x,y,yy...,y^(n))是x的多项式函数,或者更一般地说,是某个定义域内的可积函数。

研究常系数齐次线性微分方程的方法有很多,包括拉格朗日求解法、拉普拉斯变换、幂级数解法等.首先,我们来讨论拉格朗日求解法。

拉格朗日求解法是针对常系数齐次线性微分方程的一种可行的解法,它将常系数齐次线性微分方程转换为一个特殊方程组,每个方程组的近似解就是线性微分方程的普遍解,也就是解析解。

解析解可以提供常系数线性微分方程的有界性、有效性及其它特性的结论。

其次,我们来讨论拉普拉斯变换。

拉普拉斯变换是一种有助于求解常系数齐次线性微分方程的方法,可以将常系数齐次线性微分方程转换为一个独立于空间变量x的时间变量t的线性系统。

拉普拉斯变换可以大大简化此类方程的求解,而且还可以利用其它线性系统的技术来求解相关方程,例如,矩阵求解法及线性系统的坐标变换。

最后,我们来讨论幂级数解法。

幂级数解法是求解常系数齐次线性微分方程的另一种可行的方法,它将方程的解表示为一个无穷级数式,形如y= a_0+a_1x^1+a_2x^2+a_3x^3+…+a_nx^n。

一般来说,幂级数解法主要利用线性求解法来求解微分方程,其关键步骤是求解微分方程的两边均为幂级数的特殊情况,即称之为“特殊幂级数”。

以上是常系数齐次线性微分方程的相关知识介绍,从以上的分析可以看出,常系数齐次线性微分方程是一个相当复杂的问题,涉及到很多的理论和数学技术,解决它的方法有很多种,需要结合具体的问题进行深入的研究。

总结起来,常系数齐次线性微分方程是一个重要的研究对象,其研究方法有很多,主要包括拉格朗日求解法、拉普拉斯变换和幂级数解法等。

不论是从理论上还是从实际应用角度来考虑,都必须深入了解这个重要的问题,以此为基础在推进相关研究的发展,从而使得更多的研究者能够从中受益。

常微分方程33线性常系数齐次方程

常微分方程33线性常系数齐次方程

2! 4!
3! 5!
cos t i sin t ei t cos t i sin t
cos t 1 (ei t ei t )
2
sin t 1 (ei t ei t )
2i
4
2) 复指函数的性质
记 i 表示 i 的共轭. 性质1: et et
设特征方程有k 重根 1 ,则有 F (1) F ' (1) F (k1) (1) 0, F k (1) 0
(1) 若 1 0 则特征方程有因子k,因此,
an an1 ank1 0
则特征方程有形式:n a1n1 ankk 0
则方程相应地有两个复值解:
e(i )t et (cos t i sin t) e(i )t et (cos t i sin t)
由定理3.12知它们的实部和虚部也是方程的解,
故方程的两个实值解为:et cos t, et sin t
14
2 特征根有重根
因此有解 et , e2t ,te2t . 方程通解为:
x(t) c1et c2e2t c3te2t . 其中 c1, c2, c3 为任意常数.
19
例2:求 d 4 x x 0 的通解. dt 4
解:特征方程 4 1 0 故特征根为1 1, 2 1, 3 i, 4 i
nent

nn1ent
1
11
e(1 2 n )t 1

1n 1
2

n2 1
n

nn1

(
1 jin
i

j

常系数线性齐次微分方程组的矩阵解法

常系数线性齐次微分方程组的矩阵解法

常系数线性齐次微分方程组的矩阵
解法
常系数线性齐次微分方程组(LCCDE)是一类与定常差分方程组(LDE)类似的微分方程组,区别在于其中的系数是常数。

例如,LCCDE可以被表述为:
dy/dx + p_1(x)y + p_2(x)y' + ... + p_n(x)y^(n-1)=0
其中p_1(x),p_2(x),...,p_n(x)是常数。

矩阵解法是根据LCCDE来计算特解的一种解法,它基于Cramer规则对LCCDE给出解析解。

更具体地说,矩阵解法将LCCDE转换为一组线性方程组,采用矩阵乘法来求解此方程组,并将答案代入原微分方程组中,从而求得特解。

例如,考虑以下LCCDE:
dy/dx + 4y + 5y' + 6y''=0
我们可以将其转换为一组线性方程组:
a_0y+a_1y'+a_2y''=0 a_3y+a_4y'+a_5y''=0
a_6y+a_7y'+a_8y''=0
其中a_i (i=0,1,...,8)是常数,可以根据上面的LCCDE逐步求得。

然后,我们可以将上面的方程组转换为形如Ax=b的矩阵相乘方程,其中A是系数矩阵,x是未知向量,b是右端项向量。

矩阵相乘方程可以用Cramer规则计算得到解析解,然后将解代入原LCCDE,就可以求得特解。

第四讲 常系数线性齐次微分方程

第四讲 常系数线性齐次微分方程

考虑方程
L[ y]
dny dxn
a1
d n1 y dxn1
L
an y 0
(4.19)
其中a1, a2 , , an为常数, 称(4.19)为n阶常系数齐线性方程.
我们知道,一阶常系数齐线性方程
dy ax 0 dx
有解 y ceax ,
受此启发,对(4.19)尝试求指数函数形式的解
y ex , (4.20)
dy 1 dy , dx x dt
把上式入原方程得
d 2 y 1 d 2 y dy
dx2
x2 ( dt2
), dt
d 2 y dy
dt 2
2 dt
y0
上述方程的通解为: y(t) (c1 c2t)et ;
故原方程的通解为:
y(x) (c1 c2 ln x )x; 这里c1, c2为任常数;
2
en x
n en x
L
e n1 nx n
1 1 1
e (1 2 L n ) x 1
2 n
n1 1
n1
2
n1 n
e(12 L n ) x
(i j ) 0
1 jin
故解组(4.22)线性无关.
若i (i 1,2, , n)均为实数,
则(4.22)是方程(4.19)的基本解组 ,从而(4.19)的通解为
把方程 (4.19 )的2k个复值解 , 换成2k个实值解.
et cos t, tet cos t, , t k1et cos t; et sin t, tet sin t, , t k1et sin t.
(3) 求方程(4.19)通解的步骤
第一步: 求(4.19)特征方程的特征根 1, 2, , k ,

常系数齐次线性微分方程组基解矩阵的求解

常系数齐次线性微分方程组基解矩阵的求解

常系数齐次线性微分方程组基解矩阵的求解常系数齐次线性微分方程组(ODEs)具有广泛的应用,它描述了一个系统的变化,其基本格式为:ay + by + cy = 0其中,a,b,c是定值。

求解ODEs的方法有固定点定理、积分因子和特征值定理等,其中,基解矩阵是一种基本概念,它们可以帮助我们更容易地求解ODEs。

基解矩阵是一个特定矩阵,它由解ODEs的特征解组成。

特征解是ODEs的根,它们代表着ODEs的解/极限解等。

特征解可以写成: xi(t) = e^rt其中,r是ODEs的特征值,它对应着特征方程的根。

基本基解矩阵由基解向量组成,它们可以写成:X = [x1, x2, x3, ..., xn]其中,x1,x2, ...,xn是ODEs的解向量,它们对应着ODEs的基解。

为了求解ODEs,我们还需要确定一个初值。

这个初值可以写成: X(0) = [x1(0), x2(0), ..., xn(0)]其中,x1(0),x2(0), ...,xn(0)是ODEs的初值向量,它们代表着ODEs的初值状态。

求解ODEs的基解矩阵的基本原理是:利用基解向量组成的基解矩阵,可以将ODEs的求解变为一个线性代数问题,而这个线性代数问题可以用行列式解决。

假设我们要求解ODEs:ay + by + cy = 0称ε为ODEs的特征根,则可写出:ε1= r1,2 = r2,3 = r3其中,r1,r2,r3是ODEs的根,它们组成了特征多项式的特征根。

此时,基解矩阵可以写成:X = [e^r1*t, e^r2*t, e^r3*t]此时,ODEs的初值可以写成:X(0) = [x1(0), x2(0), x3(0)]现在,将基解矩阵和初值向量带入ODEs:ay + by + cy = 0我们可以得出:xe^(r1*t) + ye^(r2*t) + ze^(r3*t) = x1(0)其中,x、y、z是ODEs的未知参数,它们可以用行列式求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dx (t ) du (t ) dv (t ) i A(t ) u (t ) iv (t ) dt dt dt A(t )u (t ) iA(t )v (t )
由于两个复数表达式相等等价于实部和虚部相等,
常系数线性方程组
所以有
du (t ) dv (t ) A(t )u (t ), A(t )v (t ) dt dt 即 u (t ) 和 v (t ) 是方程组(2)的解.
X (t ) X (t ) X 1 (0)
常系数线性方程组
1 0 0 3 3 t e cos 2t sin 2t cos 2t sin 2t . 2 2 3 1 sin 2t cos 2t sin 2t cos 2t 2
0
(1)矩阵A具有n个互不相同的特征值时 由线代知识知道A一定有对应的n个线性无关 的特征向量。
常系数线性方程组
5 28 18 dx x 的通解. 1 5 3 例1 求方程组 dt 3 16 10
解 系数矩阵A的特征方程为
det( E A) 3 (1 2 ) 0
§7.3 常系数线性方程组
常系数线性方程组
一阶常系数线性微分方程组:
dx Ax f (t ), dt
( 1)
这里系数矩阵A为n n常数矩阵, f (t )在 a t b上连续的向量函数;
若f (t ) 0, 则对应齐线性微分方程组为
dx Ax (2) dt
本节先讨论(2)的基解矩阵的求法.
t
3e 0 et
t
故通解为
2 2et x (t ) (t )C 1 et 1 2et
3e c1 0 c2 et c3
t
2 2 3 t t c1 1 c2 1 e c3 0 e ; 1 2 1
由公式 (3.9) 得, 原方程的解为
0 0 t x (t ) X (t ) 1 X (t ) X (s) 0 ds 0 1 e s cos 2s
(t ) [e1t r1 , e2t r2 ,
, ent rn ], t
是常系数线性微分方程组 的一个基解矩阵.
dx Ax (2) dt
从而方程组(2)的基本解组归结为求A的n个线性无关的特征向量。
常系数线性方程组
证明: 由上面讨论知,每一个向量函数
e rj ,
t ni 1
rni 1 )
的线性无关的解,其中r0为(A i E ) ni r 0的非零解 r1=(A i E )r0, r2=(A i E )r1, rni 1=(A i E )rni 2,
常系数线性方程组
例3
常系数线性方程组
(4)若实系数线性齐次方程组(2)有 复值解 x (t ) u (t ) iv (t ) 则其实部 u (t )和虚部 v (t ) 都是(2)的解. 证明 因为 x (t ) u (t ) iv (t ) 是方程组(2) 的解,所以有
5cos 3t 5sin 3t i cos 3t 3sin 3t sin 3t 3cos 3t
常系数线性方程组

5cos 3t 5sin 3t u (t ) , v (t ) cos 3 t 3sin 3 t sin 3 t 3cos 3 t
2 x1 (t ) 3 et . 2
常系数线性方程组
T r (0,1, i ) . 因此 对 2 1 2i, 有特征向量 2
0 0 0 (1 2i )t t x(t ) 1 e e (cos 2t i sin 2t ) 1 i 0 i 1 1
实矩阵A有复特征根一定共轭成对出现,即如果
a ib 是特征根,则共轭复数 a ib也 是特征根, 对应的特征向量也与 对应的特征
向量共轭,因此方程组(2)出现一对共轭 的复值解.
常系数线性方程组
例 求解方程组
dx 1 5 x dt 2 1
jt
j 1, 2,
,n
都是(2)的解,因此矩阵
(t ) [e1t r1 , e2t r2 ,
是(2)的解矩阵,
, ent rn ]
由于r1 , r2 ,
所以
, rn线性无关, , rn ]
det (0) det[r1 , r2 ,
故(t )是(2)的基解矩阵.
常系数线性方程组
考虑常系数非齐次线性微分方程组
研究了方程 (2) 通解的求法, 这一节我们只研究(1) 的特解即可
常系数线性方程组
方程组(2)的基解矩阵 为
X (t ),
因此常系数非齐次方程组(1)的通 解为
x (t ) X (t )C X (t s )) F ( s)ds
t0
t
(3.8)
这里C为任意常数列向量.
因此特征根为 1 0, 2 1, 3 1; 它们相的特征向量为
2 2 3 r1 1 , r2 1 , r3 0 ; 1 2 1
常系数线性方程组
故基解矩阵为
2 2e (t ) 1 et 1 2et
常系数非齐次线性微分方程组
dx (1) Ax F (t ), dt 其对应的齐次线性微分方程组为 dx (2) Ax dt 是 n 维列向量 这里 A 是 n n 实常数矩阵 , F (t )
函数. 根据解的结构定理知, 方程(1) 的通解为 (2)
的通解与方程 (1) 的一个特解之和. 前面我们
这样可以得到齐次方程组的基解矩阵
2et X (t ) 3et 2et 0 et cos 2t et sin 2t t e sin 2t . et cos 2t 0
常系数线性方程组

因此
1 2 0 0 3 1 X (0) 1 0 2 1 0 1
且 u (t ) 和 v (t ) 是原方程的两个线性无关解,故 原方程组的通解为
5cos 3t 5sin 3t x (t ) c1 c2 cos 3t 3sin 3t sin 3t 3cos 3t
常系数线性方程组
• 例3.5
常系数线性方程组
常系数线性方程组
(2)矩阵A有ni重特征值i时,若对应的线性无关的特征向量有ni个, 则也可找到A的n个线性无关特征值。
1 3 3 dx 例2 求齐次线性微分方程组 3 5 3 x的通解。 dt 6 6 4
解:先求特征值 1 A E 3 6 3 5 6 3 3 4 2 (4 ) 0
对应的特征向量,因此原微分方程组有解
3it 5 5e 3it x (t ) e 3it 1 3i (1 3i)e 5cos 3t 5i sin 3t cos 3t 3sin 3t i(sin 3t 3cos 3t )
解: 首先, 我们求基解 矩阵
常系数线性方程组
A 的特征方程为
det( A E ) (1 )( 2 2 5) 0.
因此矩阵 A 有特征根 1 1, 2 1 2i, 3 1 2i. 对 1 1, 有特征向量 r1 (2, 3, 2)T , 进而得到对应 的齐次方程组的一个解
常系数线性方程组
1 基解矩阵与A的特征值和特征向量的关系 易知(2)有形如
(t ) e r , r 0,
将(3)代入(2)得
t
(3)
的解, 其中常数和向量r 是待定的.
e r Ae r ,
因e 0, 上式变为
t
t
t
( E A)r 0, (4)
常系数线性方程组
0 0 et cos 2t iet sin 2t . sin 2t cos 2t
常系数线性方程组
所以 对应的齐次方程有解
0 0 x2 (t ) et cos 2t , x3 (t ) et sin 2t . sin 2t cos 2t
解 系数矩阵A的特征方程为
1 2
故有特征根
5 1
9 0
2
1 3i 对应的特征向量 r (r1 , r2 )
常系数线性方程组
1 3i, 2 3i 且是共轭的.
T
满足方程
(1 3i)r1 5r2 0 T r 5 r 1 3 i , 取 1 得 2 则 r (5,1 3i) 是 1
2
所以=-2(二重),=4
常系数线性方程组
3 3 3 1 1 1 对于=-2,A 2 E 3 3 3 0 0 0 6 6 6 0 0 0 r2 1 0 所以r1 r2 r3,分别取 = 及 ,得 r3 0 1 1 -1 1 r1= 1 ,r2= 0 ,对于=4,可以求得r3= 1 0 1 2 1 -1 1 所以通解为x(t)=c1e 2t 1 c2e 2t 0 c3e 4t 1 0 1 2
常系数线性方程组
(3)i 为A的ni 重特征值,对应的线性无关特征向量少于ni 个,则用定理3.2可找到ni 个线性无关的解。
相关文档
最新文档